跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 16:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹文莉
研究生(外文):Wen-Li Chan
論文名稱:蒸熱處理對採後軟熟愛文芒果炭疽病發生之影響
論文名稱(外文):Effects of Vapor Heat Treatment on Symptom Development of Anthracnose in Harvested Ripe ‘Irwin’ Mango
指導教授:吳俊達吳俊達引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:88
中文關鍵詞:愛文芒果炭疽病蒸熱處理
外文關鍵詞:mangoanthracnoseColletotrichum gloeosporioidesvapor heat treatment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1454
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣芒果(Mangifera indica L.)種植面積超過兩萬公頃,是本省單一種類栽培面積最大宗的果樹, ‘愛文’為主要種植與外銷品種,雖然‘愛文’芒果果實品質良好,但對炭疽病菌(Colletotrichum gloeosporioides)相當敏感,一般商業上常以溫湯處理作為抑制芒果炭疽病的採後防治方法。由於台灣為東方果實蠅(Bactrocera dorsalis Hendel)及瓜實蠅(Bactrocera cucurbitae Coquillett)疫區,園產品必須經過檢疫處理才能出口到非疫區市場,而目前台灣輸出之‘愛文’芒果需以蒸熱處理使果心溫度提高到46.5℃後,維持30分鐘作為標準檢疫的條件,但並未就炭疽病問題進行採後處理防治措施。因此,本試驗目的在探討利用有效溫湯處理抑制芒果炭疽病的溫度及時間,在標準檢疫蒸熱處理流程額外增加一高溫階段,使蒸熱室溫度提高至有效溫湯處理之溫度及時間,期能開發兼具檢疫滅蟲處理與抑制芒果炭疽病雙重功能之蒸熱處理條件。
軟熟‘愛文’芒果利用模擬蒸熱機進行不同條件的蒸熱處理結果顯示,以標準檢疫處理、標準檢疫處理前提高蒸熱室溫度到56℃ 5分鐘,以及標準蒸熱檢疫處理後提高蒸熱室溫度到56℃ 5、10分鐘、58℃ 5分鐘之五種高溫蒸熱步驟結合標準蒸熱檢疫處理(果心溫度達46.5℃,維持30分鐘)在芒果炭疽病徵發展上皆有抑制效果。相較於未蒸熱對照組炭疽病徵發生率66.67%,上述五種蒸熱處理皆可以有效抑制炭疽病發生率至5.33%以下,且對果實品質無顯著影響,經蒸熱處理後果實乙烯釋放量維持在0.1μl/C2H4/kg/hr以下,顯著低於對照組乙烯產生率0.35 μl/C2H4/kg/hr。但四組額外提高蒸熱室溫度處理組與標準檢疫蒸熱處理組相較下,並沒有更好的抑制炭疽病徵之效果,且標準蒸熱處理亦具有減輕蒂腐病發生,但額外高溫處理則無此效果,因此,在蒸熱處理流程並無增加額外提高56~58℃高溫步驟的需要性。
由於蒸熱處理後樣品表面不發生炭疽病斑無法判別是因為蒸熱處理抑制炭疽病徵發展或是因為該果實在田間並未遭受炭疽病感染,為確認蒸熱處理對C. gloeosporioides發展的抑制作用,以人工接種C. gloeosporioides分生孢子之軟熟‘愛文’芒果果實進行蒸熱處理探討模擬標準蒸熱處理對於炭疽病徵發展的影響。經20℃貯放二十天後,接種後蒸熱處理組果實表面並未發現炭疽病徵,而經接種未蒸熱處理之對照組平均炭疽病斑直徑24.20 mm呈現顯著差異;蒸熱後接種處理其病斑發展較接種處理更為快速且明顯,經20℃貯放二十天後,炭疽病斑直徑已擴展達29.0 mm,表示蒸熱後若再感染,病徵發展會更迅速。為了排除因果實樣品個體差異影響蒸熱處理效果及能量化評估蒸熱處理的抑菌比例,本試驗進一步將C. gloeosporioides分生孢子進行體外同步培養至附著器形成階段後,乾燥使其進入休眠狀態,再進行標準蒸熱處理,經移至PDA(potato dextrose agar)25℃培養後,未經蒸熱處理對照組菌絲再生長率高達94.4%;反之,標準檢疫蒸熱處理的確可以抑制休眠炭疽病菌附著器再生長率至6.8%,綜合上述結果,蒸熱處理確實具有殺滅潛伏感染C. gloeosporioides,抑制其菌絲再萌發之效果。
調查2008年商用蒸熱廠處理之軟熟‘愛文’芒果炭疽發生率為36%,與本試驗用模擬蒸熱機標準蒸熱處理後之樣品炭疽病罹病率5%左右有明顯落差。為探究其原因,以蒸熱模擬機不同炭疽病致死熱積溫(45℃以上溫度×處理時間)條件對體外培養C. gloeosporioides處理之菌絲再生長率進行迴歸分析,再比對本試驗實際芒果蒸熱處理後炭疽病罹患率試驗結果。商業蒸熱處理熱積溫4311℃.min,果實罹病率理論值為52.5%,實際調查結果為36%,但商用蒸熱處理只有單筆數據,因此無法與理論值做比較;而兩者的差異推測可能是果實經熱處理後,因表皮受熱導致蠟質重新覆蓋及抑菌物質生成抑制炭疽病發展,造成實際調查炭疽病感染率低於理論值。而模擬蒸熱處理熱積溫5700℃.min,理論罹病率為8.1%左右,與觀察值5.3 ± 3.2%差異不顯著。因此推測本試驗模擬蒸熱處理與商業用蒸熱廠處理後芒果炭疽病發生率差異可能主要源於兩者處理期間果實接受的熱積溫不同所致。
本試驗結果顯示蒸熱處理確實可以抑制芒果炭疽病徵的發展,但目前商業蒸熱廠之標準滅蟲檢疫蒸熱處理之熱積溫累積量不足,所以對芒果炭疽病的抑制效果不彰,仍有三分之一的發病率。因此,建議在商業蒸熱處理流程,在不造成果實熱傷害的前提下,可考慮延長蒸熱處理時間。此外,確保蒸熱廠環境、包裝用材料及包裝人員的清潔、蒸熱室內水質等炭疽病感染源密度都需嚴格控管,避免在蒸熱處理後抵抗力較弱的芒果果實遭到感染,反而加劇芒果炭疽病的發生。
Mango (Mangifera indica L.) is the largest fruit cultivation in Taiwan whose cultivation area is over 20,000 ha. Among the different cultivars of mango, ‘Irwin’ , owing to its excellent fruit quality, is the cultivar that is most planted and exported one. However, ‘Irwin’ is quite susceptible to anthracnose, which is infected by the fungi Colletotrichum gloeosporioides, and forming serious fruit rots during postharvest handling processes. Commercially, hot water treatment is often used for controlling the anthracnose in mangos. Because Taiwan is the epidemic area of oriental fruit fly and fruit fly, the horticultural products from Taiwan have to be quarantine treated before exported to non-epidemic markets. The current standard quarantine procedure for ‘Irwin’ mangos exported from Taiwan is that the temperature of fruit core is raised to 46.5℃ by vapor heat, and holding for 30 minutes. Nevertheless, there is still no prevention and control measure for anthracnose. Therefore, the objective of this experiment is to develop an effective method to achieve the current quarantine standard and, at the same time, to inhibit the anthracnose in mangos by using hot water treatment.
Ripen ‘Irwin’ mango were treated with simulate vapor heat machine with five vapor heat conditions: standard vapor heat treatment (SVHT), raising the chamber temperature to 56℃ and hold for 5 minutes ahead of SVHT, raising the chamber temperature to 56℃ 5 and 10 minutes after SVHT ,and raising to 58℃ 5 minutes after SVHT may have suppress anthracnose. The data shows that all these five treatments could effectively suppressed the anthracnose formation rate from 67.67% (untreated) to 5.33% while there’s no significant change on the quality of fruits. Furthermore, the ethylene productions of the mango after treatments were decreased from 0.1 μl C2H4/kg/hr to 0.35 μl C2H4/kg/hr (untreated). However, the inhibition of the anthracnose, comparing to the SVHT, had no significant differences with raising the chamber temperature to 56~58℃, neither before the SVHT nor after the SVHT. Hence, there’s no need to raise the chamber temperature in addition to the SVHT.
The reasons that the anthracnose lesions on the fruit skins could not be identified might be the fruits have not been infected in the field, or the development of the anthracnose was inhibited by SVHT. In order to understand the inhibition effect of the SVHT on the development of C. gloeosporioides conidia, the conidia were inoculated on the fruit skin before the SVHT. After 20 days storage at 20℃, there was no anthracnose symptom on the inoculated fruits treated with vapor heat while the average diameter of the lesion was 24.02 mm in the inoculated fruits without the vapor heat treatment. Moreover, the development of the symptom would be more rapid and obvious on the fruits that were inoculated after the SVHT. The C. gloeosporioides conidia were further incubated on the PDA (potato dextrose agar) at 25℃, and were treated with the SVHT. The data showed that the vapor heat treatment could decrease the re-growth rate of the hypha from 94.4% to 6.8%. To sum up, the vapor heat treatment could effectively kill the C. gloeosporioides conidia and inhibit the hypha re-growth.
There is significant difference in the anthracnose formation rate of “Irwin” mangos between the simulated vapor heat treatment and commercial vapor heat treatment in 2008 (5% and 36%, respectively). The commercial heat accumulation is 4311℃.min, and the fruit morbidity theoretical value is 52.5%, the investigation is 36%. The difference possibly is because waxiness rallying and bacteriostasis material production influence anthracnose develops. The simulation heat accumulation is 5700℃.min, and the theory morbidity is about 8.1%, is not remarkable with the observation value 5.3±3.2%. After the regression analysis on the heat accumulation and the re-growth rate of C. gloeosporioides hypha, the difference could be the result of the different heat accumulations treated on the fruits.
The result showed that vapor heat treatment may suppress the development of the anthracnose symptom, but the current commercial heat accumulation insufficient, therefore the effect is not good. It suggested that the process period could be prolonged in commercial vapor heat time. In addition, guarantee that the vapor heat factory environment is clean, avoids the fruit encountering the infection again.
目 錄
口試委員審定書…………………………………………………………i
誌謝………………………………………………………………………ii
中文摘要………………………………………………………………………iii
英文摘要…………………………………………………………………iv
壹、 前言…………………………………………………………1
貳、 前人研究……………………………………………………3
2.1芒果簡介……………………………………………………………3
2.2芒果炭疽病…………………………………………………………4
2.3高溫檢疫處理……………………………………………………10
2.4熱處理對果實品質之影響…………………………………………13
參、 材料方法……………………………………………………16
肆、 結果與討論
4.1外銷日本軟熟‘愛文’芒果炭疽病發生概況調查………………24
4.2 溫湯處理對採後軟熟‘愛文’芒果熱傷害與抑制炭疽病之條件試驗……………………………………………………………………25
4.2.1 溫湯處理對採後軟熟‘愛文’芒果炭疽病及表面熱傷害之影響……………………………………………………………25
4.2.2 溫湯處理對採後軟熟‘愛文’芒果品質之影響……………27
4.2.3 小結…………………………………………………………28
4.3模擬蒸熱處理對採後軟熟‘愛文’芒果炭疽病發生之影響……28
4.3.1 蒸熱處理對採後軟熟‘愛文’芒果炭疽病及表面熱傷害之影響……………………………………………………………29
4.3.2 蒸熱處理對採後軟熟‘愛文’芒果品質之影響……………30
4.3.3 蒸熱處理對採後軟熟‘愛文’芒果呼吸率及乙烯生成率之影響……………………………………………………………31
4.3.4 小結…………………………………………………………34
4.4果實接種炭疽病分生孢子試驗及體外試驗………………………35
4.4.1 炭疽病菌之鑑定……………………………………………36
4.4.2 接種處理……………………………………………………37
4.4.3 芒果炭疽病分生孢子離體培養與蒸熱處理試驗…………39
4.4.3.1培養附著器生成……………………………39
4.4.3.1.1乙烯處理濃度試驗…………39
4.4.3.1.2乙烯處理時間試驗…………39
4.4.3.1.3光照環境……………………40
4.4.3.2體外蒸熱試驗………………………………40
4.4.4 小結………………………………………………40
4.5 模擬蒸熱機與商用蒸熱廠蒸熱處理對軟熟‘愛文’芒果炭疽病罹病率之比較………………………………………41
伍、 結論…………………………………………………………73
參考文獻………………………………………………………………76


圖目錄
圖1. 模擬蒸熱機(A)與台中豐原蒸熱廠(B)蒸熱室內溫度及果實溫度變化……………………………………………………………………44
圖2. 本試驗固定體外培養芒果炭疽菌Colletotrichum gloeosporioides分生孢子玻璃紙進行蒸熱處理之紗網(A)及組裝(B)照片……………………………………45
圖3. 軟熟‘愛文’芒果經商用蒸熱廠蒸熱檢疫處理(上排)與未處理之對照組(下排),以2-4℃模擬貯運七天後置於20℃十五天之外觀。…………46
圖4. 商用標準蒸熱處理(SVHT)處理對軟熟“愛文”芒果以2-4℃模擬貯運七天後置於20℃觀察炭疽病徵發生率(A)及嚴重度(B)之影響……………47
圖5. 不同溫湯處理條件對軟熟‘愛文’芒果於20℃炭疽病嚴重度之影響………48
圖6. 軟熟‘愛文’芒果以62℃溫湯處理不同時間之外觀…………49
圖7. 軟熟 ‘愛文’芒果經60℃溫湯處理5分鐘後,於20℃環境貯放10天蒂腐病斑(A)與炭疽病斑(B)(箭頭指示處)之徵狀………49
圖8. 不同溫湯處理條件對軟熟’愛文’芒果在20℃貯藏環境炭疽發生率(A、C、E、G)與嚴重度(B、D、F、H)之影響………………50
圖9. 不同溫湯處理條件對軟熟‘愛文’芒果效應示意圖…………51
圖10. 不同蒸熱處理條件對軟熟‘愛文’芒果外觀之影響…………55
圖11. 軟熟‘愛文’芒果經不同蒸熱處理條件於蒸熱處理後(A)和移至20℃貯藏二十天後(B)之外觀…………………………………56
圖12. 軟熟‘愛文’芒果經額外高溫蒸熱步驟結合標準蒸熱處理程序(SVHT),於2∼4℃貯藏七天後移至20℃環境對炭疽病發生率(A)及嚴重度(B)之影響…………………………………………………57
圖13. 軟熟‘愛文’芒果經額外高溫蒸熱步驟結合標準蒸熱處理程序(SVHT),於2∼4℃貯藏七天後移至20℃環境對果腐病發生率(A)及嚴重度(B)之影響……………………………………………… 58
圖14. 軟熟‘愛文’芒果經標準蒸熱處理後於20℃環境呼吸率及乙烯釋放量之變化……………………………………………………… 61
圖15. 本試驗所使用之芒果炭疽病菌Colletotrichum gloeosporioides之菌落(PDA培養基於25℃培養七天)(A)及分生孢子型態(100X)(B)………………62
圖16. PCR分析鑑定Colletotrichum gloeosporioides菌種………63
圖17. 芒果炭疽病菌Colletotrichum gloeosporioides分生孢子接種於芒果果皮於25℃培養兩天發展孢子與其形成附著器(箭頭所指示處)之型態………64
圖18. 蒸熱處理對軟熟‘愛文’芒果接種炭疽病菌Colletotrichum gloeosporioides分生孢子後經模擬標準蒸熱處理後置於20℃環境五天(A)與十五天(B)外觀之比較………………………………… 65
圖19. 不同標準蒸熱處理對接種Colletotrichum gloeosporioides分生孢子之軟熟‘愛文’芒果於20℃加濕環境炭疽病斑發展之影響…66
圖20. 乙烯濃度(A)、乙烯處理時間(B)及光照(C)對芒果炭疽病Colletotrichum gloeosporioides分生孢子於20℃附著器形成率之影響………………………67
圖21. 芒果炭疽病Colletotrichum gloeosporioides分生孢子體外培養於黑暗環境下外施乙烯10μL.L-1培養24小時之附著器生成(箭頭所指部分)情形………………………………………………………68
圖22. 標準蒸熱處理對體外培養至附著器形成之休眠芒果炭疽病Colletotrichum gloeosporioides分生孢子(附著於玻璃紙上)培養於25℃黑暗環境PDA(potato dextrose agar)培養基七天菌絲再生長之情形…………………………………69
圖23. 模擬蒸熱機處理及台中豐原蒸熱廠軟熟‘愛文’芒果蒸熱處理蒸熱室內溫度之變化…………………………………………………71
圖24. 模擬蒸熱機標準蒸熱處理之熱積溫與Colletotrichum gloeosporioides炭疽病菌絲再生率迴歸相關分析…………………72


表目錄
表1. 不同溫湯處理條件對軟熟‘愛文’芒果果實在20℃貯藏庫亮度、彩度及色相角度之變化…………………………………………52
表2. 不同溫湯處理條件對軟熟‘愛文’芒果果實在20℃貯藏庫之硬度、糖度及酸度變化…………………………………………………54
表3. 軟熟‘愛文’芒果經不同蒸熱處理條件處理於2∼4℃貯藏七天模擬貯運,再移至20℃對果實亮度、彩度及色相角度之影響………59
表4. 軟熟‘愛文’芒果經不同蒸熱處理條件處理於2∼4℃貯藏七天模擬貯運,再移至20℃對果實硬度、糖度及酸度之影響……………60
表5. 標準蒸熱處理對體外培養附著器形成之休眠芒果炭疽病Colletotrichum gloeosporioides分生孢子菌絲於25℃培養三天菌絲再生率之比較…………70
安寶貞. 2003. 檬果炭疽病. P.76-81. 植物保護圖鑑系列10-檬果保護. 行政院農業委員會動植物防疫檢疫局. 台北.
安寶貞、黃瑞卿、陳茂發. 1994. 環境因子對檬果炭疽病發生之影響. 植病會刊 3:34-44.
行政院農業委員會. 農業統計年報. <http://www.coa.gov.tw/view.php?catid=209>.
行政院農業委員會. 農產貿易統計要覽. <http://agrapp.coa.gov.tw/TS2/TS2Jsp/Index.jsp>.
芒果產業資訊網. <http://agrapp.coa.gov.tw/86/index.jsp>.
吳雅芳、陳紹崇、彭瑞菊、鄭安秀. 2004. 農產品外銷出口檢疫. 台南區農業專訊 48: 9-11.
吳國政. 2007. 熱處理及氣變包裝對‘台農二號’番木瓜果實採後品質及炭疽病之影響. 中興大學園藝系碩士論文. 台中.
呂理燊、安寶貞、莊再揚、楊秀珠、楊宏仁、高清文. 1998. 檬果炭疽病預先偵測技術之開發及田間非農藥防治. 園藝作物病害暨防治研討會專刊. p.29-50.
呂理燊、楊秀珠、簡和順、曾錫恩. 1988. 檬果對炭疽病之抗病測定. 植保會刊 30:337-348.
林正雄. 1996. 金煌、愛文芒果對芒果炭疽病抗感病之反應. 台灣大學園藝系碩士論文 台北.
林志祥、陳弘毅、陳素琴. 2002. 國產鮮果外銷檢疫處理技術開發概況. 農政與農情120: 51-55.
林宗賢. 2005. 優質檬果整合性生產、採後處理與品管作業規範(第二版). 行政院農業委員會農糧署發行. 國立台灣大學園藝系編印. 台北.
郭婉秋. 2005. ‘珍珠拔’及‘水晶拔’番石榴果實採收後生理之研究. 國立屏東科技大學農園生產系碩士論文. 屏東.
張芳基、陳弘毅、林志祥. 1996. 果蔬檢疫殺蟲處理技術. 台灣省農業試驗所特刊第57號. p.109-116.
張幼莉, 郭克忠. 2000. 芒果炭疽病菌分生孢子、發芽管及附著器胞外粘質之偵測及定性. 植物保護學會會刊 42: 53-66.
張雅菁. 2006. 檢疫蒸熱處理對果實品質之影響. 中興大學園藝系碩士論文. 台中.
陳弘毅、林志祥. 1996. 果蔬檢疫殺蟲處理技術. 植物保護新科技研討會 臺灣省農業試驗所特刊. 57: 109-119.
楊宏仁. 1989. 香蕉炭疽病菌之變異及其潛伏感染機制之探討. 台灣大學植物病蟲害學研究所博士論文. 台北.
楊宏仁. 2006. 檬果溫水處理防治採收後病害技術介紹. 農業試驗所技術服務 65: 22-25.
楊宏仁、林瑩達. 1997. 溫水處理對臺農一號芒果採後炭疽病之防治效果. 植物保護學會會刊. 39: 241-249.
楊宏仁、倪蕙芳. 2008. 溫水處理在植物防檢疫之應用. 動植物防疫檢疫季刊. 16: 20-23.
楊秀珠、呂理燊. 1988. 檬果炭疽病菌之型態及生理性質. 植物保護學會會刊 30: 323-336.
葉瑩. 2003. 國際植物保護公約組織運作及我國現行植物防疫檢疫措施. 防檢局SPS協定專輯系列. 5 : 7-13.
劉富文. 1995. 園產品採後處理及貯藏技術. 台灣省青果運銷合作社. 台北.
劉銘峰. 1994. 台灣芒果之栽培歷史. p14-37. 芒果栽培技術. 秋雨印刷. 台南.
蔡惠玲. 2005. 芒果炭疽病菌潛伏感染檢測與分子鑑定技術之研發. 國立台灣大學植物病理與微生物學研究所碩士論文. 台北.
蔡雅惠. 2003. 三種番木瓜栽培品種果實生長發育之理化特性與採收後生理之研究. 國立屏東科技大學熱帶農業暨國際合作研究所碩士論文. 屏東.
謝慶昌. 1990. 愛文芒果後熟生理與採收後處理之研究. 國立台灣大學園藝系博士論文. 台北.
謝慶昌、王自存. 1997. 愛文芒果之外銷處理作業. 園產品採後處理與運銷技術研討會專刊 p.69-80.
謝慶昌、薛淑滿. 2005. 芒果外銷之採後處理及作業流程. 園產品採後處理技術之研究與應用研討會專刊 p.14-20.
蕭元魁. 2003. 採行生產履歷措施對台灣芒果產業之影響評估. 國立台灣大學農業經濟學研究所碩士論文. 台北.
Akamine, E. K. and T. Arisumi. 1953. Control of postharvest storage decay of fruits of papaya (Carica papaya L.) with special reference to the effect of hot water. Proc. Amer. Soc. Hort. Sci. 61:270-274.
Akem, C. N. 2006. Mango anthracnose disease: present status and future research priorities. Plant Pathol. J. 5: 266-273.
Antunes, M. D. C. and E. M. Sfakiotakis. 2000. Effect of high temperature stress on ethylene biosynthesis, respiration and ripening of ‘Hayward’ kiwifruit. Postharvest Biol. Technol. 20: 251-259.
Armstrong, J. W. 1994. Heat and cold treatments p.103-119. In: Paull, R. and Armstrong, J. W. (eds.), Insect pest and fresh horticultural products: treatments and responses. CAB Internation, Wallingford, U.K.
Arauz, L. F. 2000. Mango anthracnose: economic impact and current options for integrated management. Plant Dis. 84: 600-611.
Atta-Aly, M. 1992. Effect of high temperature on ethylene biosynthesis by tomato fruit. Postharvest Biol. Technol. 2: 19-24.
Benitez, M. M., A. L. Acedo Jr., P. Jitareerat, and S. Kanlavanarat. 2006. Induction of disease resistance in mango fruit by postharvest heat treatment. Acta Hort. 712: 785-792.
Coates, L. M., G. I. Johnson, and A. W. Cooke. 1993. Postharvest disease control in mangoes using high humidity hot air and fungicide treatments. Ann. Appl. Biol. 123: 441-448.
Couey, H. M. 1989. Heat treatment for control of postharvest disease and insect pests of fruit. HortScience 24: 198-202.
Couey, H. M., A. M. Alvarez, and M. G. Nelson. 1984. Comparison of hot-water spray and immersion treatments for control of postharvest decay of papaya. Plant Dis. 68: 436-437.
Daundasekera, W. A. M., D. C. Joyce, N. K. B. Adikaram, and L.A. Terry. 2008. Pathogen-produced ethylene and Colletotrichum musae-banana fruit pathosystem. A. P. P. 37: 448-453.
Dinh, S., J. Chongwungse, P. Pongam, and S. Sangchote. 2003. Fruit infection by Colletotrichum gloeosporioides and anthracnose resistance of some mango cultivars in Thailand. A. P. P. 32: 533-538.
Djioua, T., F. Charles, F. Lopez-Lauri, H. Filgueiras, A. Coudret, M. Freire Jr, M. Ducamp-Collin, and H. Sallanon. 2009. Improving the storage of minimally processed mangoes (Mangifera indica L.) by hot water treatments. Postharvest Biol. Technol. 52: 221-226.
FAOSTAT. 2007. <http://www.fao.org/statistics/>
Fitzell, R. D. 1979. Colletotrichum acutatum as a cause of anthracnose of mango in New South Wales. Plant Dis. Rep. 63: 1067-1070.
Fitzell, R. D. and C. M. Peak. 1984. The epidemiology of anthracnose disease of mango: inoculum source, spore production and dispersal. Ann. Appl. Biol. 104: 53-59.
Flaishman, M. A. and P. E. Kolattukudy. 1994. Timing of fungal invasion using host''s ripening hormone as a signal. Proc. Natl. Acad. Sci. USA. 91: 6579-6583.
Freeman, S., T. Katan, and E. Shabi. 1998. Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Dis. 82: 596-605.
Gomez-Lim, M. A. 1997. Postharvest Physiology, p. 425-507. In: Richard E. Litz (ed.). The mango. CAB Internation, Wallingford, U.K.
Hallman, G. J. 2000. Factors affecting quarantine heat treatment efficacy. Postharvest Biol. Technol. 21: 95-101.
Hasbulah, R., S. Kawasaki, T. Kojima, and T. Akinaga. 2001. Effect of heat treatments on respiration and quality of ‘Irwin’ mango. J. Soc. Agri. Struc. 32: 59-67.
Hayes, C. F., 1994. Modeling heat and cold transfer, p. 237-248. In: Paull, R. and J. W. Armstrong (eds.). Insect pest and fresh horticultural products: treatments and responses, CAB Internation, Wallingford, U.K.
Jacobi, K. K. and J. E. Giles. 1997. Qualitty of ''Kensington'' mango (Mangifera indica Linn.) fruit following combined vapour heat disinfestatoin and hot water disease control treatments. Postharvest Biol. Technol. 12:285-292.
Jacobi, K. K., J. E. Giles, E. A. MacRae, and T. Wegrzyn. 1995. Conditioning ‘Kensington’ mango with hot air alleviates hot water disinfestation injuries. HortScience 30: 562-565.
Jacobi, K. K. and D. Gowannlock. 1995. Ultrastructural studies of ‘Kensington’ mango (Mangifera indica Linn.) heat injuries. HortScience 30: 102-103.
Jacobi, K. K. and L. S. Wong. 1992. Quality of ‘Kensington’mango (Mangifera indica Linn.) following hot water and vapor-heat treatments. Postharvest Biol. Technol. 1: 349-359.
Jacobi, K. K., E. A. MacRae, and S. E. Hetherington. 2000. Effects of hot air conditioning of ''Kensington'' mango fruit on the response to hot water treatment. Postharvest Biol. Technol. 21: 39-49.
Jacobi, K. K., E. A. MacRae, and S. E. Hetherington. 2001a. Loss of heat tolerance in ''Kensington'' mango fruit following heat treatments. Postharvest Biol. Technol.
21: 321-330.
Jacobi, K. K., E. A. MacRae, and S. E. Hetherington. 2001b. Postharvest heat disinfestation treatments of mango fruit. Sci. Hort. 89: 171-193.
Joyce, D. C. and A. J. Shorter. 1994. High-temperature conditioning reduces hot water treatment injury of ''Kensington Pride'' mango fruit. HortScience 29: 1047-1051.
Joyce, D. C., P. D. Hockings, and R. A. Mazucco. 1993. Heat treatment injury of mango fruit revealed by nondestructive magnetic resonance imaging. Postharvest Biol. Technol. 3: 305-311.
Kays, S. J. and R. E. Paull. 2004. Postharvest biology. Exon Press, Athens, Georgia.
Kefialew, Y. and A. Ayalew. 2008. Postharvest biological control of anthracnose (Colletotrichum gloeosporioides)on mango(Mangifera indica). Postharvest Biol. Technol. 50: 8-11.
Ketsa, S., S. Chidtragool, J. D. Klein, and S. Lurie. 1999. Ethylene synthesis in mango fruit following heat treatment. Postharvest Biol. Technol. 15: 65–72.
Kim, Y., J. K. Brecht, and S. T. Talcott. 2007. Antioxidant phytochemical and fruit quality changes in mango (Mangifera indica L.) following hot water immersion and controlled atmosphere storage. Food Chem. 105: 1327-1334.
Klein, J. D. and S. Lurie. 1990. Prestorage heat treatment as a means of improving poststorage quality of apples. J. Amer. Soc. Hort. Sci. 115: 265-269.
Kuo, K. C. 1999. Germination and appressorium formation in Colletotrichum gloeosporioides. Proc. Natl. Sci. Counc. ROC (B) 23: 126-132.
Kuo, K. C. 2001. Sensitivity of mango anthracnose pathogen, Colletotrichum gloeosporioides, to the fungicide prochloraz in Taiwan. Proc. Natl. Sci. Counc. ROC(B) 25: 174-179.
Lisky, E. 2003. Strobilurin fungicides: Nature’s cleanup crew. Grounds maintenance. <http://grounds-mag.com/mag/grounds_maintenance_strobilurin_fungicides_natures/index.html.>.
Liu, D., S. Coloe, R. Baird, and J. Pedersen. 2000. Rapid mini-preparation of fungal DNA for PCR. J. Clin. Microbiol. 38: 471.
Liu, X., S. Hung, Y. Yang, and Y. Xie. 1995. Effects of phenols on growth and reproduction of Colletotrichum in latent infection. Acta Mycol. Sinica 14: 277-282.
Lurie, S., A. Handros, E. Fallik, and E., R. Shapira. 1996. Reversible inhibition of tomato fruit gene expression at high temperature. Plant Physiol. 110: 1207–1214.
Lurie, S. 1998. Postharvest heat treatments. Postharvest Biol. Technol. 14: 257-269.
Kader, A. A. 2002. Postharvest technology of horticultural crops. 3rded. University of California Agriculture Pub. USA.
McDonald, R. E., T. G. McCollum, and E. A. Balwin. 1996. Prestorage heat treatments influence free sterols and flavor volatiles of tomoto stored at chilling treatment. J. Amer. Soc. Hort. Sci. 121: 531-536.
McGuire, R. G. 1991. Concomitant decay reductions when mangoes are treated with heat to control infestastions of Caribbean fruit flies. Plant Dis. 75: 946-949.
McGuire, R. G. and W. F. Reeder. 1992. Predicting market quality of grapefruit after hot-air quarantine treatment. J. Amer. Soc. Hort. Sci. 117: 90-95.
Miller, W. R. and R. E. McDonald. 1992. Postharvest quality of early season grapefruit after forced-air vapor heat treatment. HortScience 27: 422-424.
Mitcham, E. J. and R. E. McDonald. 1993a. Effects of quarantine heat treatment on mango fruit physiology. Acta Hort. 343: 361-366.
Mitcham, E. J. and R. E. McDonald. 1993b. Respiration rate, internal atmosphere, and ethanol and acetaldhyde accumulation in heat-treated mango fruit. Postharvest Biol. Technol. 3:77-86
Mitcham, E. J. and R. E. McDonald. 1997. Effects of postharvest heat treatment on inner and outer tissue of mango fruit. Trop. Sci. 37:193-205.
Nair, S., Z. Singh, and S. C. Tan. 2004. Chilling injury in relation to ethylene biosynthesis in ''Kensington Pride'' mango fruit. Journal of horticultural Science and Biotechnology 79: 82-90.
Nyanjage, M. O., H. Wainwright, and C. F. H. Bishop.1998. The effects of hot-water treatments in combination with cooling and/or storage on the physiology and disease of mango fruits (Mangifera indica Linn.). Journal of horticultural science and biotechnology. 73: 589-597.
O’Connell, R., S. Perfect, B. Hughes, R. Carzaniga, J. Bailey, and J. Green. 2000. Dissecting the cell biology of Colletotrichum infection processes, p.57-77. In: Prusky, D., Freeman, S. and Dickman, M. B. (eds.), Colletotrichum: Host Specificity, Pathology, and Host-Pathogen Interaction. The American Phytopathological Society, St. Paul, MN, USA.
Paull, R. E. and McDonald, R. E. 1994. Heat and cold treatments, p. 191-222. In: Paull, R. and Armstrong, J. W. (eds.), Insect pest and fresh horticultural products: treatments and responses.. CAB Internation, Wallingford, U.K.
Pegg, G. F. and D. K. Cronshow. 1976. The relationship of in vitro to in vivo ethylene production in Pseudomonas solanacearum infection of tomato.
Physiol. Plant Pathol. 9:145-154.
Penchaiya, P., R. Jansasithorn, and S. Kanlayanarat. 2006. Effect of 1-MCP on physiological changes in mango ''Nam Dokmai''. Acta Hort. 712: 717-721.
Ploetz, R. C. 1994. Anthracnose, p. 35-36. In: R. C. Ploetz, G. A. Zentmyer, W. T. Nishijima, K. G. Rohrbach, and H. D. Ohr, (eds.)Compendium of tropical fruit diseases. American Phytopathological Society, St. Paul, MN.
Podilia, G. K., L. M. Rogers, and P. E. Kolatukkudy. 1993. Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Phytopathology 85: 238-242.
Prusky D. 1996. Pathogen quiescence in postharvest disease. Annu. Rev. Phytopathol. 34: 413-434.
Prusky, D., I. Kobiler, R. Ardi, D.Beno-Moalem, N. Yakoby, and N. T. Keen. 2000. Resistance mechanisms of subtropical fruits to Colletotrichum gloeosporioides, p.232-244. In: Prusky, D., Freeman, S. and Dickman, M. B. (eds.), Colletotrichum: host specificity, pathology, and host-pathogen interaction. The American Phytopathological Society, St. Paul, MN, USA.
Prusky D., R. A. Plumbley, and I. Kobiler. 1991. The relationship between antifungal diene levels and fungal inhibition during quiescent infection of unripe avocado fruits by Colletotrichum gloeosporioides. Plant Pathol. 39: 325-334.
Sharp, J. L. 1986. Hot-water treatment for control of Anastrepha suspense in mango. J. Econ. Entomol. 79: 706-708.
Sharp, J. L., J. J. Gaffney, J. I. Moss, and W. P. Gould. 1991. Hot-air treatment device for quarantine research. J. Econ. Entomol. 84: 520-527.
Schirra, M., G.. D’hallewin, S. Ben-Yehoshua, and E. Fallik. 2000. Host-pathogen interaction modulated by heat treatment. Postharvest Biol. Technol. 21:71-85.
Shellie, K. C. and R. L. Mangan. 2000. Postharvest disinfestations heat treatments: response of fruit and fruit fly larvae to different heating media. Postharvest Biol. Technol. 21: 51-60.
Smoot, J. J. and R. H. Segall. 1963. Hot water as a postharvest control of mango anthracnose. Plant Dis. Reptr. 47:739-742.
Sopee, J. and S. Sangchote. 2005. Effect of heat treatment on the fungus Colletotrichum gloeosporioides and anthracnose of mango fruit. Acta Hort.
682: 2049-2056.
Swart, A. and G. A. Kamerbeek. 1976. Different ethylene production in vitro by several species and formae speciales of Fusarium. Neth. J. Plant Pathol. 82:81-84.
Tang, J., E. Mitcham, S. Wang, and S. Lurie. 2007. Heat treatments for postharvest pest control:theory and practice. Wallingford, UK ; Cambridge, MA : CABI Pub.

Weingart, H. and B. V
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top