跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 02:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝志軒
研究生(外文):Chih-Hsuan Hsieh
論文名稱:蛋白質體及流式細胞儀分析樟芝萃取物對脂多醣誘發巨噬細胞RAW264.7抗發炎與凋亡之影響
論文名稱(外文):Proteomic and Flow Cytometry Analyses of the Effects Antrodia cinnamomea Extracts on Lipopolysaccharide-Induced Inflammation and Apoptosis in RAW 264.7 Macrophage Cells
指導教授:林文源林文源引用關係
指導教授(外文):Wun-Yuan Lin
學位類別:碩士
校院名稱:實踐大學
系所名稱:食品營養與保健生技學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:117
中文關鍵詞:樟芝腺苷酸蟲草素麥角固醇脂多醣巨噬細胞抗發炎凋亡二維電泳
外文關鍵詞:Antrodia cinnamomeaadenosinecordycepinergosterollipopolysaccharidemacrophagesanti-inflammationapoptosistwo-dimensional electrophoresis
相關次數:
  • 被引用被引用:3
  • 點閱點閱:2270
  • 評分評分:
  • 下載下載:164
  • 收藏至我的研究室書目清單書目收藏:1
樟芝(Antrodia cinnamomea)是台灣發現的特有物種,是一種廣泛應用於傳統中藥上的真菌,相傳具有抗腫瘤、抗氧化及抗過敏等功效。樟芝已被鑑定出含有多種生理活性成分,包括:多醣體(polysaccharides)、三帖類(triterpenoids)、超氧歧化酵素(superoxidase dismutase, SOD)、腺苷酸(adenosine)、蟲草素 (cordycepin)及麥角固醇(ergosterol)等。本研究探討以固態培養樟芝甲醇萃取物 (Antrodia cinnamomea extracts, ACE)及其生理活性成分-腺苷酸(adenosine)、蟲草素(cordycepin)與麥角固醇(ergosterol)對於脂多醣(Lipopolysaccharide, LPS)所誘發巨噬細胞(RAW 264.7)發炎反應之影響。結果顯示,ACE 及其生理活性成分- adenosine 、 cordycepin 及 ergosterol 可抑制 LPS (1 μg/mL)誘發巨噬細胞所產生之 TNF-α 含量,在蛋白質分析結果亦有效抑制 iNOS(inducibie nitric oxide synthase)及 NF-kB 表現。此外,利用 ACE 及其生理活性成分作用於 RAW 264.7 探討其抑制細胞存活率及可能作用機制。利用細胞毒性試驗、流式細胞儀Annexin V-FITC/PI 雙染法並以顯微鏡觀察細胞的型態變化來觀察細胞凋亡情形。結果顯示,ACE 及其生理活性成分均造成巨噬細胞 RAW 264.7 存活率(viability)下降,但僅有 ACE 及 cordycepin 能夠誘導細胞凋亡。本研究並以蛋白質體分析系統研究細胞內蛋白質表現變化,結果共有 32 個表現量差異性在 1.5 倍以上之蛋白質量,經由質譜儀 (MALDI-Q-TOF)被鑑定出與資料庫比對及蛋白質功能鑑定分析;結果獲得與發炎反應與細胞凋亡有關的蛋白質,包括 RhoGDI、Arrβ1、Eras 皆能藉抑制 GTP 結合蛋白而抑制細胞內訊息傳導,並藉由抑制 TCPθ 蛋白使其後續骨架蛋白之表現受抑制;此外,具有活化 MAPK 路徑相關的 Ep11蛋白質表現可能與細胞凋亡的發生有關。在抑制發炎反應方面能夠直接抑制 TANK 蛋白表現而影響 NF-κB 活化穩定,同時也可藉由調控 HSP-90 及 TR163蛋白質進而影響細胞內 proteosome 將 IκB kinase 水解進而抑制轉錄因子 NF-κB 與其後續發炎蛋白質表現。
Antrodia cinnamomea (formerly Antrodia camphorata) is a well-known medicinal fungus used to treat inflammation and cancer in Taiwan. Though several bioactive components from A. cinnamomea have been identified, including adenosine, cordycepin, ergosterol triterpenoids, and polyphenols, very little is currently known about the anti-inflammatory mechanisms underlying the independent or synergetic action of the single bioactive component. In this study, we investigated anti-inflammatory mechanisms effects of A. cinnamomea extract (ACE), adenosine, cordycepin and ergosterol. In previous studies, we have shown that ACE (200 μg/mL), adenosine (100 μg/mL), cordycepin (50 μg/mL) and ergosterol (10 μg/mL) not only successfully inhibited Lipopolysaccharide (LPS, 1 μL/mL)-induced inflam- matory responses, but also decreased nitrite and TNF-α production in RAW 264.7 macrophage cells. Furthermore, ACE, adenosine and cordycepin inhibited iNOS (inducibie nitric oxide synthase), COX-2 (coclooxygenase-2) protein expression by Wentern blot analysis. Next, flow cytometry analysis with PI and Annexin V-FITC was used to examine the relative amount of apoptosis induction for ACE, adenosine, cordycepin and ergosterol. we have shown that ACE and cordycepin induced a dose-dependent increase in the number of apoptotic cells, but was not observed by adenosine and ergosterol treatment.
In this study, a proteomic approach was used to compare the modify- cations in protein expression in LPS-activated RAW 264.7 macrophage cells treated with ACE, adenosine, cordycepin and ergosterol. When comparing the proteomes, multiple protein alterations involving NF-κB cascade-related proteins and chaperones were observed, and validated by western blotting. These results indicated may exert an anti-inflammatory action via heat shock protein 90 (HSP90) inhibition- mediated suppression in the proteasome activity to inactivate the NF-κB signaling pathway.
目錄
目錄 Ⅰ
圖目錄 IV
表目錄 VI
附錄目錄 VII
中文摘要 VIII
英文摘要 Ⅸ
第一章 前 言 1
第二章 文獻回顧 2
一、樟芝的簡介 2
二、樟芝之生理活性成分 3
(一)多醣體 4
(二)三萜類 4
(三)腺苷酸 4
(四)蟲草素 5
(五)麥角固醇 6
三、巨噬細胞及其功能 7
四、脂多醣活化巨噬細胞之機制 8
五、發炎反應與巨噬細胞之關連 8
(一)NF-κB轉錄因子之簡介 8
(二)NO與iNOS與疾病之關連性 9
六、細胞凋亡及其路徑 10
七、蛋白質二維電泳 12
八、研究動機與論文架構 13
第三章 材料與方法 15
第一節 實驗材料 15
(一)樣品來源 15
(二)細胞株 15
(三)實驗藥品與材料 15
(四)套裝試劑組與抗體 18
(五)實驗器材與設備 19
第二節 實驗方法 21
(一)樣品之製備 21
(二)細胞株培養 22
(三)細胞繼代培養 22
(四)細胞保存與活化 23
(五)細胞處理模式 23
(六)細胞內毒性試驗 24
(七)原漿微粒蛋白質之分離 24
(八)蛋白質濃度分析 25
(九)SDS-PAGE蛋白質膠體電泳 26
(十)西方點墨法 26
(十一)使用流式細胞儀觀察細胞凋亡 28
(十二)細胞激素TNF-α分泌之測定 29
(十三)細胞分泌一氧化氮之測定 30
第三節 二維蛋白質膠體電泳分析實驗 30
(一)二維白質膠體電泳細胞蛋白質樣品製備 30
(二)二維電泳之蛋白質萃取液定量 31
(三)一維蛋白質膠體電泳樣品前處理 31
(四)第一維蛋白質膠體電泳 32
(五)SDS電泳膠片的製作 32
(六)二維蛋白質膠體電泳 33
(七)二維電泳膠片染色 33
(八)二維電泳膠片影像分析 34
(九)膠體內蛋白質分解 35
(十)蛋白質身分鑑定 36
第四章 實驗結果 37
一、顯微觀察細胞之型態變化 37
二、樟芝萃取物對於巨噬細胞RAW 264.7毒殺作用之結果 40
三、樟芝萃取物對於巨噬細胞RAW 264.7分泌NO與細胞激素TNF-α 產生之結果 42
四、流式細胞儀分析樟芝萃取物對於巨噬細胞RAW 264.7凋亡之結果 43
五、使用蛋白質體學分析樟芝萃取物處理巨噬細胞 RAW 264.7之結果 46
六、樟芝萃取物對於巨噬細胞RAW 264.7之 iNOS及COX-2 蛋白質表現之結果 51
七、樟芝萃取物對於巨噬細胞RAW 264.7之NF-κB、p-IκB-α 及 HSP90蛋白質表現之結果 52
第五章 討 論 54
第六章 結 論 59
附 錄 102
參考文獻 109
縮寫表 117



圖目錄
圖一、腺苷酸、蟲草素及麥角固醇之結構式 7
圖二、細胞程序性凋亡及壞死之差異性 11
圖三、使用顯微鏡觀察巨噬細胞RAW 264.7 經LPS刺激24小時細胞形態之變化 60
圖四、使用顯微鏡觀察不同濃度ACE處理 LPS刺激之RAW 264.7巨噬細胞 12小時及24小時之細胞形態 61
圖五、使用顯微鏡觀察不同濃度腺苷酸處理 LPS刺激之RAW 264.7巨噬細胞 12小時及 24小時之細胞形態 62
圖六、使用顯微鏡觀察不同濃度蟲草素處理 LPS刺激之RAW 264.7巨噬細胞 12小時及 24小時之細胞形態 63
圖七、使用顯微鏡觀察不同濃度麥角固醇處理 LPS刺激之RAW 264.7巨噬細胞 12小時及 24小時之細胞形態 64
圖八、使用MTT 試驗分析樟芝萃取物處理經LPS刺激之RAW 264.7巨噬細胞株24小時之細胞抑制率 65
圖九、使用 MTT 試驗分析腺苷酸處理經LPS刺激之 RAW 264.7巨噬細胞株24小時之細胞抑制率 66
圖十、使用 MTT 試驗分析蟲草素處理經LPS刺激之 RAW 264.7巨噬細胞株24小時,之細胞抑制率 67
圖十一、使用 MTT 試驗分析麥角固醇處理經LPS刺激之 RAW 264.7巨噬細胞株24小時之細胞抑制率 68
圖十二、不同濃度之樟芝萃取物、腺苷酸、蟲草素及麥角固醇處理LPS刺激之 RAW 264.7巨噬細胞後所產生TNF-α 含量之結果 69
圖十三、不同濃度之樟芝萃取物、腺苷酸、蟲草素及麥角固醇處理LPS刺激之 RAW 264.7巨噬細胞株後培養液中 NO 含量之結果 70
圖十四、使用 Annexin V-FITC/PI雙染法偵測巨噬細胞RAW 264.7對於不同濃度之樟芝萃取物處理12小時之變化 71
圖十五、使用 Annexin V-FITC/PI雙染法偵測巨噬細胞 RAW 264.7對於不同濃度之樟芝萃取物處理24小時之變化 72
圖十六、使用 Annexin V-FITC/PI雙染法偵測巨噬細胞 RAW 264.7對於不同濃度之腺苷酸處理24小時之變化 73
圖十七、使用 Annexin V-FITC/PI雙染法偵測 RAW 264.7細胞對於不同濃度之蟲草素處理24小時之變化 74
圖十八、使用 Annexin V-FITC/PI雙染法偵測巨噬細胞 RAW 264.7對於不同濃度之麥角固醇處理24小時之變化 75
圖十九、使用流式細胞儀測定分樟芝萃取物、腺苷酸、蟲草素及麥角固醇對於 RAW 264.7巨噬細胞株凋亡率之變化 76
圖二十、樟芝萃取物處理 RAW 264.7巨噬細胞之二維電泳圖 77
圖二十一、腺苷酸萃取物處理 RAW 264.7巨噬細胞之二維電泳圖 80
圖二十二、蟲草素處理 RAW 264.7巨噬細胞之二維電泳圖 81
圖二十三、麥角固醇處理 RAW 264.7巨噬細胞之二維電泳圖 82
圖二十四、西方點墨法分析樟芝萃取物、腺苷酸、蟲草素及麥角固醇對於RAW 264.7巨噬細胞株之iNOS及 COX-2蛋白表現之影響 100
圖二十五、西方點墨法分析樟芝萃取物、腺苷酸、蟲草素及麥角固醇對於RAW 264.7巨噬細胞株之NF-κB、p-IκB-α 及 HSP-90蛋白表現之影響 101

表目錄
表一、使用二維電泳分析經樟芝萃取物、腺苷酸、蟲草素及麥角固醇處理RAW 264.7細胞所誘導蛋白質變化之結果 87
表二、樟芝萃取物、腺苷酸、蟲草素及麥角固醇處理後所誘導變化之蛋白質功能性及生物程序 91

附錄目錄
附錄一、樟芝樣品腺苷酸、蟲草素及麥角固醇成分分析結果 105
附錄二、三萜類HPLC層析圖 105
附錄三、老鼠 TNF-α 之標準曲線 106
附錄四、亞硝酸鈉(NaNO2)以Griess reaction 測定之標準曲線 107
附錄五、資料庫之搜尋條件(A)PMF(B)MS/MS 108
1.陳勁初、呂鋒洲, 靈芝之王:台灣樟芝. In 台灣, 2001; pp 50-190.
2.蘇慶華, 健康的守護神-國寶樟芝. 台北,台灣, 2002.
3.Hseu, Y. C.; Chen, S. C.; Tsai, P. C.; Chen, C. S.; Lu, F. J.; Chang, N. W.; Yang, H. L., Inhibition of cyclooxygenase-2 and induction of apoptosis in estrogen-nonresponsive breast cancer cells by Antrodia camphorata. Food Chem Toxicol 2007, 45, (7), 1107-15.
4.Hsu, Y. L.; Kuo, Y. C.; Kuo, P. L.; Ng, L. T.; Kuo, Y. H.; Lin, C. C., Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Lett 2005, 221, (1), 77-89.
5.Liu, J. J.; Huang, T. S.; Hsu, M. L.; Chen, C. C.; Lin, W. S.; Lu, F. J.; Chang, W. H., Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action. Toxicol Appl Pharmacol 2004, 201, (2), 186-93.
6.Rao, Y. K.; Fang, S. H.; Tzeng, Y. M., Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. J Ethnopharmacol 2007, 114, (1), 78-85.
7.Song, T. Y.; Hsu, S. L.; Yeh, C. T.; Yen, G. C., Mycelia from Antrodia camphorata in Submerged culture induce apoptosis of human hepatoma HepG2 cells possibly through regulation of Fas pathway. J Agric Food Chem 2005, 53, (14), 5559-64.
8.Song, T. Y.; Hsu, S. L.; Yen, G. C., Induction of apoptosis in human hepatoma cells by mycelia of Antrodia camphorata in submerged culture. J Ethnopharmacol 2005, 100, (1-2), 158-67.
9.Yang, H. L.; Chen, C. S.; Chang, W. H.; Lu, F. J.; Lai, Y. C.; Chen, C. C.; Hseu, T. H.; Kuo, C. T.; Hseu, Y. C., Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata. Cancer Lett 2006, 231, (2), 215-27.
10.Chen, C. C.; Liu, Y. W.; Ker, Y. B.; Wu, Y. Y.; Lai, E. Y.; Chyau, C. C.; Hseu, T. H.; Peng, R. Y., Chemical characterization and anti-inflammatory effect of polysaccharides fractionated from submerge-cultured Antrodia camphorata mycelia. J Agric Food Chem 2007, 55, (13), 5007-12.
11.Lee, I. H.; Huang, R. L.; Chen, C. T.; Chen, H. C.; Hsu, W. C.; Lu, M. K., Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol Lett 2002, 209, (1), 63-7.
12.Shen, Y. C.; Chou, C. J.; Wang, Y. H.; Chen, C. F.; Chou, Y. C.; Lu, M. K., Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbiol Lett 2004, 231, (1), 137-43.
13.Wu, Y. Y.; Chen, C. C.; Chyau, C. C.; Chung, S. Y.; Liu, Y. W., Modulation of inflammation-related genes of polysaccharides fractionated from mycelia of medicinal basidiomycete Antrodia camphorata. Acta Pharmacol Sin 2007, 28, (2), 258-67.
14.Akihisa, T.; Tokuda, H.; Ichiishi, E.; Mukainaka, T.; Toriumi, M.; Ukiya, M.; Yasukawa, K.; Nishino, H., Anti-tumor promoting effects of multiflorane-type triterpenoids and cytotoxic activity of karounidiol against human cancer cell lines. Cancer Lett 2001, 173, (1), 9-14.
15.Fukuda, Y.; Sakai, K.; Matsunaga, S.; Tokuda, H.; Tanaka, R., Cancer chemopreventive activity of lupane- and oleanane-type triterpenoids from the cones of Liquidamber styraciflua. Chem Biodivers 2005, 2, (3), 421-8.
16.Huang, M. T.; Badmaev, V.; Ding, Y.; Liu, Y.; Xie, J. G.; Ho, C. T., Anti-tumor and anti-carcinogenic activities of triterpenoid, beta-boswellic acid. Biofactors 2000, 13, (1-4), 225-30.
17.Lee, M. K.; Ha, N. R.; Yang, H.; Sung, S. H.; Kim, G. H.; Kim, Y. C., Antiproliferative activity of triterpenoids from Eclipta prostrata on hepatic stellate cells. Phytomedicine 2007.
18.Poulose, S. M.; Harris, E. D.; Patil, B. S., Antiproliferative effects of citrus limonoids against human neuroblastoma and colonic adenocarcinoma cells. Nutr Cancer 2006, 56, (1), 103-12.
19.Daval, J. L.; Nicolas, F.; Doriat, J. F., Adenosine physiology and pharmacology: how about A2 receptors? Pharmacol Ther 1996, 71, (3), 325-35.
20.Daval, J. L.; Nehlig, A.; Nicolas, F., Physiological and pharmacological properties of adenosine: therapeutic implications. Life Sci 1991, 49, (20), 1435-53.
21.Cronstein, B. N., Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 1994, 76, (1), 5-13.
22.Janier, M. F.; Vanoverschelde, J. L.; Bergmann, S. R., Adenosine protects ischemic and reperfused myocardium by receptor-mediated mechanisms. Am J Physiol 1993, 264, (1 Pt 2), H163-70.
23.Szabo, C.; Scott, G. S.; Virag, L.; Egnaczyk, G.; Salzman, A. L.; Shanley, T. P.; Hasko, G., Suppression of macrophage inflammatory protein (MIP)-1alpha production and collagen-induced arthritis by adenosine receptor agonists. Br J Pharmacol 1998, 125, (2), 379-87.
24.Bowlin, T. L.; Borcherding, D. R.; Edwards, C. K., 3rd; McWhinney, C. D., Adenosine A3 receptor agonists inhibit murine macrophage tumor necrosis factor-alpha production in vitro and in vivo. Cell Mol Biol (Noisy-le-grand) 1997, 43, (3), 345-9.
25.McWhinney, C. D.; Dudley, M. W.; Bowlin, T. L.; Peet, N. P.; Schook, L.; Bradshaw, M.; De, M.; Borcherding, D. R.; Edwards, C. K., 3rd, Activation of adenosine A3 receptors on macrophages inhibits tumor necrosis factor-alpha. Eur J Pharmacol 1996, 310, (2-3), 209-16.
26.Bouma, M. G.; van den Wildenberg, F. A.; Buurman, W. A., Adenosine inhibits cytokine release and expression of adhesion molecules by activated human endothelial cells. Am J Physiol 1996, 270, (2 Pt 1), C522-9.
27.de la Harpe, J.; Nathan, C. F., Adenosine regulates the respiratory burst of cytokine-triggered human neutrophils adherent to biologic surfaces. J Immunol 1989, 143, (2), 596-602.
28.Sullivan, G. W.; Linden, J.; Hewlett, E. L.; Carper, H. T.; Hylton, J. B.; Mandell, G. L., Adenosine and related compounds counteract tumor necrosis factor-alpha inhibition of neutrophil migration: implication of a novel cyclic AMP-independent action on the cell surface. J Immunol 1990, 145, (5), 1537-44.
29.Liu, J. S.; John, G. R.; Sikora, A.; Lee, S. C.; Brosnan, C. F., Modulation of interleukin-1beta and tumor necrosis factor alpha signaling by P2 purinergic receptors in human fetal astrocytes. J Neurosci 2000, 20, (14), 5292-9.
30.Sembries, S.; Pahl, H.; Stilgenbauer, S.; Dohner, H.; Schriever, F., Reduced expression of adhesion molecules and cell signaling receptors by chronic lymphocytic leukemia cells with 11q deletion. Blood 1999, 93, (2), 624-31.
31.John, G. R.; Simpson, J. E.; Woodroofe, M. N.; Lee, S. C.; Brosnan, C. F., Extracellular nucleotides differentially regulate interleukin-1beta signaling in primary human astrocytes: implications for inflammatory gene expression. J Neurosci 2001, 21, (12), 4134-42.
32.Majumdar, S.; Aggarwal, B. B., Adenosine suppresses activation of nuclear factor-kappaB selectively induced by tumor necrosis factor in different cell types. Oncogene 2003, 22, (8), 1206-18.
33.Rounds, S.; Yee, W. L.; Dawicki, D. D.; Harrington, E.; Parks, N.; Cutaia, M. V., Mechanism of extracellular ATP- and adenosine-induced apoptosis of cultured pulmonary artery endothelial cells. Am J Physiol 1998, 275, (2 Pt 1), L379-88.
34.Wu, L. F.; Li, G. P.; Feng, J. L.; Pu, Z. J., Molecular mechanisms of adenosine-induced apoptosis in human HepG2 cells. Acta Pharmacol Sin 2006, 27, (4), 477-84.
35.Yang, D.; Yaguchi, T.; Yamamoto, H.; Nishizaki, T., Intracellularly transported adenosine induces apoptosis in HuH-7 human hepatoma cells by downregulating c-FLIP expression causing caspase-3/-8 activation. Biochem Pharmacol 2007, 73, (10), 1665-75.
36.Saitoh, M.; Nagai, K.; Nakagawa, K.; Yamamura, T.; Yamamoto, S.; Nishizaki, T., Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem Pharmacol 2004, 67, (10), 2005-11.
37.Stoltzfus, C. M.; Shatkin, A. J.; Banerjee, A. K., Absence of polyadenylic acid from reovirus messenger ribonucleic acid. J Biol Chem 1973, 248, (23), 7993-8.
38.Richardson, L. S.; Ting, R. C.; Gallo, R. C.; Wu, A. M., Effect of cordycepin on the replication of type-c RNA tumor viruses. Int J Cancer 1975, 15, (3), 451-6.
39.Thomadaki, H.; Tsiapalis, C. M.; Scorilas, A., Polyadenylate polymerase modulations in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis induction. Biol Chem 2005, 386, (5), 471-80.
40.Sugar, A. M.; McCaffrey, R. P., Antifungal activity of 3'-deoxyadenosine (cordycepin). Antimicrob Agents Chemother 1998, 42, (6), 1424-7.
41.de Julian-Ortiz, J. V.; Galvez, J.; Munoz-Collado, C.; Garcia-Domenech, R.; Gimeno-Cardona, C., Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. J Med Chem 1999, 42, (17), 3308-14.
42.Zhou, X.; Meyer, C. U.; Schmidtke, P.; Zepp, F., Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells. Eur J Pharmacol 2002, 453, (2-3), 309-17.
43.Koc, Y.; Urbano, A. G.; Sweeney, E. B.; McCaffrey, R., Induction of apoptosis by cordycepin in ADA-inhibited TdT-positive leukemia cells. Leukemia 1996, 10, (6), 1019-24.
44.Kobori, M.; Yoshida, M.; Ohnishi-Kameyama, M.; Shinmoto, H., Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells. Br J Pharmacol 2007, 150, (2), 209-19.
45.Kim, J. A.; Tay, D.; Blanco, E. C., NF-kappaB inhibitory activity of compounds isolated from Cantharellus cibarius. Phytother Res 2008.
46.Takei, T.; Yoshida, M.; Ohnishi-Kameyama, M.; Kobori, M., Ergosterol peroxide, an apoptosis-inducing component isolated from Sarcodon aspratus (Berk.) S. Ito. Biosci Biotechnol Biochem 2005, 69, (1), 212-5.
47.Bok, J. W.; Lermer, L.; Chilton, J.; Klingeman, H. G.; Towers, G. H., Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 1999, 51, (7), 891-8.
48.Yasukawa, K.; Takahashi, M.; Natori, S.; Kawai, K.; Yamazaki, M.; Takeuchi, M.; Takido, M., Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mice. Oncology 1994, 51, (1), 108-12.
49.Kinoshita, T.; Nakanishi, I.; Terasaka, T.; Kuno, M.; Seki, N.; Warizaya, M.; Matsumura, H.; Inoue, T.; Takano, K.; Adachi, H.; Mori, Y.; Fujii, T., Structural basis of compound recognition by adenosine deaminase. Biochemistry 2005, 44, (31), 10562-9.
50.Kitajma, Y., [Structural and biochemical characteristics of pathogenic fungus: cell walls, lipids and dimorphism, and action modes of antifungal agents]. Nippon Ishinkin Gakkai Zasshi 2000, 41, (4), 211-7.
51.Yoshikawa, N.; Yamada, S.; Takeuchi, C.; Kagota, S.; Shinozuka, K.; Kunitomo, M.; Nakamura, K., Cordycepin (3'-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3beta activation and cyclin D1 suppression. Naunyn Schmiedebergs Arch Pharmacol 2008, 377, (4-6), 591-5.
52.Schwacha, M. G., Macrophages and post-burn immune dysfunction. Burns 2003, 29, (1), 1-14.
53.Qureshi, M. A.; Hill, C. H.; Heggen, C. L., Vanadium stimulates immunological responses of chicks. Vet Immunol Immunopathol 1999, 68, (1), 61-71.
54.Rietschel, E. T.; Kirikae, T.; Schade, F. U.; Mamat, U.; Schmidt, G.; Loppnow, H.; Ulmer, A. J.; Zahringer, U.; Seydel, U.; Di Padova, F.; et al., Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 1994, 8, (2), 217-25.
55.Gallay, P.; Heumann, D.; Le Roy, D.; Barras, C.; Glauser, M. P., Mode of action of anti-lipopolysaccharide-binding protein antibodies for prevention of endotoxemic shock in mice. Proc Natl Acad Sci U S A 1994, 91, (17), 7922-6.
56.Nogare, A. R.; Yarbrough, W. C., Jr., A comparison of the effects of intact and deacylated lipopolysaccharide on human polymorphonuclear leukocytes. J Immunol 1990, 144, (4), 1404-10.
57.Barnes, P. J., Nuclear factor-kappa B. Int J Biochem Cell Biol 1997, 29, (6), 867-70.
58.Verma, I. M.; Stevenson, J. K.; Schwarz, E. M.; Van Antwerp, D.; Miyamoto, S., Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev 1995, 9, (22), 2723-35.
59.Karin, M., The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem 1999, 274, (39), 27339-42.
60.Karin, M., How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 1999, 18, (49), 6867-74.
61.Yamaoka, S.; Courtois, G.; Bessia, C.; Whiteside, S. T.; Weil, R.; Agou, F.; Kirk, H. E.; Kay, R. J.; Israel, A., Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 1998, 93, (7), 1231-40.
62.Miyamoto, S.; Verma, I. M., Rel/NF-kappa B/I kappa B story. Adv Cancer Res 1995, 66, 255-92.
63.Graziewicz, M.; Wink, D. A.; Laval, F., Nitric oxide inhibits DNA ligase activity: potential mechanisms for NO-mediated DNA damage. Carcinogenesis 1996, 17, (11), 2501-5.
64.Goodlett, C. R.; Horn, K. H., Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res Health 2001, 25, (3), 175-84.
65.Klose, J.; Kobalz, U., Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 1995, 16, (6), 1034-59.
66.Spiegel, A., Cell signaling. beta-arrestin--not just for G protein-coupled receptors. Science 2003, 301, (5638), 1338-9.
67.Lefkowitz, R. J.; Rajagopal, K.; Whalen, E. J., New roles for beta-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol Cell 2006, 24, (5), 643-52.
68.Wei, C. Y.; Huang, K. C.; Chou, Y. H.; Hsieh, P. F.; Lin, K. H.; Lin, W. W., The role of Rho-associated kinase in differential regulation by statins of interleukin-1beta- and lipopolysaccharide-mediated nuclear factor kappaB activation and inducible nitric-oxide synthase gene expression in vascular smooth muscle cells. Mol Pharmacol 2006, 69, (3), 960-7.
69.Dovas, A.; Couchman, J. R., RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 2005, 390, (Pt 1), 1-9.
70.Olofsson, B., Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 1999, 11, (8), 545-54.
71.Rattan, R.; Giri, S.; Singh, A. K.; Singh, I., Rho A negatively regulates cytokine-mediated inducible nitric oxide synthase expression in brain-derived transformed cell lines: negative regulation of IKKalpha. Free Radic Biol Med 2003, 35, (9), 1037-50.
72.Hseu, Y. C.; Wu, F. Y.; Wu, J. J.; Chen, J. Y.; Chang, W. H.; Lu, F. J.; Lai, Y. C.; Yang, H. L., Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int Immunopharmacol 2005, 5, (13-14), 1914-25.
73.Liu, D. Z.; Liang, H. J.; Chen, C. H.; Su, C. H.; Lee, T. H.; Huang, C. T.; Hou, W. C.; Lin, S. Y.; Zhong, W. B.; Lin, P. J.; Hung, L. F.; Liang, Y. C., Comparative anti-inflammatory characterization of wild fruiting body, liquid-state fermentation, and solid-state culture of Taiwanofungus camphoratus in microglia and the mechanism of its action. J Ethnopharmacol 2007, 113, (1), 45-53.
74.Jijon, H. B.; Walker, J.; Hoentjen, F.; Diaz, H.; Ewaschuk, J.; Jobin, C.; Madsen, K. L., Adenosine is a negative regulator of NF-kappaB and MAPK signaling in human intestinal epithelial cells. Cell Immunol 2005, 237, (2), 86-95.
75.Kim, H. G.; Shrestha, B.; Lim, S. Y.; Yoon, D. H.; Chang, W. C.; Shin, D. J.; Han, S. K.; Park, S. M.; Park, J. H.; Park, H. I.; Sung, J. M.; Jang, Y.; Chung, N.; Hwang, K. C.; Kim, T. W., Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur J Pharmacol 2006, 545, (2-3), 192-9.
76.Muller, W. E.; Seibert, G.; Beyer, R.; Breter, H. J.; Maidhof, A.; Zahn, R. K., Effect of cordycepin on nucleic acid metabolism in L5178Y cells and on nucleic acid-synthesizing enzyme systems. Cancer Res 1977, 37, (10), 3824-33.
77.Thomadaki, H.; Tsiapalis, C. M.; Scorilas, A., The effect of the polyadenylation inhibitor cordycepin on human Molt-4 and Daudi leukaemia and lymphoma cell lines. Cancer Chemother Pharmacol 2008, 61, (4), 703-11.
78.Pratt, W. B.; Toft, D. O., Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003, 228, (2), 111-33.
79.Blagosklonny, M. V., Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 2002, 16, (4), 455-62.
80.Desagher, S.; Osen-Sand, A.; Montessuit, S.; Magnenat, E.; Vilbois, F.; Hochmann, A.; Journot, L.; Antonsson, B.; Martinou, J. C., Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell 2001, 8, (3), 601-11.
81.Chen, G.; Cao, P.; Goeddel, D. V., TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 2002, 9, (2), 401-10.
82.Subramanian, A.; Miller, D. M., Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem 2000, 275, (8), 5958-65.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊