跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/24 04:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳東峰
研究生(外文):Tung-Feng Wu
論文名稱:應用超臨界二氧化碳電鍍鐵鎳合金(I)與利用PS球為模板電鍍碲化鉍熱電材料之研究(II)
論文名稱(外文):Studies of Electroplating Ni-Fe Alloys in the Supercritical Carbon Dioxide (I) and ElectroplatingBismuth Telluride Thermoelectric Material in the PS Template (II)
指導教授:林昭任林昭任引用關係
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:178
中文關鍵詞:超臨界電鍍鐵鎳合金熱電材料PS球模板
外文關鍵詞:Thermoelectric materialSupercritical Carbon Dioxide Electroplating
相關次數:
  • 被引用被引用:1
  • 點閱點閱:520
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
(I)電鍍可以被廣泛的使用在工業界乃是因為電鍍所需花費得成本較少,且可以較容易控制組成成份。本研究利用超臨界CO2 (SC-CO2)電鍍來探討平面鐵鎳電鍍的特性變化,並藉由電化學方式來分析抗腐蝕的能力。本實驗使用一高壓釜來架設超臨界CO2電鍍鐵鎳薄膜之反應裝置。並固定電流密度6.3mA/cm2電鍍鐵鎳於銅基材上。結果發現在SC-CO2電鍍下,鐵鎳薄膜為多晶結構;且晶粒尺寸隨著壓力的增加而減少,因壓力可以加快成核速率與超臨界下形成的乳化鍍液具有脈衝電鍍的效果。在SC-CO2下電鍍鐵鎳合金薄膜的磁性性質中,觀察到矯頑磁力隨著壓力的增加而減少,在壓力20.4MPa矯頑磁力值為10 Oe。主要的原因乃是當壓力增加時導致晶粒尺寸變小,此時晶粒尺寸已小於多層區之臨界晶粒尺寸且受到超順磁效應的影響之下,矯頑磁力隨晶粒尺寸減少而下降。
(II)本研究利用PS球為模板電鍍碲化鉍熱電材料並且探討其特性的變化。常壓電鍍沉積電位為E=-0.05V~E=-0.4V vs. Ag/AgCl,溫度為25℃,固定轉速為150 rpm。實驗結果顯示,沉積電位的大小會影響到組成的變化,當沉積電位小於E=-0.3V時組成偏向Bi-rich(P-type半導體),而當沉積電位大於E=-0.3V時其組成偏向Te-rich(N-type半導體)。碲化鉍電鍍為多晶結構,並且傾向(110)的晶面成長,晶粒尺寸隨著沉積電位的增加而減少。利用PS球模板電鍍碲化鉍熱電材料之Seebeck coefficient 為38.57 μV/K,而使用平面電鍍碲化鉍熱電材料之Seebeck coefficient為4.68μV/K。所以使用PS球模板電鍍碲化鉍熱電材料具有較高的Seebeck coeffocoent與較低的電阻率。
(I)Electroplating technique is especially interesting due to its low cost and high quality of deposit being extensively used in industry. This study investigated the characteristics of electroplating Ni-Fe alloys in super carbon dioxide (SC-CO2), and use the electrochemistry method to analyze the corrosion rate. The experiment set up a high pressure vessel examine SC-CO2 electroplating Ni-Fe reactor.The electroplating was operating in the constant current mode, the applied current density was 6.3 mA/cm2 and the copper plate was used as the work electrode. It is found that the Ni-Fe alloys are polycrystalline structure and the grain size decrease with increasing pressure under SC-CO2 electroplating. The reasons could be attributed to pressure can induce nucleation rate and the emulsified electrolyte by SC-CO2 acts like pulse electroplating. However, further increasing pressure the coercive field decrease again. When the pressure is 20.4MPa, the coercive field is 10Oe. It could be attributed to the grain size is small than critical grain size of multi-storey area.

(II)This study is to investigate the characteristics of Bismuth Telluride (Bi2Te3) thermoelectrical material electroplated in polystyrene(PS) particle template. The operating pressure is ambient pressure at 30℃ and 150 rpm, the electroplated Bi2Te3 were prepared at -0.05V~-0.4V vs. Ag/AgCl. Experimental result reveals that the electroplating potential will effect the component of Te-content. When the electroplating potential is small than 0.3V, it tends to Bi-rich(P-type semiconductor); but when the electroplating potential is greater than 0.3V, it tends to Te-rich(N-type semiconductor). Analyzed by XRD, Bi2Te3 are polycrystalline structure with a highly preferentional orientation along the (110) direction, the crystal grain size decrease with increasing the electroplating potential. Besides, the seebeck coefficient of bismuth telluride thermoelectrical material electroplated in PS particle templates is 38.57 μV/K; but the seebeck coefficient of bismuth telluride thermoelectrical material electroplated in plane is 4.68 μV/K. So, the bismuth telluride thermoelectrical material electroplated in PS template have high seebeck coefficient and low electrical resistivity.
目錄
Part 1應用超臨界二氧化碳電鍍鐵鎳合金之研究 II
中文摘要 III
Abstract IV
目錄 V
圖目錄 XI
表目錄 XVI
第一章 緒論 1
第二章 文獻回顧 2
2.1 電鍍基本原理 2
2.1.1 前言 2
2.1.2 電鍍的原理 2
2.1.3合金電鍍 4
2.1.4鐵鎳電鍍 6
2.1.5磁性材料簡介 11
2.2 超臨界鐵鎳電鍍 17
2.2.1 超臨界流體 17
2.2.2 SC-CO2 19
2.2.3 超臨界乳化 21
2.2.4 超臨界電鍍 22
2.3 分析介紹 28
2.3.1 電導度 28
2.3.2 腐蝕分析 30
第三章 實驗方法與步驟 35
3.1 藥品與儀器 35
3.1.1 藥品 35
3.1.2 儀器 35
3.1.3 高壓反應器設備 36
3.2 實驗架構與流程圖 37
3.3 超臨界電鍍系統架設及其電導度量測 38
3.3.1 超臨界電鍍實驗架設 38
3.3.2 電導度量測 39
3.4 鐵鎳電鍍 41
3.4.1 電鍍前處理 41
3.4.2 鐵鎳電鍍 42
3.4 分析儀器介紹 45
第四章 結果與討論 47
4.1 電導度討論 47
4.2 電化學行為探討 52
4.3表面形貌分析 56
4.4結晶構造分析 61
4.5組成變化 66
4.6 機械性質分析 67
4.7磁性分析 71
4-8腐蝕行為分析 75
第五章 結論與未來展望 78
5.1 結論 78
5.2 未來展望 79
參考文獻 80
Part 2 利用PS球模板電鍍碲化鉍熱電材料之研究 84
中文摘要 85
Abstract 86
第一章 緒論 87
第二章 文獻回顧 88
2.1 熱電材料 88
2.1.1 引言 88
2.1.2 熱電材料運作原理 88
2.1.3 Seebeck 效應 88
2.1.4 Peltier 效應 90
2.1.5 Thomson 效應 93
2.1.6 熱電優值 97
2.1.7 製備Bi2Te3熱電材料方法 103
2.1.8 碲化鉍電鍍 104
2.2 模版簡介 108
2.2.1 引言 108
2.2.2 陽極氧化鋁(Anodic Aluminum Oxide)模板 108
2.2.3 高分子PS模板與二氧化矽模板 110
2.3 高分子模板的製程技術 113
2.4 電泳批覆法 116
2.4.1 電泳批覆原理 116
2.4.2 影響電泳速度的因素 123
2.4.3 電泳披覆方式 124
2.5 聚苯乙烯粒子簡介 125
2.5.1 引言 125
2.5.2 乳化聚合法 125
2.5.3 無乳化劑乳化聚合法 127
2.5.4 懸浮聚合法 129
2.5.5 分散聚合法 129
第三章 實驗方法與步驟 130
3.1 藥品與儀器 130
3.1.1 藥品 130
3.1.2 實驗儀器 131
3.2 實驗流程 132
3.3 玻璃清洗 133
3.4 合成方法 135
3.4.1 合成單一尺寸聚苯乙烯球 135
3.4.2 以電泳披覆法製備聚苯乙烯模板 136
3.5 碲化鉍電鍍 138
3.6 PS球移除 139
3.7 量測原理介紹 143
3.7.1 Seebeck係數量測 143
3.7.2 電阻率量測 145
第四章 結果與討論 147
4.1 電泳披覆法製程參數的控制 147
4.1.1 電泳時間與電阻值之關係 147
4.1.2 Zeta電位值與電泳之關係 149
4.1.3 電場強度對電泳的影響 150
4.1.4 濃度對電泳的影響 154
4.2 表面形貌分析 156
4.3 組成變化 162
4.4 結晶結構分析 164
4.5 電性分析 168
第五章 結論與未來展望 171
5.1 結論 171
5.2 未來展望 172
參考文獻 173
(I)田福助,“電化學基本原理與應用”,五洲出版社(2004) 。

胡啟章,“電化學原理與方法“,五南圖書出版,(2002) 。

曹恆光, 連大成, “淺談微乳液”, 物理雙月刊, 23, 488-493(2001) 。

郭子禎,“環保洗淨心技術-CO2的神奇應用”, 科學發展月刊, 400, 30-35(2006) 。

侯富雄,林昭任,“超臨界二氧化碳下黃金電鍍之研究”,國立中正大學化學工程系(2007) 。

黃秋玉,林昭任,“應用超臨界二氧化碳電鍍鎳膜與鎳奈米線之研究”,國立中正大學化學工程系(2008) 。

張正武 ,鐵鉑基奈米晶薄帶磁性、相變化與交換藕合效應之研究,國立中正大學物理所(2008) 。
A. Brenner, “ Electrodeposition of Alloys”, Vol. 1-2, Academic Press, New York (1963).

Budevski, E., G. Staikov, W.J. Lorenz, “Electrocrystallization. Nucleation and growth phenomena”, Electrochim. Acta., 45, 2559-2574(2000).

Cullity, B.D., “Introduction to magnetic materials”, Reading, Mass.,
Addison-Wesley Pub. Co.(1972).

Dhanuka, V. V., J. L. Dickson, W. Ryoo, K. P. Johnston, “High internal phase CO2-in-water emulsions stabilized with a branched nonionic hydrocarbon surfactant”, Journal of Colloid and Interface Science, 298, 406-418(2006).

Erb, U., “Electrodeposited nanocrystals:Synthesis, properties and industrial applications”, Nanostructured Materials, 6, 533-538(1995).

Hong, K.-M., M.-S. Kim, J.G. Chung, “Characteristics of nickel film electroplated on a copper substrate in supercritical CO2”, J. Ind. Eng. Chem., 10, 683-689(2004).

H. Dahms and I. M. Croll, J. Electrochem. Soc., 112, 771 (1965).

Jean Harkans, J. Electrochem. Soc., 128, 45 (1981).

K. M. Yin and S.L. Jan, Trans. I.M.F. , 74 (2), 51 (1996).

K.-M. Yin and B.-T. Lin,“Effects of boric acid on the electrodeposition of iron, nickel and iron-nickel”, Surface and Coatings Technology ,78 205 -210(1996).

Kozlov, V.M., L. P. Bicelli, “Formation of structural defects during metal electrocrystallization”, Journal of Crystal Growth, 165, 421-428(1996).

Kozlov, V.M., L. P. Bicelli, “Texture formation of electrodeposited fcc metals”, Materials Chemistry and Physics, 77, 289-293(2002).

Mchard, J. and S.P. Sawan,“Supercritical Fluid Cleaning, Fundamentals, Technology and Applications”, William Andrew Publishing/Noyes, 1-21(1998).

Mizushimaa, A., M. Sonea, H. Yan, T. Nagai, K. Shigehara, S. Ichihara, S. Miyata, “Nanograin deposition via an electroplating reaction in an emulsion of dense carbon dioxide in a nickel electroplating solution using nonionic fluorinated surfactant”, Surf. Coat. Technol., 194, 149-156(2005).

Masato Sone Takabumi Nagai, Yakichi Higo , Hideo Kameyama,“Novel porous film by electroplating with an emulsion of supercritical CO2” Surface & Coatings Technology ,201 ,7513–7518(2007).

Phelps, C. L., N. G. Smart, C. M. Wai, “Past, present, and possible future application of supercritical fluid extraction technology”, Journal of Chemical Education, 73, 1163-1168(1996).

S. Sam ,G. Fortas, A. Guittoum , N. Gabouze, S. Djebbar “Electrodeposition of NiFe films on Si(100) substrate” Surface Science 601 ,4270–4273(2007).

Sholeh Hessami and Charles W. Tobias “A Mathematical Model for Anomalous Codeposition of Nickel-Iron on a Rotating Disk Electrode” J.Electrochem.Soc., 136, 3611 (1989).

Shailesh Gadad and Thomas M. Harris“Oxygen Incorporation during the Electrodeposition of Ni, Fe, and Ni—Fe Alloys” J. Electrochem. Soc., 11, 145(1998).



Sholeh Hessami and Charles W. Tobias “In-Situ Measurement of Interfacial pH Using a Rotating Ring-Disk Electrode” AIChE J., 39, 149 (1993).

Schuh, C.A., T.G. Nieh, T. Yamasaki, “Hal–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel”, Scripta Mater.,46, 735-740.(2002).

X.P. Li, H.L. Seet, J. Fana, J.B. Yia, “Electrodeposition and characteristics of Ni80 Fe20 /Cu composite wires”journal of magnetism and magnetic material , 111–116(2006).

Yichun Liu, Lei Liu, Jiake Li, Bin Shen,Wenbin Hu “Effect of 2-butyne-1,4-diol on the microstructure and internal stress of
electrodeposited Fe–36wt.%Ni alloy films” Journal of Alloys and Compounds 478 ,750–753(2009).

Yang, B., H. Vehoff, “Grain size effects on the mechanical properties of nanonickel examined by nanoindentation”, Materials Science and Engineering :A, 400-401, 467-470(2005).

(II)胡啟章,“電化學原理與方法“,五南圖書出版,2002。

劉長宏,林昭任,“應用超臨界二氧化碳電鍍碲化鉍熱電薄膜之研 究 ”,國立中正大學化學工程學系,2008。

蔡鎮安,林昭任,“應用超臨界二氧化碳電鍍碲化鉍熱電奈米線之 研究”,國立中正大學化學工程學系,2009。

陳洋元,高效率新穎奈米熱電材料之研發及其於再生能源之應用。

朱旭山, “熱電材料與元件之發展與應用”, 工業材料雜誌, 220, 93,2005
郭永綱,熱電材料應用簡介。

郭世偉,廖建能,Bi/Te複合薄膜濺鍍製程暨其熱電性質研究,國立清華大學材料科學工程學系,2004。

曾信彰,界面活性劑之原理及應用。


吳宏偉,洪政源,“淺談光子晶體理論及其在微波濾波器之應用” ,奈米通訊 ,第10卷第 3 期,2003 。

章本華,“光子晶體、電磁能隙基本原理與在連接器產業的應用” , 工業材料雜誌,第 228期 94 年 12月。

A. S. Dimitrov, K. Nagayama,“Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces” , Langmuir ,12,1303-1311(1996).

A. V. Blaaderen, R. Ruel, and P. Wiltzius,“Monodispersed Colloidal Spheres: Old Materials with New Applications,” , 85,321-324(1997).

A.L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, G. A. Ragoisha,“Electrophoretic Deposition of Latex-Based 3D Colloidal,” Chem. Mater. , 12,272(2000).

A. J. Yin, J. Li, W. Jian, A. J. Bennett, J. M. Xu, “Fabrication of Highly Ordered Metallic Nanowire Arrays by Electrodeposition,” Applied Physics Letters, 79(7), 1039-1041, (2001).

Akram Boukai, Ke Xu, and James R. Heath, “Size-Dependent Transport and Thermoelectric Propeties of individual Polycrystalline Bismuth nanowires”, Adv. Mat. 18, 7, 864-869(2006).


Ben-Yehuda, O., Gelbstein, Y., Dashevsky, Z., Shuker, R., and Dariel, M.P., Improved power factor of Bi0.4Sb1.6Te3 – based samples prepared by cold pressing and sintering. Thermoelectrics, 2006. ICT International Conference. 6-10 Aug (2006).

Budevski, E., G. Staikov, W.J. Lorenz, “Electrocrystallization Nucleation and growth phenomena”, Electrochim. Acta., 45, 2559-2574(2000).

Chaouni, H., J.Bessieres, A. Modaressi, J.J. Heizmann, “Texture Prediction of Bi2Te3 Electroplated Layers Using Hartman’s Theory of Crystal Growth”, J. Appl. Electrochem., 30, 419-427(2000).

El-Sayed, H. E. A., Structural and optical properties of thermally
evaporated Bi2Te3 films. Applied Surface Science, 250 ,70 (2005).

Feng Xiao, Bongyoung Yoo, Kyu-Hwan Lee, and Nosang V Myung, “Electro-transport studies of Electrodeposited (Bi1-xSbx)2Te3 Nanowires”, Nanotechnology,335203(2007).

G. Chen, S. G. Volz, T. Borca-Tasciuc, T. Zeng, D. Song, K. L. Wang, and M. S. Dresselhaus, Mater. Res. Soc. Symp. Proc. 545, 357(1999).

G. Feiertag et.al. , “Fabrication of photonic crystals by deep x-ray lithography” ,Appl. Phys. Lett. ,71 ,1441-1443(1997).

Hamaker HC. Formation of deposition by electrophoresis. Trans Farad Soc ,36,279–83(1940).

H.Chaouni, , P. Magri, , J. Bessieres, C. Boulanger, J.J. Heizmann,” Texture of electroplated coatings of copper and bismuth telluride”, Materials Science Forum, 157-6, 1371-1378, (1994).

H. J. Goldsmid, Applications of Thermoelectricity, John Wiley / Sons Inc, New York, (1960).


Hochbaum, Rong Fan, Rongrui He, and Peidong Yang, “Controlled Growth of Si Nanowire Arrays for Device Integration”, Nano Letters, 5, 3, p 457-460(2005).

Irving B. Cadoff, Thermoelectric Materials and Devices, Chapman Hall, New York, (1960).

Ilaria Corni, Mary P. Ryan, Aldo R. Boccaccini,“Electrophoretic deposition: From traditional ceramics to nanotechnology” Journal of the European Ceramic Society 28 1353–1367(2008).

J.SJOLLEMA,H.J.BUSSCHER,“Deposition of Polystyrene Latex Particles toward Polymethylmethacrylate in a Parallel Plate Flow Cell” Journal of Colloid and Interface Science, Vol. 132(1989).

J. P. Hoogenboom, and D. Derks,“Stacking faults in colloidal crystals grown by sedimentation” J. Chem. Phys. 117,11320-11328(2002).

K. Kanamura, J. Hamagami,“Innovation of novel functional material processing technique by using electrophoretic deposition process” ,Solid State Ionics,172 ,303-308(2004).

Laudise, R. A., Sunder, W. A., Barns, R. L., Cava, R. J., and Kometani, T. Y., Czochralski growth of doped single-crystals of Bi2Te3. Journal of Crystal Growth, 53 (1989).

Laxmidhar Besra,Meilin Liu,“A review on fundamentals and applications of electrophoretic deposition (EPD)” Progress in Materials Science 52,1–61(2007).
M. Holgado, F. Garcı´a-Santamarı´ A. Blanco, M. Ibisate, A. Cintas, H. Mı´guez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lo´pez, “Electrophoretic Deposition To Control Artificial Opal Growth,” Langmuir, 15 4701-4704(1999).

Nielsch, K., F. Muller, A.P. Li, U. Gosele, “Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition”, Adv. Mater., 12, 582-586(2000).

Q. Zhou, P. Dong,“Progress in Three-Dimensionally Ordered Self-Assembly of Colloidal SiO2 Particles” ,China Particuology, 1,124-130(2003).

S. Ross,“Sedimentation of Crystals in Hard-Sphere, Monodisperse Colloidal Suspensions” ,Howard University. Washington. ,(2003).

S. N. Heavens,“Electrophoretic deposition as a processing route for ceramics” ,Advanced Ceramic Process and Technology,7,255-283(1990).

Sook Hyun Kim ,Byung Ki Park,“Solvothermal synthesis of Bi Te nanotubes by the interdiffusion of Bi and Te metals” Materials Letters, 64, 938-941(2010).

S. Shoji and S. Kawata ,“Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin” , Appl. Phys. Lett. 76,2668-2670(2000).
Takahashi, M., Y. Kayou, K. Nagata, S. Futura, “Composition and Conductivity of Electrodeposited Bi-Te Alloy Films”, Thin Solid Films, 240, 70-72(1994).

Takahashi,M., M. Kojima, S. Sato, N. Ohnisi, A. Nishiwaki, K. Wakita, T. Miyuki, S. Ikeda, Y. Muramstsu,“Electric and Thermoelectric Properties of Electrodeposited Bismuth Telluride(Bi2Te3)Films”, J. appl. physi, 96, 5882-5587(2004).

Y. Xia, and B. Gates,“Monodispersed Colloidal Spheres: Old Materials with New Applications” ,Adv. Mater.,12,693-713(2000).

Yamashita , O., Tomiyoshi, S., and Makita, K., Bismuth telluride compounds with high thermoelectric figures of merit. Journal of Applied Physics, 368 (2003).

Yang, J. Y., Fan, X. A., Chen, R. G., Zhu, W., Bao, S. Q., Duan, X. K., Consolidation and thermoelectric properties of n-type bismuth telluride based materials by mechanical alloying and hot pressing. Journal of Alloys and Compounds, 416, 270 (2006).

Yu Tong , Fajun Yi,, Lisheng Liu, Pengcheng Zhai, Qingjie Zhang,“Molecular dynamics study of mechanical properties of bismuth telluride nanofilm” Physica B (2010).

Zhao, L. D., Zhang, B. P., Li, J. F., Zhang, H. L., and Liu, W. S., Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sciences, 10 ,651 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top