跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 02:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:唐中浩
研究生(外文):Chung-Hao Tang
論文名稱:應用適應性粒子群最佳化於真圓度量測
論文名稱(外文):Applying Adaptive PSO on Roundness Measurement
指導教授:田方治田方治引用關係
口試委員:邱垂昱駱至中
口試日期:2009-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:102
中文關鍵詞:真圓度量測矽晶圓粒子群最佳化K-means灰色模型
外文關鍵詞:Roundness MeasurementSilicon WaferPSOK-meansGrey Model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
曲線擬合(Curve fitting)係指一組數據,找出一組資料集合(Dataset)為最逼近之相似解,本論文以機器視覺技術攫取三吋矽晶圓(Silicon wafer)之邊緣點座標,利用空間轉換成最大內接圓函式為研究對象,以粒子群最佳化演算法及其改良於此非線性極大化問題,同時比較不同提出方法之良窳。由於矽晶圓切片後會出現些許製程變異,導致細微邊緣瑕疵與橢圓現象,而其不良品可由重新外徑研磨加以回收再利用(Reclaim wafer)。本研究藉由晶圓影像攫取和資料前處理,用傳統粒子群最佳化更新法則為基礎,提出藉由分群方式取得動態刪除粒子數以收加速演算法收斂之效,並建議使用者該問題所需之最佳化參數(粒子數),由於須針對問題搭配參數組合之最佳化演算法均有高度仰賴實驗設計劣勢,在本研究中有超過一種面向之改良且具備免實驗設計之適應性(Adaptability)功能,並於最大內接圓模型為研究對象(目標函式)下獲得比較,實證中快速取得的最佳化參數可供支持決策,或結合模式搜尋之全域學習法則(HJ-PSO)彌補原始區域搜尋之不足,而適用不完整資料的灰關聯分析也在本研究中加入,其廣義性(Generalization)能迎合調整後之不完整母體維度與分群機制,相較原始粒子群最佳化演算法,符合快速初步了解一未知問題,且免於考量轉換資料成原求解空間的預期效果。
Inspection on silicon wafers is a complex and important process for semiconductor manufacturers. Optimally manufacturing each wafer to overcome the quartz shortages is tantamount to achieve maximum total profit in practice. Roundness, particularly the roundness of silicon wafers remaining a bottleneck for reclaiming wafer, is a very costly and crucial step for increasing yield. In particular, inspecting post-slicing process of wafers can be considered as a non-linear problem with a specified roundness measure. Therefore, this study proposes heuristic and adaptive methods that rapidly converge with high accuracy and low cost. The proposed methods incorporate the Hooke-Jeeves pattern search with Particle Swarm Optimization in comparison of convergent performance. A substantial amount of effort has been expended to alleviate the redundancy than the former [18] involved. This study primarily focuses on mixture algorithms for measuring roundness of silicon wafers and competes the performance with accuracy (efficiency) through visual inspection. A set of experiments is conducted to verify the feasibility under varied schemes. Definitively, experimental results reveal that the proposed method is superior in terms of execution time and solution quality.
TABLES OF CONTENTS 5
TABLES OF FIGURES 1
TABLES OF TABLES 3
1. INTRODUCTION 5
1.1 Preliminary-Automated visual inspection system 5
1.2 The Process of Silicon Wafer 5
1.3 Objective of this work 11
2. LITERATURE REVIEW 13
2.1 Introduction to AVIS and Wafer Inspection 13
2.2 Introduction to MIC model 15
2.3 Introduction to Hooke-Jeeves and Pattern Search 18
2.4 Introduction to Particle Swarm Optimization 19
2.5 Introduction to Artificial Immune System 23
2.5.1 The Immune System and Response Mechanism 24
2.5.2 The Immune Network 27
2.5.3 Introduction to Immune Genetic Analysis (IGA) 29
2.6 Introduction to Grey Relational Analysis (GRA) 31
2.7 Introduction to Grey K-means 37
3. METHODOLOGY 46
3.1 Definition of Wafer Defects 46
3.2 K-means and Proposed Grey K-means 49
3.3 Procedure of PSO K-means 53
3.4 Procedure of the Proposed Immune PSO 56
3.5 Introduction to Affinity 57
3.6 Procedure of proposed HJ-PSO 59
4. CONCLUSION 67
4.1 Implementation 67
4.2 Calibration and validation 69
4.3 Experimental Results of Wafer Inspection 73
4.4 Conclusion 81
4.5 Discussion 84
APPENDENIX 87
REFERENCES 98
[1] Newman, T.S. and Jain, A.K., “Survey of automated visual inspection,” Computer Vision and Image Understanding 61 (2), pp. 231-262.
[2] Moganti, M., Ercal, F., Dagli, C.H., Tsunekawa, S., “Automatic PCB inspection algorithms: A survey,” Computer Vision and Image Understanding 63 (2), pp. 287-313.
[3] Moganti, Madhav, Dagli, Cihan H., Ercal, Fikret, “PCB inspection using competitive learning and fuzzy associative memories,” Artificial Neural Networks in Engineering - Proceedings (ANNIE''94) 4, pp. 421-426.
[4] Moganti, Madhav, Ercal, Fikret, “Automatic PCB inspection systems,” IEEE Potentials 14 (3), pp. 6-10.
[5] Reynolds, C. W. (1987). Flocks, herds and schools: a distributed behavioral model. Computer Graphics, 21(4):25-34, 1987.
[6] Wang, K.-P., Huang, L., Zhou, C.-G., Pang, W., “Particle swarm optimization for traveling salesman problem,” International Conference on Machine Learning and Cybernetics 3, pp. 1583-1585.
[7] Tasgetiren, M.F., Liang, Y.-C., Sevkli, M., Gencyilmaz, G., “Particle swarm optimization algorithm for single machine total weighted tardiness problem,” Proceedings of the 2004 Congress on Evolutionary Computation, CEC2004 2, pp. 1412-1419.
[8] Esmin, A.A.A., Aoki, A.R., Lambert-Torres, G., “Particle swarm optimization for fuzzy membership functions optimization,” Proceedings of the IEEE International Conference on Systems, Man and Cybernetics 3, pp. 106-111.
[9] Su, C.-T., Yang, T., Ke, C.-M., "A neural-network approach for semiconductor wafer post-sawing inspection," IEEE Transactions on Semiconductor Manufacturing 15 (2), pp. 260-266.
[10]Kennedy, J. and Eberhart, R.C., “Particle swarm optimization, ” Proceedings of IEEE International Conference on Neural Networks, 1995, pp.1942-1948.
[11] Shi, Y. and Eberhart, R. C., “Parameter selection in particle swarm optimization,” Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on Evolutionary Programming, New York. pp. 591-600, 1998.
[12] Eberhart, R. C. and Shi, Y., “Comparing inertia weigthts and constriction factors in particle swarm optimization,” Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2000), San Diego, CA. pp. 84-88, 2000.
[13] Clerc, M. and Kennedy, J., “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58-73, 2002.
[14] Clerc, M., “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization,” Proceedings of the IEEE Congress on Evolutionary Computation, 1999, pp.1951-1957.
[15] Van Den Bergh, F. and Engelbrecht, A. P., “A new locally convergent particle swarm optimiser,” The Proceedings of IEEE International Conference on Systms, Man and Cybernetics, Vol. 3, 2002.
[16] Hooke R., Jeeves T.A., “A direct search solution of numerical and statistical problem,” Journal of ACM 8, pp.212-219, 1961.
[17] Powell M.J.D., “On search directions for minimization algorithms”, Math. Prog, 4(2), 1973,pp.193-201.
[18] Sun, T.-H., “Applying particle swarm optimization algorithm to roundness measurement,” Expert Systems with Applications 36 (2 PART 2), pp. 3428-3438, 2008.
[19] Wong, Andrew K.C., Sahoo, P.K., “Gray-level threshold selection method based on maximum entropy principle,” IEEE Transactions on Systems, Man and Cybernetics 19 (4), pp. 866-871.
[20] Zhengrong Zhu, Swecker, A.L.; Strojwas, A.J., “METRO-3D: an efficient three-dimensional wafer inspection simulator for next-generation lithography,” Semiconductor Manufacturing, IEEE Transactions on, Volume 17, Issue 4, Nov. 2004 Page(s):619 – 628.
[21] Talal M. Alkhamis, Mohamed A. Ahmeda, “A modified Hooke and Jeeves algorithm with likelihood ratio performance extrapolation for simulation optimization,” European Journal of Operational Research 174 (3), pp. 1802-1815, 2006.
[22]Chetwynd, D.G., “Roundness measurement using limacons,” Precision Engineering 1 (3), pp. 137-141, 1979.
[23] Guu S. M. and Tsai D. M., “Measurement of roundness by nonlinear programming approach,” Proceedings of National Science Council, Part A: Physical Science and Engineering, Vol. 23, No. 2, 1999, pp. 348-352.
[24] Chen M. C., Tsai D. M. and Tseng H. Y., “Stochastic Optimization Approach for Roundness Measurement,” Pattern Recognition Letters, Vol. 20, 1999, pp. 707-719.
[25] Chen, M.-C., “Roundness inspection strategies for machine visions using nonlinear programs and genetic algorithms,” International Journal of Production Research, 2000, Vol. 38, No. 13, pp. 2967-2988.
[26] Chen, M.-C., “Roundness measurements for discontinuous perimeters via machine visions,” Computers in Industry, 2002, Vol. 42, No. 2, pp. 185-197.
[27] Horikawa, O., Maruyama, N., Shimada, M., “A low cost, high accuracy roundness measuring system,” Precision Engineering 25 (3), pp. 200-205.
[28] Yoshida, H.; Takami, T.; Uchihashi, T.; Kishino, S.; Naruoka, H.; Mashiko, Y., "Preliminary study of a novel scanning charge-pumping method using extra gates for SOI wafer inspection," Electron Device Letters, IEEE, Volume 23, Issue 10, Oct. 2002 Page(s):630 - 632.
[29] Wong K. C., MEMBER, IEEE and P. K. SAHOO, “gray-level threshold selection method based on maximum entropy principle,” IEEE Transactions on Systems,Man,and Cybernetics, Vol. 19, No. 4, 1989.

[30] Rafael C. Gonzalez, Richard E. Woods, “Digital Image Processing – Second Edition” Prentice Hall, USR NEW JERSEY 07458.
[31]Wang M. J. J., Wang S.C., Liu C. M. and Wu W. Y., “A new edge detection method through template matching,” Pattern Recognition Artificial Intell, Vol. 8, No.4, 1994, pp.898-917.
[32] Shi, Y. and Eberhart, R. C., “A modified particle swarm optimizer,” Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1998), Piscataway, NJ. pp. 69-73, 1998.
[33] Reza Aghaeizadeh Zoroofi, Hisashi Taketani, Shinichi Tamura, Yoshinobu Sato, Kazuma Sekiya, “Automated inspection of IC wafer contamination,” Pattern Recognition 34(6): 1307-1317, 2001.
[34] Kubota, T., Talekar, P., Sudarshan, T.S., Ma, X., Parker, M., Ma, Y., “An automated defect detection system for silicon carbide wafers,” Conference Proceedings - IEEE SOUTHEASTCON, pp. 42-47, 2002.
[35] Eberhart, R. C. and Kennedy, J., “A new optimizer using particle swarm theory,” Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan. pp. 39-43, 1995.
[36] Chang, C.-Y., Li, C., Chang, J.-W., Jeng, M., “An unsupervised neural network approach for automatic semiconductor wafer defect inspection,” Expert Systems with Applications 36 (1), pp. 950-958. 2009.
[37] Wu, C.-H., Wang, D.-Z., Ip, A., Wang, D.-W., Chan, C.-Y., Wang, H.-F., “A particle swarm optimization approach for components placement inspection on printed circuit boards,” Journal of Intelligent Manufacturing, pp. 1-15, 2008.
[38] Misra, B.B., Dehuri, S., Dash, P.K., Panda, G., “Reduced polynomial neural swarm net for classification task in data mining,” 2008 IEEE Congress on Evolutionary Computation, CEC 2008, art. no. 4631104, pp. 2298-2306.
[39] Zhang, L., Yu, H., Hu, S., “A new approach to improve particle swarm optimization,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2723, pp. 134-139, 2003.
[40] Timmis J., Neal M., and Hunt J. E., “An artificial immune system for data analysis,” Biosystem, vol. 55, no. 1/3, pp. 143–150, Feb. 2000.
[41] Perelson A. S., “Immune network theory,” Immunol. Rev., vol. 110, pp. 5–36, Aug. 1989.
[42] Jerne N. K., “The immune system,” Sci. Amer., vol. 229, no. 1, pp. 51–60, 1973.
[43] Sun W. D., Tang Z., Tamura H. and Ishii M., “An Artificial Immune System Architecture and Its Applications,” IEICE Trans. Funda., E86-A(7):1858-1868, 2003.
[44] Chun Jang-Sung; Kim Min-Kyu; Jung Hyun-Kyo; Hong Sun-Ki, “Shape optimization of electromagnetic devices using immune algorithm”, Volume 33, Issue 2, Part 2, 1997, Page(s):1876–1879, Digital Object Identifier 10.1109/20.582650.
[45] Fuat Uler G., Osama A. Mohammed, Koh Chang-Seop, “Utilizing Genetic Algorithms for the Optimal Design of Electromagnetic Devices”, IEEE Trans. Mugn., vol. 30, no. 6, pp. 4296-4298,1994.
[46] Preis K., Magele C., Biro O., “FEM AND EVOLUTION STRATEGY IN THE OPTIMAL DESIGN OF ELECTROMAGNETIC DEVICES”, IEEE Trans. Magn., vol. 26,110. 5, pp. 2 181 -2 183,1990.
[47] Osama A. Mohammed, Jones W. Kinzy, “A DYNAMIC PROGRAMMING FINITE ELEMENT PROCEDURE FOR THE DESIGN OF NONLINEAR MAGNETIC DEVICES”, IEEE Trans. Magn., vol 26, no. 2, pp. 666-669,1990.
[48] Wang Lei; Jiao Licheng; “The immune genetic algorithm and its convergence,” Signal Processing Proceedings. ICSP ''98. 1998 Fourth International Conference on Volume 2, Page(s):1347 – 1350, vol.2, 1998.
[49] Tang Z., Yamaguchi T., Tashima K. et al., “Multiple-valued immune network model and its simulations,” in Proc. 27th Int Symp. Multiple-Valued Logic, Antigonish, NS, Canada, 1997, pp. 233–238.
[50] 蔡宗翰,應用粒子群最佳化演算法於真圓度量測,國立台北科技大學工業工程與管理學研究所,台北,2006。
[51] 陳玟伶,應用機器視覺於鉚釘電氣接點之表面檢測,國立台北科技大學工業工程與管理學研究所,台北,2007。
[52] 矽晶圓半導體材料技術(二版),林明獻 編著,全華圖書股份有限公司,2007年12月。
[52] Deng J., “The control problems of grey systems,” Systems and Control Letters, 1982.
[53] Deng J. L., “Introduction to grey system theory,” The Journal of Grey System, vol. 1, no. 1, pp.1-. 24, 1989.
[54] Deng J.L., “Grey Systems,” China Ocean Press, 1988.
[55] MacQueen J. B., "Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability", Berkeley, University of California Press, 1:281-297, 1967.
[56] Wen K.L., Grey Systems: Modeling and Prediction, Yanz clusters in k- means clustering and application in colour image segmentation, in: Proceedings of the Fourth International Conference on Advances in Pattern Recognition and Digital Techniques, pp. 137-143, 1999.
[59] Hu, T.L., Kuo, R.J., and Hung, L.Y.,“Integration of grey relational clustering and K-means algorithm for industrial market segmentation,”Proceedings of IEEE 7th International Conference on Intelligent Engineering Systems, Luxor, pp.758-762, March 4-6, 2003.
[60] Chen Hue-Liang, “A Study on the Interaction and Correlativity of Customer Relationship Management in e-Commerce,” National Taipei University of Technology Institute of Production Systems Eng. And Management master thesis, 2001. (In Chinese)
[61] MacQueen, J. B., “Some Methods for Classification and Analysis of Multivariate Observations,” Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol.1, L.M. LeCam and J. Neyman, eds, pp.281-297, 1967.
[62] Zhai, L.-Y., Khoo, L.-P., Zhong, Z.-W., "Design concept evaluation in product development using rough sets and grey relation analysis," Expert Systems with Applications 36 (3 PART 2), pp. 7072-7079, 2009.
[63] Jiang, B. C., Tasi, S. L. and Wang, C. C., 2002, Machine vision-based gray relational theory applied to IC marking inspection, IEEE Transactions on Semiconductor Manufacturing, VOL. 15, NO. 4, 2002.
[64] Omran, M., Salman, A. and Engelbrecht, A. P., 2002. Image classification using particle swarm optimization. Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning 2002 (SEAL 2002), Singapore. pp. 370-374.
[65] Van D. M., Engelbrecht, A. P., “Data clustering using particle swarm optimization.” Proceedings of IEEE Congress on Evolutionary Computation 2003 (CEC 2003), Canbella, Australia. pp. 215-220, 2003.
[66] Sun, T.-H., Horng, H.-C., Liu, C.-S., Tien, F.-C., "Invariant 2D object recognition using KRA and GRA," Expert Systems with Applications 36 (9), pp. 11517-11527, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top