跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊帆
研究生(外文):Jun-Fan Chen
論文名稱:多殼層導電性與感磁性奈米複合材料之製備與研究
論文名稱(外文):Study on the multilayer nanocomposite material with electroconductive and magnetic characteristics
指導教授:許淙慶許淙慶引用關係陳志恆陳志恆引用關係
指導教授(外文):Chung-King HsuJyh-Herng Chen
口試委員:林景崎廖義田
口試委員(外文):Jing-Chie LinYih-Tyan Liao
口試日期:2009-07-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:活性自由機聚合四氧化三鐵甲基丙烯酸甲酯溶液聚合法核殼結構聚苯胺
外文關鍵詞:(Atom Transfer Radical PolymerizationATRP)poly methyl methacrylate (PMMA)(Solution Polymerization)Core-ShellPANI
相關次數:
  • 被引用被引用:1
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討多殼層導電性與感磁性奈米複合材料之製備與性質。此多殼層複合材料中心部分為四氧化三鐵顆粒、中間部分為PMMA、最外層為PANI,利用多殼層結構增加複合材料之功能性。首先利用自組裝將CTCS改質於四氧化三鐵表面,TGA顯示起始CTCS濃度越高,表面接枝濃度越高。從Zeta potential測量發現添加32.5 mM CTCS時,表面改質CTCS接枝量達飽和。由FTIR顯示,可利用ATRP活性自由基聚合法將短鏈段之PMMA接枝於四氧化三鐵表面,以達到穩定化氧化鐵懸浮液,使四氧化三鐵可穩定懸浮於MMA單體中而不易沉降。再利用溶液聚合法將PMMA包覆於四氧化三鐵表面,形成Fe3O4-PMMA核-殼結構。由TGA顯示,Fe3O4/PMMA比例越高所形成之複合材料的熱穩定性越佳。實驗結果顯示,選擇Fe3O4/PMMA為0.02可保持其形貌為完整球狀,同時也達到提升熱穩定性之效果。
本研究接著利用溶液聚合法製做PMMA-PANI核-殼結構之聚合物,以了解製備過程中反應物之作用與添加量對PMMA-PANI核-殼結構聚合物之影響,添加之反應物有界面活性劑SDS、分散劑hydroquinone、氧化劑Ammonium persulfate。經由研究之後得到最佳參數為: SDS 0.5克、hydroquinone 0.0154 克、Aniline/ Ammonium persulfate比例為1.25,所獲得的導電度為1.843×10-2 S/cm。利用前述之最佳參數,於Fe3O4-PMMA核-殼結構表面進一步聚合PANI以形成多殼層導電性與感磁性奈米複合材料,經由VSM測試其飽和磁化(saturation magnetization)為0.6emu/g與矯頑磁力(coercive force)為60 Oe,導電性為2.32×10-2 S/cm。
In this study, a multilayer nanocomposite material with electroconductive and magnetic characteristics was successfully synthesized. The multi-shell composite materials central part with the iron oxide particles, middle part was PMMA, outer layer was PANI. First, iron oxide surface was modified by using self-assembled CTCS. TGA shows that increasing CTCS concentration can increasing the amount of immobilized CTCS. Zeta potential indicated that with 32.5 mM CTCS, the surface was saturated with CTCS. FTIR shows that PMMA short-chain can be grafted onto the surface of the iron oxide by ATRP polymerization. The PMMA short-chain can stabilize the iron oxide particles in MMA monomer solution. The PMMA covered iron oxide surface was further covered with PMMA to form Fe3O4-PMMA core-shell structure by solution polymerization. TGA analysis showed that increase the ratio of Fe3O4/PMMA increase the thermal stability of composite. With Fe3O4/PMMA ratio 0.02, the composite can have a complete spherical morphology and good thermal stability.
PMMA-PANI composite with core-shell structure can be synthesized by solution polymerization in order to understand the effects of the reactants to the formation and properties of PMMA-PANI composite, including surfactant (SDS), dispersant (hydroquinone) and oxidant (ammonium persulfate). The optima parameters are SDS 0.5 grams, hydroquinone 0.0154 grams and Aniline /Ammonium persulfate ratio 1.25. The resulting composite has conductivity 1.843×10-2 S/cm. Adopting this optimum parameters. a multilayer nanocomposite material with electroconductive and magnetic can be prepared with the Fe3O4-PMMA-PANI core-shell structure. VSM analysis showed that the composite has saturation magnetization 0.6 emu/g, the magnetic coercivity 60 Oe and conductivity 2.32 × 10-2 S / cm.
目 錄

中文摘要 .i
英文摘要 .iii
目錄 .v
表目錄 ..vii
圖目錄 ..viii
第一章 緒論…………………………………………………….…….…….….1
1.1 奈米材料…………………………………………….………………1
1.2 奈米粒子的特性…………………………………….…….…..…….2
1.3 奈米複合材料……………………………………….…………..…..5
1.4 研究目的與架構…………………………………….…………..…..7
第二章 文獻回顧…………………………………………………….……..….10
2.1 磁性氧化物材料的粉體製備………………………………...……10
2.1.1 四氧化三鐵之基本性質…......................................................10
2.1.2 磁性氧化物粉體製備………………………………..………11
2.2 磁性氧化物材料的粉體改質……………………………...………12
2.2.1 表面改質……………………………………………………..12
2.2.2 磁性氧化物的表面改質……………………………….…….15
2.3 原子轉移活性自由基聚合反應原理…………………………..….18
2.4 導電高分子……………………………………………………...…21
2.4.1 導電高分子發展史………………………………………..…21
2.4.2 聚苯胺…………………………………………………….….23
2.4.3 苯胺及其衍生物之聚合機制…………………………….….25
2.5 PMMA奈米複合材料………………………………………..……26
2.5.1 PMMA基本性質…………………………………...………..26
2.5.2 高分子複合材料……………………………………………..27
第三章 實驗方法與步驟……………………………………………...……….30
3.1 實驗材料……………………………………………………….…..30
3.2 實驗儀器設備……………………………………………………...33
3.2.1 X-ray 分析儀………………………………………..……….33
3.2.2 掃描式電子顯微鏡 scanning electron microscope (SEM)….34
3.2.3 傅立葉紅外線光譜 Fourier Transform Infrared Spectroscopy (FTIR)……………………………………………….….…….34
3.2.4 示差掃描熱量分析儀 Differential Scanning alorimetry (DSC)……………………………………………………..….35
3.2.5 熱重分析儀Thermogravimetry Analyzer (TGA)......……….35
3.2.6 奈米粒徑分析儀 (Zetasizer)…………………………….…..35
3.2.7 振動樣品磁力儀 (VSM)……………………………….……35
3.2.8 四點探針…………………………………………………..…36
3.3 實驗步驟……………………………………………………...……36
3.3.1 改質磁性奈米氧化鐵(Fe3O4)粉體……………………..……37
3.3.2 MP-CTCS接枝短鏈段MMA…………………………….….37
3.3.3 溶液聚合法製備MP-PMMA核-殼(core-shell)結構高分子..40
3.3.4 乳化聚合法製備多殼層結構之P-PMMA-PAni顆粒…...….41
第四章 結果與討論………………………………………………………..…43
4-1 MP-CTCS-PMMA核-殼結構之球型高分子…………….……….43
4.1.1 奈米氧化鐵(Fe3O4)粉體特性分析……………………….….43
4.1.2 利用CTCS進行奈米氧化鐵表面改質……………….……..46
4.1.3 CTCS濃度對氧化鐵粉末表面性質之影響……………..….49
4.1.4 MP-CTCS接枝短鏈段MMA………………………….…….50
4.1.5 製備MP-CTCS-PMMA核-殼結構之球型高分子……...…..52
4.2 PMMA-PANI導電複合材料………………………………….…...55
4.2.1 利用Aniline單體進行多殼層復合材料製備…………….....55
4.2.2 利用Aniline Hydrochloride進行多殼層復合材料製備….…62
4.3 MP-PMMA-PANI多殼層導電性與感磁性奈米複合材料……….69
4.3.1 四氧化三鐵奈米顆粒為核製備多殼層複合材料………..…..70
4.3.2 多殼層材料外層添加四氧化三鐵顆粒………………….….71
第五章 結論……………………………………………………………………73
參考文獻………………………………………………………………………..75
1.張立德、牟季美著,奈米材料和奈米結構,滄海書局(2002)
2.張立德,奈米時代,五南出版社(2002)
3.曹茂盛等編著,奈米材料導論,學富文化事業有限公司(2002)
4.T. Saegusa, “Organic-inorganic polymers hybrids”, Pure Appl. Chem., 67(12), 1965 (1995)
5.廖建勳,工業材料,奈米高分子複合材料 5, 125 (1997)
6.蔡宗燕,化工資訊,奈米級無機材料的發展與應用 12, 2 (1998)
7.陳威倩,「以γ→α-Fe2O3 相變機制製作alpha-Fe2O3,微粒」國立成功大學碩士論文,2001.
8.Koichiro. Hayashi, Wataru. Sakamoto, Toshinobu Yogo, Journal of Magnetism and Magnetic Materials, (2009) 321 450–457
9.Shouheng Sun, Hao Zeng, David B. Robinson,Simone Raoux, Philip M. Rice,Shan X. Wang,§ and Guanxiong Li, J. AM. CHEM. SOC. 2004, 126, 273-279
10.Y. Liu, W. Jiang, Y. Wang, X.J. Zhang, D. Song, F.S. Li, Journal of Magnetism and Magnetic Materials, (2009), 321 408–412
11.Jie Chen, FangbinWang, Kelong Huang∗, Younian Liu, Suqin Liu, Journal of Alloys and Compounds JALCOM-18348; No. of Pages5
12.Zhong JieZhang , XiangYingChen , BaiNianWang , ChengWuShi , Journal of Crystal Growth, (2008) 310, 5453–5457
13.R. Y. Hong, T. T. Pan, Y. P. Han, S. Z. Zhang, H. Z. Li, J. Ding, Journal of Applied Polymer Science,, 2007, Vol. 106 1439–1447
14.Muhammad. E, Shinpei. Y, Yoshinobu. T, Takeshi. F, Macromolecules. 2002. 35 1412-1418
15.Kohji. O, Takashi. M, Kyoungmoo. K, Yoshinobu. T, Takeshi. F, Macromolecules ,2005 ,38 2137-2142
16.B. de Boer, H. K. Simon, M. P. L. Werts, E. W. van der Vegte, G. Hadziioannou Macromolecules., 2000, 33 349-356
17.Jong-Bum Kim, Merlin L. Bruening, Gregory L. Baker, J. Am. Chem. Soc. 2000 122, 7616-7617
18.Zupeng Guo, Yiwang Chen , Weihua Zhou , Zhongfu Huang , Yuehui Hu , Meixiang Wan ,Fenglian Bai, Materials Letters, 2008, 62 ,4542–4544
19.Thorsten Gelbrich, Mathias Feyen, and Annette M. Schmidt , Macromolecules, 2006, 39 (9), 3469-3472
20.G.R Raghuraman and R.Dhamodharan. Journal of Nanoscience and Nanotechlogy 2006, 6, 2018-2024
21.Eizo Marutani, Shinpei Yamamoto, Tsedev Ninjbadgar, Yoshinobu Tsujii, Takeshi Fukuda and Mikio Takano, Polymer, 2004 ,45 2231–2235
22.Jin-Shan Wang.;Krzysztof Matyjaszewski. J. Am. Chem. SOC. 1995, 117, 5614-5615.
23.Krzysztof Matyjaszewski.;Jianhui Xia. Chem. Rev. 2001, 101, 2921-2990.
24.Timothy E. Patten.;Krzysztof Matyjaszewski. Adv. Mater. 1998, 10, NO. 12, 901-915
25.Krzysztof Matyjaszewski. Chem. Eur. J. 1999, 5, No. 11, 3905-3102.
26.Jianhui Xia.;Krzysztof Matyjaszewski. Macromolecules. 1999, 32, 5199-5202
27.Shuhui Qin.;Jocelyn Saget.;Jeffrey Pyun.;Shijun Jia.;Tomasz Kowalewski.;Krzysztof Matyjaszewski. Macromolecules. 2003, 36, 8969-8977
28.Krzysztof Matyjaszewski.;Jocelyn Saget.;Jeffrey Pyun.;Martin Schlogl.;Bernhard Rieger. J. Mac. Sci. Part A-Pure and Applied Chemistry. 2002, Vol. A39, NO. 9, 901-913.
29.Krzysztof Matyjaszewski.;Mircea Teodorescu. American Chemical Society, Polymer Preprints, Division of Polymer Chemistry. 1999, Vol. 40, 2, 428-429.
30.Mircea Teodorescu.; Krzysztof Matyjaszewski. Macromolecules, 1999, 32, 4826-4831.
31.Xiao-Ping Chen.; Anne Buyle Padias.;H. K. Hall. Macromolecules, 2001, 34, 3514-3516
32.Jerome Queffelec.;Scott G. Gaynor;Krzysztof Matyjaszewski. Macromolecules 2000, 33, 8629-8639.
33.Kevin I. Booker-Milburn.;Andy Barker.;Wayne Brailsford.;Brian Cox.;Tamsin E. Mansley. Tetrahedron 1998, 54, 15321-15344
34.Krzysztof Matyjaszewski.; Macromolecular Symposia 1998, 134, 105-118.
35.Krzysztof Matyjaszewski. “Comparison and classification of controlled/living radical polymerizations ” ACS Symposium Series 2000, 768
36.D.Chapman, R.J. Warm, A.G. Fitzgerald, A.D. Yoffe J. Chem. Soc.,Faraday Trans. 1964, 294, 60.
37.H. Shirakawa, S. Ikeda Polymer 1971, 2,231
38.(a) H. Shirakawa, E. J. Lousi, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger J. Chem. Soc., Chem. Commum. 1977, 578.; (b) C. K. hiang, C.R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Lousi, S. C. Gau,A. G. MacDiarmid Phys. Rev Lett. 1977, 39, 1098.
39.A. J. Epstin and A. G. MacDiarmid, polyaniline: Solution, Film, and Oxidation State, Proc. Faraday Society, Faraday Trans. 1989.
40.A. F. Diaz, J. Bargon in Handbook of Conducting Polymers, T. A. Skotherim Ed.; Marcel Decker: New York, 1986, Vol. 1, 82.
41.H. Nakanishi and H. Matsuda (Research Institute of polymers and textiles),
”Conductive Polymers”, Reported in a Journal issued by Business and Technology 1987, R.
42.A. J. Epstein, J. M. Ginder, R. W. Bigelow, A. G. MacDiarmid, Synth.Met. 1987, 18, 303.
43.A. G. Green and A. E. Woodhead, J. Chem. Soc. Trans., 1910, 97,2388.
44.W. J. Zhang,J. Feng,H. G. MacDiamid and A. J. Epstein ,Synth. Met.1997, 84,119
45.徐武軍著,高分子材料導論,五南書局(2004)
46.馬占鏢,甲基丙烯酸酯樹脂及其應用,化學工業出版社(2002)
47.Tom Hasell, Wenxin Wang, J. Mater. Chem. 2007, 17, 4382-4386
48.Jixin Yang, Tom Hasell, J. Mater. Chem. 2008, 18, 998-1001
49.Hui-Ying Wen, Ge Gao, Zhao-Rang Han, Feng-Qi Liu. Polymer International.2008, 57 (4), pp. 584-591
50.Fangzhi Zhang, Zhixing Su, Fusheng Wen, Fashen Li. Colloid and Polymer Science.2008, 286 (6-7), 837-841
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊