跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張馨文
研究生(外文):Hsing-Wen Chang
論文名稱:矯正前後骨密度的變化
論文名稱(外文):Research on the bone density change during orthodontic treatment
指導教授:許瑞廷許瑞廷引用關係
指導教授(外文):Jui-Ting Hsu
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:牙醫學系碩士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:72
中文關鍵詞:矯正骨密度牙科用電腦斷層掃描
外文關鍵詞:orthodonticsbone densityCBCT
相關次數:
  • 被引用被引用:2
  • 點閱點閱:433
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
齒顎矯正利用牙齒的移動來達到改變咬合及牙齒排列的目的。矯正的機制、力量大小、方向、牙周支持組織中骨密度和骨重塑的過程都會影響牙齒移動方向和距離。在過去的研究中,已經發現骨密度會影響矯正的速度,並且由傳統的組織切片證明在矯正牙齒移動的方向上的壓力側會造成骨密度吸收,相反方向的張力側會造成骨沉積的現象。由最新的有限元素分析法也可以從電腦中模擬矯正期間骨頭和牙周韌帶的變化。但對於真實人體上的骨生理並沒有實際的臨床人體試驗數據。在牙科用電腦斷層掃描的發明下,減少了斷層掃描影像的輻射劑量,以方便利用影像來做判讀及分析的工作。因此本實驗可以利用降低輻射的牙科用電腦斷層掃描影像實際運用在真實人體身上來探討微觀下骨頭在矯正前後的密度變化。本實驗就是利用牙科用電腦斷層掃描影像來探討牙根周圍骨密度在矯正前後變化的情形與牙齒移動方向的相關性。

本實驗利用牙科用電腦斷層掃描儀器(i-CAT)照射八位中國醫藥大學矯正科患者口內上顎右上犬齒到左上犬齒六顆前牙在矯正前和單純leveling and alignment七個月後牙根周圍骨密度,並用Mimics軟體將測量的六顆前牙每顆牙分成上、中、下三段,每一段又分成頰、顎、近心、遠心面,分別記錄,再比較前後兩次測量結果分析牙根周圍骨密度改變情形,與牙齒移動方向的相關性。

本實驗結果發現在矯正七個月後牙根周圍骨密度會降低。並且有57%的牙齒在牙齒移動的壓力側方向上的骨密度改變量會大於其他面,此結論符合矯正壓力側會造成骨吸收的理論。


In orthodontic theory, the ideal occlusion can be achieved by bone remodeling during orthodontic treatment. In the previous studies, most of them are histological studies on animal or human bone blocks. In the recent years, Finite Element Method (FEM) has adopted to show the details of bone remodeling during orthodontic treatment, however, none of them can exactly prove the real bone biology in the human body. In this study, we used dental cone beam computed tomography (CBCT) to evaluate the bone biology during orthodontic treatment. The most advantage of CBCT is that its radiation dose is much less than that of computed tomography. Therefore, we can get the bone density data in 7 months to analyze the bone density variations during orthodontic treatment. The purposes of this study were (a) to measure the variations of bone density before and after the orthodontic leveling and alignment, and (b) to find the correlation between the bone density and direction of tooth movement. Eight patients were selected from the Department of Orthodontics, China Medical University Hospital, Taiwan in this study. Six upper anterior teeth from canine to canine were chosen, and each tooth was divided into three levels (coronal, middle, apex) and four parts (buccal, palatal, mesial, and distal). The above data were collected before and after the orthodontic treatment by CBCT machine (i-CAT), and were further detected via the Mimics software approach.
The results indicated that (1) the bone density around these teeth decreased during orthodontic treatment, and (2) the reducing amount of the bone density were more obviously on the direction of tooth movement in almost 57% of the observed teeth. The discoveries of this study coincided with “the pressure-tension theory”, which stated the bone resorption mainly occurred at the pressured side.

目錄
中文摘要.........................................................................................................................I
英文摘要.......................................................................................................................II
誌謝..............................................................................................................................III
目錄..............................................................................................................................IV
圖目錄.......................................................................................................................XIII
表目錄...........................................................................................................................X

第一章 前言 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 矯正造成牙齒移動的時間分期 3
1.2.1.1依牙齒移動速率分期 3
1.2.1.2依矯正施力期間分期 3
1.2.2 矯正造成牙齒移動的機制 4
1.2.2.1The pressure-tension theory 5
1.2.2.2 The bone-bending theory 5
1.2.2.3 Bioelectric signals in orthodontic tooth movement 6
1.2.2.4牙齒移動之生化反應機制 6
1.2.3 矯正期間齒槽骨周圍組織的變化 8
1.2.3.1 骨重塑的機制 9
1.2.3.2 牙根重塑 10
1.2.3.3牙周韌帶重塑 10
1.2.4 齒槽骨骨質的分類 11
1.2.5牙齒移動與牙根周圍骨密度及施力大小的關係 12
1.2.5.1 牙根周圍骨密度對牙齒移動的影響 12
1.2.5.2 施力力量大小對牙齒移動的影響 13
1.2.6骨密度的測量方式 14
1.2.6.1雙能量電子吸收儀 14
1.2.6.2 超音波 14
1.2.6.3 電腦斷層掃描 15
1.2.6.4 牙科用電腦斷層掃描(CBCT) 15
1.2.7 CBCT的優缺點與在牙科之應用 16
1.2.7.1 CBCT的優點 16
1.2.7.2 CBCT對金屬影像散射程度比較 17
1.2.7.3 CBCT的精準度探討 17
1.2.7.4 CBCT與CT的輻射劑量比較 17
1.2.7.5 CBCT在牙科的應用 19
1.3研究動機及目的 19

第二章 研究材料與方法 21
2.1研究流程概述 21
2.2材料 22
2.2.1病患的來源和條件 22
2.2.2 病患電腦斷層掃描影像取得之標準化 23
2.3矯正器和矯正線的介紹 23
2.4 CBCT儀器(I-CAT)掃描參數設定 24
2.5 牙根周圍骨密度測量方式 24
2.6 CBCT準確度驗證 36
2.6.1儀器精準度驗證 36
2.6.1.1 標準假體於矯正前與矯正後之驗證 36
2.6.1.2 對照組前後驗證 37
2.6.2 量測軟體驗證 37
2.6.3 組內差異驗證 37
2.6.4 組間差異驗證 37
2.7 統計分析 37

第三章 結果 39
3.1患者矯正前後齒顎排列差異 39
3.2患者矯正前後牙根周圍骨密度的改變率 41
3.3患者矯正前牙根周圍分區骨密度 46
3.4患者矯正後牙根周圍分區骨密度 50
3.5患者矯正前後牙根周圍分區骨密度改變量與矯正後牙齒移動方向間關係53

第四章 討論 56
4.1 CBCT與其他測量骨量工具及方法的探討 56
4.2假體物選擇與量測方式準確度之探討 57
4.2.1標準假體的選擇 57
4.2.2比較沒有做矯正者的生理與矯正者的不同 57
4.3矯正後牙根周圍骨密度會變低之可能性探討 57
4.4牙齒移動方向與周圍骨密度影響相關性之探討 59
4.4.1 pressure and tension theory vs Melsen 提出之理論 59
4.4.2牙根分上、中、下三段與pressure and tension theory之相關性 60
4.4.3牙根分頰、顎、近心、遠心四面與pressure and tension theory之相關性 60
4.4.4矯正後牙根周圍骨密度有增加情形之探討 61
4.4.5不同牙齒與pressure and tension theory之相關性 62
4.5本研究之限制 62
4.5.1樣本數量的限制 62
4.5.2單牙根的限制 63
4.5.3骨重塑過程的限制 63
4.5.4目前尚無追蹤樣本的限制 63

第五章 結論與未來展望 64
5.1結論 64
5.2未來展望 64

參考文獻 65


圖目錄
圖1-1矯正、牙齒與牙周支持組織(齒槽骨的關係) 1
圖1-2牙齒移動與齒槽骨壓力側吸收,張力側沉積 8
圖1-3 LEKHOLM AND ZARB 骨密度的分類 11
圖1-4 MICRO CT下牙根被吸收的情形 13
圖2-1 照射CBCT影像的時間 21
圖2-2 流程圖 22
圖2-3 病人照射CONE BEAM CT時的頭部位置 23
圖2-4 重新定位之設定 25
圖2-5 重新定位完成 25
圖2-6 測量部位定義 26
圖2-7牙根周圍定義 27
圖2-8 紅色為頰側 藍色為顎側 粉紅色為近心側 綠色為遠心側 28
圖2-9 利用軟體RESLICE PROJECT將牙齒重新定位 28
圖2-10找出牙根尖點做一連線並設定參數 29
圖2-11利用THRESHOLDING的功能框住牙根,排除牙周韌帶 29
圖2-12利用CROP MASK框住想要測量的牙根 30
圖2-13利用EDIT MASK中的ERASE擦去不接近牙周韌帶的部分 30
圖2-14利用EDIT MASK中的DRAW填補牙周韌帶空缺,控制只有1PIXEL的體積 31
圖2-15利用CAVITY FILL填滿內層 31
圖2-16利用MORPHOLOGY OPERATIONS中DILATE 3 個 PIXEL 32
圖2-17利用BOOLEAN OPERATIONS得到待量測的牙根周圍骨範圍 32
圖2-18排除非海綿骨HU值範圍以下的組織或是空氣 33
圖2-19找出欲測量的牙根周圍是否有密度小於海綿骨的組織或空氣 33
圖2-20 找出HU範圍在-1024 到148間的密度區塊 34
圖2-21得到可以確定是牙根周圍有海綿骨密度以上的骨頭範圍 34
圖2-22利用CROP MASK功能將牙根周圍分成四份 35
圖2-23將牙根分成頰側、顎側、近心側、遠心側以不同顏色標示 35
圖2-24完成並記錄 36
圖3-1 PATIENT #1矯正前後齒顎排列差異。左:矯正前,右:矯正後 39
圖3-2 PATIENT #2矯正前後齒顎排列差異。左:矯正前,右:矯正後 39
圖3-3 PATIENT #3矯正前後齒顎排列差異。左:矯正前,右:矯正後 39
圖3-4 PATIENT #4矯正前後齒顎排列差異。左:矯正前,右:矯正後 40
圖3-5 PATIENT #5矯正前後齒顎排列差異。左:矯正前,右:矯正後 40
圖3-6 PATIENT #6矯正前後齒顎排列差異。左:矯正前,右:矯正後 40
圖3-7 PATIENT #7矯正前後齒顎排列差異。左:矯正前,右:矯正後 40
圖3-8 PATIENT #8矯正前後齒顎排列差異。左:矯正前,右:矯正後 41
圖3-9 PATIENT #1矯正前後牙根周圍骨密度的改變率 41
圖3-10 PATIENT #2矯正前後牙根周圍骨密度的改變率 42
圖3-11 PATIENT #3矯正前後牙根周圍骨密度的改變率 42
圖3-12 PATIENT #4矯正前後牙根周圍骨密度的改變率 43
圖3-13 PATIENT #5矯正前後牙根周圍骨密度的改變率 43
圖3-14 PATIENT #6矯正前後牙根周圍骨密度的改變率 44
圖3-15 PATIENT #7矯正前後牙根周圍骨密度的改變率 44
圖3-16 PATIENT #8矯正前後牙根周圍骨密度的改變率 45
圖4-1矯正前後剖面圖與矯正前後依骨性不動點之疊影 61
圖4-2牙齒移動量改變不大之矯正前後齒顎排列差異 62

表目錄
表1-1 CBCT與CT輻射劑量之比較 18
表3-1 PATIENT #1矯正前牙根周圍分區骨密度 46
表3-2 PATIENT #2矯正前牙根周圍分區骨密度 46
表3-3 PATIENT #3矯正前牙根周圍分區骨密度 47
表3-4 PATIENT #4矯正前牙根周圍分區骨密度 47
表3-5 PATIENT #5矯正前牙根周圍分區骨密度 48
表3-6 PATIENT #6矯正前牙根周圍分區骨密度 48
表3-7 PATIENT #7矯正前牙根周圍分區骨密度 49
表3-8 PATIENT #8矯正前牙根周圍分區骨密度 49
表3-9 PATIENT #1矯正後牙根周圍分區骨密度 50
表3-10 PATIENT #2矯正後牙根周圍分區骨密度 50
表3-11 PATIENT #3矯正後牙根周圍分區骨密度 51
表3-12 PATIENT #4矯正後牙根周圍分區骨密度 51
表3-13 PATIENT #5矯正後牙根周圍分區骨密度 51
表3-14 PATIENT #6矯正後牙根周圍分區骨密度 52
表3-15 PATIENT #7矯正後牙根周圍分區骨密度 52
表3-16 PATIENT #8矯正後牙根周圍分區骨密度 52
表3-17 PATIENT #1矯正前後牙根周圍分區骨密度改變量與矯正後牙齒移動方向 53
表3-18 PATIENT #2矯正前後牙根周圍分區骨密度改變量與矯正後牙齒移動方向 53
表3-19 PATIENT #3矯正前後牙根周圍分區骨密度改變量與矯正後牙齒移動方向 54
表3-20 PATIENT #4矯正前後牙根周圍分區骨密度改變量與矯正後牙齒移動方向 54
表3-21 PATIENT #5矯正前後牙根周圍分區骨密度改變量與矯正後牙齒移動方向 54
表3-22 PATIENT #6矯正前後牙根周圍分區骨密度改變量與矯正後牙齒移動方向 55
表3-23 PATIENT#7矯正前後牙根周圍分區骨密度改變量與矯正後牙齒移動方向 55
表3-24 PATIENT #8矯正前後牙根周圍分區骨密度改變量與矯正後牙齒移動方向 55
表4-1 牙根分段符合比率 60



Ahlqvist, J., Eliasson, S. and Welander, U., 1983. The cephalometric projection. Part II. Principles of image distortion in cephalography. Dentomaxillofac Radiol 12, 101-8.
Aranyarachkul, P., Caruso, J., Gantes, B., Schulz, E., Riggs, M., Dus, I., Yamada, J.M. and Crigger, M., 2005. Bone density assessments of dental implant sites: 2. Quantitative cone-beam computerized tomography. Int J Oral Maxillofac Implants 20, 416-24.
Attal, U., Blaushild, N., Brin, I. and Steigman, S., 2001. Histomorphometric study of the periodontal vasculature during and after experimental tipping of the rat incisor. Arch Oral Biol 46, 891-900.
Bassett, C.A. and Becker, R.O., 1962. Generation of electric potentials by bone in response to mechanical stress. Science 137, 1063-4.
Baumrind, S., 1969. A reconsideration of the propriety of the" pressure-tension" hypothesis. American journal of orthodontics 55, 12.
Becker, W., Hujoel, P.P., Becker, B.E. and Willingham, H., 2000. Osteoporosis and implant failure: an exploratory case-control study. J Periodontol 71, 625-31.
Bergersen, E.O., 1980. Enlargement and distortion in cephalometric radiography: compensation tables for linear measurements. Angle Orthod 50, 230-44.
Burstone, C.J. and Tanne, K., 1986. [Biomechanical basis of tooth movement]. Nippon Kyosei Shika Gakkai Zasshi 45, 541-51.
Cann, C.E., 1988. Quantitative CT for determination of bone mineral density: a review. Radiology 166, 509-22.
Cattaneo, P.M., Dalstra, M. and Melsen, B. (2005). The finite element method: a tool to study orthodontic tooth movement, International and American Associations for Dental Research. 84: 428-433.
de Oliveira, R.C., Leles, C.R., Normanha, L.M., Lindh, C. and Ribeiro-Rotta, R.F., 2008. Assessments of trabecular bone density at implant sites on CT images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105, 231-8.
Epker, B.N. and Frost, H.M., 1965. A histological study of remodeling at the periosteal, haversian canal, cortical endosteal, and trabecular endosteal surfaces in human rib. Anat Rec 152, 129-35.
Eriksen, E.F., Mosekilde, L. and Melsen, F., 1985. Trabecular bone remodeling and bone balance in hyperthyroidism. Bone 6, 421-8.
Eriksen, E.F., Mosekilde, L. and Melsen, F., 1986. Trabecular bone remodeling and balance in primary hyperparathyroidism. Bone 7, 213-21.
Fanuscu, M.I. and Chang, T.L., 2004. Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible. Clin Oral Implants Res 15, 213-8.
Frost, H.M., 1969. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res 3, 211-37.
Fuhrmann, R.A., Schnappauf, A. and Diedrich, P.R., 1995. Three-dimensional imaging of craniomaxillofacial structures with a standard personal computer. Dentomaxillofac Radiol 24, 260-3.
Fullmer, J.M., Scarfe, W.C., Kushner, G.M., Alpert, B. and Farman, A.G., 2007. Cone beam computed tomographic findings in refractory chronic suppurative osteomyelitis of the mandible. Br J Oral Maxillofac Surg 45, 364-71.
Grayson, B., Cutting, C., Bookstein, F.L., Kim, H. and McCarthy, J.G., 1988. The three-dimensional cephalogram: theory, technique, and clinical application. Am J Orthod Dentofacial Orthop 94, 327-37.
Guerrero, M.E., Jacobs, R., Loubele, M., Schutyser, F., Suetens, P. and van Steenberghe, D., 2006. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement. Clin Oral Investig 10, 1-7.
Harris, D.A., Jones, A.S. and Darendeliler, M.A., 2006. Physical properties of root cementum: part 8. Volumetric analysis of root resorption craters after application of controlled intrusive light and heavy orthodontic forces: a microcomputed tomography scan study. Am J Orthod Dentofacial Orthop 130, 639-47.
Hilgers, M.L., Scarfe, W.C., Scheetz, J.P. and Farman, A.G., 2005. Accuracy of linear temporomandibular joint measurements with cone beam computed tomography and digital cephalometric radiography. Am J Orthod Dentofacial Orthop 128, 803-11.
Hill, P.A., 1998. Bone remodelling. Br J Orthod 25, 101-7.
Hirsch, E., Wolf, U., Heinicke, F. and Silva, M.A., 2008. Dosimetry of the cone beam computed tomography Veraviewepocs 3D compared with the 3D Accuitomo in different fields of view. Dentomaxillofac Radiol 37, 268-73.
Holberg, C., Steinhauser, S., Geis, P. and Rudzki-Janson, I., 2005. Cone-beam computed tomography in orthodontics: benefits and limitations. J Orofac Orthop 66, 434-44.
Homolka, P., Beer, A., Birkfellner, W., Nowotny, R., Gahleitner, A., Tschabitscher, M. and Bergmann, H. (2002). Bone Mineral Density Measurement with Dental Quantitative CT Prior to Dental Implant Placement in Cadaver Mandibles: Pilot Study 1, RSNA. 224: 247-252.
Hounsfield, G.N., 1980. Nobel Award address. Computed medical imaging. Med Phys 7, 283-90.
Hvid, I., Bentzen, S.M., Linde, F., Mosekilde, L. and Pongsoipetch, B., 1989. X-ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens. J Biomech 22, 837-44.
Hwang, H.S., Hwang, C.H., Lee, K.H. and Kang, B.C., 2006. Maxillofacial 3-dimensional image analysis for the diagnosis of facial asymmetry. Am J Orthod Dentofacial Orthop 130, 779-85.
Ito, M., 2005. [Can bone quality be assessed non-invasively?--Imaging--]. Clin Calcium 15, 951-7.
Jones, D.B., Nolte, H., Scholubbers, J.G., Turner, E. and Veltel, D., 1991. Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials 12, 101-10.
Kalender, W.A., Felsenberg, D., Genant, H.K., Fischer, M., Dequeker, J. and Reeve, J., 1995. The European Spine Phantom--a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol 20, 83-92.
Kardos, T.B. and Simpson, L.O., 1980. A new periodontal membrane biology based upon thixotropic concepts. Am J Orthod 77, 508-15.
Keeling, S.D., King, G.J., McCoy, E.A. and Valdez, M., 1993. Serum and alveolar bone phosphatase changes reflect bone turnover during orthodontic tooth movement. Am J Orthod Dentofacial Orthop 103, 320-6.
Kim, S.H., Choi, Y.S., Hwang, E.H., Chung, K.R., Kook, Y.A. and Nelson, G., 2007. Surgical positioning of orthodontic mini-implants with guides fabricated on models replicated with cone-beam computed tomography. Am J Orthod Dentofacial Orthop 131, S82-9.
King, G.J., Latta, L., Rutenberg, J., Ossi, A. and Keeling, S.D., 1997. Alveolar bone turnover and tooth movement in male rats after removal of orthodontic appliances. Am J Orthod Dentofacial Orthop 111, 266-75.
King, K.S., Lam, E.W., Faulkner, M.G., Heo, G. and Major, P.W., 2007. Vertical bone volume in the paramedian palate of adolescents: a computed tomography study. Am J Orthod Dentofacial Orthop 132, 783-8.
Kobayashi, K., Shimoda, S., Nakagawa, Y. and Yamamoto, A., 2004. Accuracy in measurement of distance using limited cone-beam computerized tomography. Int J Oral Maxillofac Implants 19, 228-31.
Krishnan, V. and Davidovitch, Z., 2006. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 129, 469 e1-32.
Liu, D.G., Zhang, W.L., Zhang, Z.Y., Wu, Y.T. and Ma, X.C., 2007. Three-dimensional evaluations of supernumerary teeth using cone-beam computed tomography for 487 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103, 403-11.
Loubele, M., Maes, F., Schutyser, F., Marchal, G., Jacobs, R. and Suetens, P., 2006. Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102, 225-34.
Ludlow, J.B., Davies-Ludlow, L.E., Brooks, S.L. and Howerton, W.B., 2006. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol 35, 219-26.
Macchi, A., Carrafiello, G., Cacciafesta, V. and Norcini, A., 2006. Three-dimensional digital modeling and setup. Am J Orthod Dentofacial Orthop 129, 605-10.
Masella, R.S. and Meister, M., 2006. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 129, 458-68.
Matherne, R.P., Angelopoulos, C., Kulild, J.C. and Tira, D., 2008. Use of cone-beam computed tomography to identify root canal systems in vitro. J Endod 34, 87-9.
Mavropoulos, A., Ammann, P., Bresin, A. and Kiliaridis, S., 2005. Masticatory demands induce region-specific changes in mandibular bone density in growing rats. Angle Orthod 75, 625-30.
Meikle, M.C., Bord, S., Hembry, R.M., Compston, J., Croucher, P.I. and Reynolds, J.J., 1992. Human osteoblasts in culture synthesize collagenase and other matrix metalloproteinases in response to osteotropic hormones and cytokines. J Cell Sci 103 ( Pt 4), 1093-9.
Melsen, B., 1999. Biological reaction of alveolar bone to orthodontic tooth movement. Angle Orthod 69, 151-8.
Melsen, B., 2001. Tissue reaction to orthodontic tooth movement--a new paradigm. Eur J Orthod 23, 671-81.
Melsen, B., Cattaneo, P.M., Dalstra, M. and Kraft, D.C. (2007). The importance of force levels in relation to tooth movement, Elsevier.
Midgett, R.J., Shaye, R. and Fruge, J.F., Jr., 1981. The effect of altered bone metabolism on orthodontic tooth movement. Am J Orthod 80, 256-62.
Misch, C.E., 1990. Density of bone: effect on treatment plans, surgical approach, healing, and progressive boen loading. Int J Oral Implantol 6, 23-31.
Mischkowski, R.A., Pulsfort, R., Ritter, L., Neugebauer, J., Brochhagen, H.G., Keeve, E. and Zoller, J.E., 2007. Geometric accuracy of a newly developed cone-beam device for maxillofacial imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104, 551-9.
Mostafa, Y.A., Weaks-Dybvig, M. and Osdoby, P., 1983. Orchestration of tooth movement. Am J Orthod 83, 245-50.
Norton, M.R. and Gamble, C., 2001. Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res 12, 79-84.
Park, H.S., Lee, Y.J., Jeong, S.H. and Kwon, T.G., 2008. Density of the alveolar and basal bones of the maxilla and the mandible. Am J Orthod Dentofacial Orthop 133, 30-7.
Pilon, J.J., Kuijpers-Jagtman, A.M. and Maltha, J.C., 1996. Magnitude of orthodontic forces and rate of bodily tooth movement. An experimental study. Am J Orthod Dentofacial Orthop 110, 16-23.
Roberts, W.E., Arbuckle, G.R. and Analoui, M., 1996. Rate of mesial translation of mandibular molars using implant-anchored mechanics. Angle Orthod 66, 331-8.
Rygh, P. and Reitan, K., 1972. Ultrastructural changes in the periodontal ligament incident to orthodontic tooth movement. Trans Eur Orthod Soc, 393-405.
Sandstedt, C. (1904). Einige Beitrage zur theorie der Zahnregulierung.
Schwarz MS, R.S., Rhodes ML, Chafetz N., 1987. Computed tomography: Part I. Preoperative assessment of the mandible for endosseous implant surgery. Int J Oral Maxillofac Implants 2, 137-141.
Schwarz MS, R.S., Rhodes ML, Chafetz N., 1987. Computed tomography: Part II. Preoperative assessment of the maxilla for endosseous implant surgery. Int J Oral Maxillofac Implants 10, 1-7.
Shahlaie, M., Gantes, B., Schulz, E., Riggs, M. and Crigger, M., 2003. Bone density assessments of dental implant sites: 1. Quantitative computed tomography. Int J Oral Maxillofac Implants 18, 224-31.
Sidiropoulou-Chatzigiannis, S., Kourtidou, M. and Tsalikis, L., 2007. The effect of osteoporosis on periodontal status, alveolar bone and orthodontic tooth movement. A literature review. J Int Acad Periodontol 9, 77-84.
Silva, M.A., Wolf, U., Heinicke, F., Bumann, A., Visser, H. and Hirsch, E., 2008. Cone-beam computed tomography for routine orthodontic treatment planning: a radiation dose evaluation. Am J Orthod Dentofacial Orthop 133, 640 e1-5.
Sukovic, P., 2003. Cone beam computed tomography in craniofacial imaging. Orthod Craniofac Res 6 Suppl 1, 31-6; discussion 179-82.
Swennen, G.R. and Schutyser, F., 2006. Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am J Orthod Dentofacial Orthop 130, 410-6.
Trisi, P. and Rao, W., 1999. Bone classification: clinical-histomorphometric comparison. Clin Oral Implants Res 10, 1-7.
Truhlar, R.S., Orenstein, I.H., Morris, H.F. and Ochi, S., 1997. Distribution of bone quality in patients receiving endosseous dental implants. J Oral Maxillofac Surg 55, 38-45.
Tsiklakis, K., Donta, C., Gavala, S., Karayianni, K., Kamenopoulou, V. and Hourdakis, C.J., 2005. Dose reduction in maxillofacial imaging using low dose Cone Beam CT. Eur J Radiol 56, 413-7.
Turkyilmaz, I., Tozum, T.F. and Tumer, C., 2007. Bone density assessments of oral implant sites using computerized tomography. J Oral Rehabil 34, 267-72.
van Leeuwen, E.J., Maltha, J.C. and Kuijpers-Jagtman, A.M., 1999. Tooth movement with light continuous and discontinuous forces in beagle dogs. Eur J Oral Sci 107, 468-74.
von Bohl, M., Maltha, J.C., Von Den Hoff, J.W. and Kuijpers-Jagtman, A.M., 2004. Focal hyalinization during experimental tooth movement in beagle dogs. Am J Orthod Dentofacial Orthop 125, 615-23.
Wainwright, W.M., 1973. Faciolingual tooth movement: its influence on the root and cortical plate. Am J Orthod 64, 278-302.
Zarb, G.A. and Zarb, F.L., 1985. Tissue integrated dental prostheses. Quintessence Int 16, 39-42.
Zengo, A.N., Pawluk, R.J. and Bassett, C.A., 1973. Stress-induced bioelectric potentials in the dentoalveolar complex. Am J Orthod 64, 17-27.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top