(34.234.76.59) 您好!臺灣時間:2019/01/16 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:林政頤
研究生(外文):Cheng-yi lin
論文名稱:GaN相關材料之非簡併四波混頻光學特性研究
論文名稱(外文):Optical Properties of GaN Related Materialsby Using Non-Degenerate Four Wave Mixing
指導教授:王祥辰
指導教授(外文):Hsiang-Chen Wang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文出版年:2010/07/
畢業學年度:98
語文別:英文
論文頁數:57
中文關鍵詞:氮化鎵四波混頻
外文關鍵詞:four wave mixingGaN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:506
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,首先我們提出一種氮化鎵奈米柱創新和優化的生長模式。我們先在 c面藍寶石基板上沉積GN層接著沉積二氧化矽層。接著使用奈米壓印微影術在二氧化矽層上分別產生直徑250,300,450,600納米的圓孔. 藉著透射電子顯微鏡圖像顯示出由奈米柱孔洞的生長能停止穿透式錯位穿過NC層。另一方面,我們藉由時間解析皮秒穿透光柵和時間積分光激發螢光光譜來研究樣品的光電及光學性質。當柱間直徑從 250到450納米我們觀察到載子生命期約增加3-4倍。這個數據顯示了樣品缺陷密度約降低了4倍左右。

其次,我們敘述了綠光氮化銦鎵 /氮化鎵發光二極體的載子動態。我們比較兩個結構相同但藍寶石基板表面粗化程度不同的樣品。樣品A的藍寶石基板結構較樣品B光滑。變溫光激發螢光光譜顯示,樣品B的頻譜發光強度比樣品A高。另一方面,時間解析四波混頻則藉由改變光柵週期和觀察光柵衰減時間得知了載子的擴散係數和生命期。結果顯示樣品B的擴散係數比樣品A小兩倍左右。由這觀察結果可知樣品B的量子井結構對載子具有較佳的束縛性而使它具有較好的發光效率。
In the research, firstly, we present further growth optimization and innovative characterization of pattern-grown GaN nanocolumns(NC). Nanoimprint lithography was applied to open circular holes of 250, 300, 450, 600 nm in diameter on the SiO2 layer, deposited on the GaN layer on c-plane sapphire template. Transmission Electron Microscopy images showed that in such samples, the small hole for NC growth could stop the propagation of threading dislocation (TD) into an NC. On the other hand, photoelectrical and optical properties of the overgrown layers and a reference sample were investigated by time-resolved picosecond transient grating (TG) technology and time-integrated photoluminescence (PL). We note 3-4 fold increase of carrier lifetime in the overgrown epilayers when the diameter of colums varied from 250 to 450 nm. This feature is a clear indication of a ~ 4-fold reduced defect density.

Secondly, we report on carrier dynamics in the green InGaN/GaN light emitting diodes. Two LEDs with the same structures grown on pattern sapphire substrates with different surface roughness were prepared for comparisons (samples A and B). The sample A had the smoother sapphire surface than the sample B. Then, temperature-dependent photoluminescence results revealed that the emitting efficiency of the sample B is higher than that of the sample A. On the other hand, by time-resolved four-wave mixing to vary grating spatial periods and to detect its decay times, we measured carrier diffusion and lifetime. Consequently, it showed that the determined diffusion coefficient in the upper InGaN QWs of sample B was twice smaller than that in the sample A. We knew that the better carrier confinement in the sample B correlated with the higher light emission efficiency in it.
Contents
Abstract....................................................................................................I
List of Figures..................................................................................V
Chapter1 Introduction

1-1 Introduction of GaN-related Materials................................................1

1-2 The Optical Characteristics of GaN-related Materials........................1

1-3 Brief Introduction of FWM Technology.............................................2

1-4 Research Motivation and Purpose.......................................................3
1-4-1 GaN-related Material Nanostructure......................................3
1-4-2 InGaN/GaN Multiple Quantum Wells Based on Different
Polishing Processes of Sapphire Substrate............................4
.
Chapter2 Principle of optical Measurement technology

2-1 Four Wave Mixing
2-1-1 The Brief Introduction of Four Wave Mixing.......................8
2-1-2 FWM Experimental Setup.....................................................10

2-2 Photoluminescence
2-2-1 Introduction of Photoluminescence.......................................11
2-2-2 Photoluminescence Experimental Setup...............................13

2-3 The Comparison of FWM and PL Technology.......................................13
Chapter3 Optical Properties on Coalescence Overgrowth of GaN Nanocolumns on Sapphire
3-1 Introduction............................................................................................18
3-2 Growth Conditions and TEM ﹠SEM images of the
Growth Samples......................................................................................19

3-3 Photoluminescence and Four Wave Mixing Results..............................22

Chapter4 Optical Properties on InGaN/GaN Multiple Quantum Wells Based on Different Polishing Processes of Sapphire Substrate
4-1 Introduction........................................................................................ 31
4-2 Sample Structures and Experimental Procedures...............................32
4-3 AFM Images of the Sapphire Substrates.............................................33
4-4 Photoluminescence and Four Wave Mixing Results...........................33
Chapter5 Conclusion
5-1 Conclusion of GaN nanocolumns on Sapphire...................................41
5-2 Conclusion of InGaN/GaN Multiple Quantum Wells.........................41
Reference…............................................................................................43
Reference
[1] H.Okumura, K.Ohta, G.Feuillet, K.Balakrishnan, H.Hamaguchi, P.Hacke, S.Yoshida, J.Cryst. Growth. 178, 113 (1997)
[2] H. J. Eichler, P. Gunter, and D. Pohl, Light-Induced Dynamic Gratings, Springer Series in Optical Sciences Vol. 50, (Springer, Berlin, 1986). Also special issue on dynamicgratings and Four wave mixing, IEEE J.of Quantum Electronics 22, No8, 1986.
[3] R. K. Jain and M. B. Klein, “Degenerate four wave mixing in semiconductors” , in:Optical Phase Conjugation, edited by R. A. Fisher (Acad. Press, New York, 1983),Chap.10.
[4] Up-to-date review on optical nonlinearities in semiconductors is given in
Nonlinear Optics in Semiconductors, vols. I & II, eds. E. Garmire and A. Kost,
Semiconductors and Semimetals, Vol.59 (Acad. Press, New York, 1999).
[5] J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor
Nanostructures (Springer, Berlin, 1999).
[6] Special Issue on Dynamic Gratings and Four-Wave Mixing, IEEE J. Quant. Electr.QE-22, No. 8 (1986).
[7] J. E. Van Nostrand, K. L. Averett, R. Cortez, J. Boeckl, C. E. Stutz, N. A. Sanford, A. V. Davydov, and J. D. Albrecht, J. Cryst. Growth 287 (2006) 500.
[8] K. Kouyama, M. Inoue, Y. Inose, N. Suzuki, H. Sekiguchi, H. Kunugita, K. Ema, A. Kikuchi, and K. Kishino, J. Lumin. 128 (2008) 969.
[9] L. Cerutti, J. Ristiæ, S. Fernández-Garrido, E. Calleja, A. Trampert, K. H. Ploog, S. Lazic, and J. M. Calleja, Appl. Phys. Lett. 88 (2006) 213114.

[10] Y. Inoue, T. Hoshino, S. Takeda, K. Ishino, A. Ishida, H. Fujiyasu, H. Kominami, H. Mimura, Y. Nakanishi, and S. Sakakibara, Appl. Phys. Lett. 85 (2004) 2340.
[11] Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, Appl. Phys. Lett. 85 (2004) 5718.
[12] M. P. Halsall, J. E. Nicholls, J. J. Davies, B. Cockayne, P. J. Wright, J. Appl. Phys. 71 (2), 15 January 1992
[13] A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, J. Appl. Phys. 81 (9), 1 May 1997
[14] A. F. Wright, J. Appl. Phys. 82 (6), 15 September 1997
[15] Fabio Bernardini, Vincenzo Fiorentini, David Vanderbilt, PHYSICAL REVIEW B VOLUME 56, NUMBER 16
[16] C. A. Hoffman, K. Jarašiūnas, H. J. Gerritsen, and A. Nurmikko, Appl.
Phys. Lett. 33, 536 _1978_.
[17] G.P. Yablonskii, A. L. Gurskii, V. N. Palvlovski, E.V. Lutsenko, V.Z. Zubialevich,T.S. Shulga, A. I. Stognij, H. Kalisch, A. Szymakowski, R. H. Jansen, A. Alam, B.Schineller, and M. Heuken, Journal Cryst. Growth 275, e1733 (2005).
[18] S. D. Hersee, X. Sun, and X. Wang, Nano Lett. 6 (2006) 1808.
[19] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 71 (1997) 2572.
[20] G. E. Bunea, W. D. Herzog, M. S. Unlu, B. B. Goldberg, and R. J. Molnar, Appl. Phys. Lett. 75 (1999) 838.
[21] T. Malinauskas, R. Aleksiejunas, K. Jarašiunas, B. Beaumontb, P. Gibartb, A. Kakanakova-Georgievac, E. Janzenc, D. Gogovac, B. Monemarc, M. Heukend, J. Cryst. Growth 300 (2007) 223.
[22] T. Malinauskas, K. Jarašiunas, S. Miasojedovas, S. Juršenas, B. Beaumont, and P. Gibart, Appl. Phys. Lett. 88 (2006) 202109.
[23] E. Frayssinet, B. Beaumont, J.P. Faurie, P. Gibart, Zs. Makkai, B.Pecz, P. Lefebvre, P. Valvin, MRS Internet J. Nitride Semicond. Res. 7 (2002) 8.
[24] F. Z. Bougrioua, P. Gibart, E. Calleja, U. Jahn, A. Trampert, J. Ristic, M. Utrera, G. Nataf, J. Cryst. Growth 309 (2007)113.
[25] T. Y. Tang et al,. J. Appl. Phys. 105 (2009) 023501.
[26] K.Jarasiunas, R. Aleksiejunas, T. Malinauskas, M. Sumacrdzcaronius, S. Miasojedovas, S. Jurscaronedotnas, A. Zcaronukauskas, R. Gaska, J. Zhang, M. S. Shur, J. W. Yang, E. Kuokscarontis, M. A. Khan, Phys. stat. sol. (a) 202 (2005) 820.
[27] K.Jarasiunas, R. Aleksiejunas, T. Malinauskas, M. Sumacrdzcaronius, S. Miasojedovas, E. Frayssinet, B. Beaumont, J.-P. Faurie, P. Gibart, Phys. stat.
sol. (a) 202 (2005) 566.
[28] T. Malinauskas, R. Aleksiejunas, K. Jarašiunas, B. Beaumont, P. Gibart, A. Kakanakova-Georgieva, E. Janzen, D. Gogova, B. Monemar, M. Heuken, J. Cryst. Growth 300 (2007) 223.
[29] K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov and V. Dmitriev, and H. J. Gerritsen, Rev. Sci. Inst. 78 (2007) 033901.
[30] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S.P. DenBarrs, Appl. Phys. Lett. 73 (1998)1370.
[31] P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71 (1997) 569.
[32] Chih-Chung Teng, Hsiang-Chen Wang, Tsung-Yi Tang, Yen-Cheng Lu, Yung-Chen Cheng, C. C. Yang, Kung-Jen Ma, Wei-Ming Wang, Chi-Wei Hsu, and L. C. Chen, J. Crystal Growth, 288 (2006) 18.
[33] R. Aleksiejunas, M. Sudžius, V. Gudelis, T. Malinauskas, K. Jarašiunas, Q. Fareed, R. Gaska, M. S. Shur, J. Zhang, J. Yang, E. Kuokštis, and M. A. Khan, Phys. stat. sol. (c) 7 (2003) 2686.
[34] K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, S. Miasojedovas, S. Jursenas , A. Zukauskas, R. Gaska, J. Zhang, M. S. Shur, J. W. Yang, E. Kuokstis, M. A. Khan, Phys. stat. sol. (a) 202 (2005) 820.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔