跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 03:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈力洋
研究生(外文):Li-YangShen
論文名稱:GPS/Galileo單頻即時動態定位效能分析
論文名稱(外文):A Feasibility Study of GPS/Galileo Single-frequency RTKPositioning
指導教授:楊名楊名引用關係
指導教授(外文):Ming Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系碩博士班
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:80
中文關鍵詞:單頻即時動態定位全球導航衛星系統Galileo虛擬參考站e-GPS
外文關鍵詞:single-frequencyRTKGNSSGalileoVRSe-GPS
相關次數:
  • 被引用被引用:11
  • 點閱點閱:1740
  • 評分評分:
  • 下載下載:166
  • 收藏至我的研究室書目清單書目收藏:0
GPS 即時動態定位(Real-Time Kinematic, RTK)是目前最廣泛被應用在測?工程中的衛星定位技術,相較於傳統的雙頻 RTK,單頻的觀測?的週波值解算效?明顯低於雙頻,使得實務應用仍有困難。然而單頻的接收儀在價格上有其優勢,且在未?歐洲的導航衛星系統 Galileo 的加入運作後,預期可以有?強的衛星幾何及觀測?加速單頻 RTK 的解算效?。本文將設計一種單頻 RTK 的演算方法,為達到定位的即時性,計算的核心技術採用卡曼?波器(Kalman filter),而整?週波值的搜尋採用的是低相關化週波值搜尋法(LAMBDA method);為?低系統誤差影響及基線距離限制,研究中將配合台灣 e-GPS 系統之虛擬?考站(Virtual Reference Station, VRS)技術以達到高??的需求。

文中將藉由整天 24小時真實單頻接收儀觀測量與模擬產生的 GPS/Galileo 觀測量來驗證單頻 RTK 之效能。實驗將 RTK 系統分成三種組合:(1)GPS/Galileo 雙系統單頻:L1/E1;(2)GPS 單系統雙頻:L1/L2;(3)GPS 單系統單頻:L1。成果顯示出未來的整合系統 GPS/Galileo 單頻 RTK 週波值解算效益將是最高,可大於現行的 GPS 單、雙頻 RTK;定位精度方面也顯示整合系統單頻 RTK 之3-D RMS 優於傳統雙頻 RTK ,有將近百分之四十五的提昇。隨著多系統 GNSS時代的到?,本研究成果指出未來使用 GPS/Galileo 單頻接收儀,以 VRS-RTK 進行即時動態定位的解算效益與精度將會超越傳統的 GPS 雙頻接收儀,且可滿足一般的即時動態定位需求,配合現行 e-GPS 系統,將是台灣 RTK 使用者最有效、最經濟之定位模式。

Today, real-time kinematic (RTK) positioning is the most widely used GNSS technique in surveying engineering. Compared with dual-frequency RTK, even though single-frequency receivers have the cost advantage, single-frequency RTK lacks enough measurements for quick and reliable carrier phase ambiguity resolution. This situation is about to change. The European Galileo constellation is scheduled to be completed by 2013 and it will be interoperable with the existing GPS system. This combined system (GPS/Galileo) will provide twice as many satellites as today’s GPS (30), and thus it should substantially promote the application of single-frequency RTK. The model designed for single-frequency RTK based on Kalman filter and using LAMBDA method to resolve integer carrier phase ambiguities. To decrease the impact of system biases, the Virtual Reference Station (VRS) technique would be applied by Taiwan e-GPS system.

The performance of integer phase ambiguity resolution was assessed with 24-h actual GPS data and simulated GPS/Galileo data in three different scenarios: (1) single-frequency GPS (GPS L1), (2) dual-frequency GPS (GPS L1/L2), and (3) single-frequency GPS/Galileo (GPS L1/Galileo E1). Comparison results show that, among the three scenarios, the best ambiguity resolution and positioning accuracy performance are achieved with single-frequency GPS/Galileo, as a result of its much improved geometry strength. This indicates that the future dual-system RTK can be practically built with low-cost single-frequency receivers. And it should have a great impact on many engineering applications.

摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
§1-1 前言 1
§1-2 研究背景與文獻回顧 2
§1-3 研究動機與目的 5
§1-4 研究方法 6
§1-5 論文架構 7
第二章 全球導航衛星系統與即時動態定位 9
§2-1 GPS與Galileo發展近況 9
§2-1-1 GPS現代化 10
§2-1-2 歐盟Galileo計畫 11
§2-2 GNSS定位原理 14
§2-2-1 GNSS系統參數整合 15
§2-2-2 GPS/Galileo觀測方程式 16
§2-2-3 觀測量誤差來源 17
§2-2-4 GNSS相對定位 20
§2-3 即時動態定位(Real-Time Kinematic) 24
§2-4 虛擬?考站即時動態定位(Virtual Reference Station RTK)26
§2-5 台灣e-GPS即時動態電子基準站觀測網 29
第三章 單頻即時動態定位演算法設計 31
§3-1 衛星觀測資料處理 32
§3-2 卡曼濾波器設計 35
§3-2-1 動態方程式 36
§3-2-2 觀測方程式 38
§3-2-3 卡曼濾波運算流程 40
§3-3 OTF整數週波值求解 41
§3-3-1 LAMBDA低相關化搜尋整數解 42
§3-3-2 決定正確整數週波值 46
§3-4 單頻即時動態定位解算流程 48
第四章 單頻RTK實驗成果分析 49
§4-1 RTK效能分析方法 49
§4-2 實驗組一:大地型GPS雙頻接收儀測試分析 51
§4-3 實驗組二:GNSS單頻接收儀與虛擬參考站測試分析 54
§4-3-1 實驗儀器介紹 54
§4-3-2 實驗場設計 57
§4-3-3 單頻接收儀RTK成果分析 59
第五章 GNSS模擬資料RTK成果分析 62
§5-1 GNSS模擬資料原理與流程 62
§5-1-1 星群模擬 63
§5-1-2 觀測量誤差模擬 66
§5-1-3 產生GPS/Galileo模擬觀測量 66
§5-2 GPS/Galileo單頻RTK成果分析 68
第六章 結論與建議 73
參考文獻 76


王敏雄,2005,全國性 e-GPS 衛星定位基準站即時動態定位系統建置及測試作業,內政部國土測繪中心,台中。
王敏雄、劉至忠、劉正倫、蕭輔導,2006,e-GPS 衛星基準網之VBS-RTK 即時動態定位系統測量成果分析,地籍測量,第25卷,第2期,1-20頁。
內政部國土測繪中心e-GPS即時動態系統入口網站:
http://www.egps.nlsc.gov.tw/index.html
吳敏達,1995,GPS 單頻載波相位以序貫演算法進行即時靜態定位研究,國立成功大學測量工程研究所碩士論文,台南。
吳錫賢,1996,利用雙重天線與單頻資料進行即時性 On-the-Fly GPS定位研究,國立成功大學測量工程研究所碩士論文,台南。
唐進賢,1999,中距離(10-50 公里)GPS 即時動態定位演算法之研究,國立成功大學測量工程研究所碩士論文,台南。
黃文?,2004,REV-2000 GPS 單頻模組相對定位??分析,國立成功大學測量工程研究所碩士?文,台南。
陳鶴欽,2009,結合低價單頻 GPS 接收儀與虛擬?考站定位??之研究,國立成功大學地球科學研究所博士?文,台南。
張耀允,2007,GNSS 單一時刻即時動態週波未定值解算:使用LAMBDA 和 CAR 兩種方法,國立成功大學測量工程研究所碩士論文,台南。
曾清涼、儲慶美,1999,GPS 衛星測量原理與應用,第2版,國立成功大學衛星資訊研究中心,台南。
葉大綱、王傳盛、李瓊武,2002,GPS 觀測資料品質影響相對定位精度之研究,地籍測量,第21卷,第2期,14頁。
游豐吉、林修國,2009,低成本單頻 GPS 接收器運用於及時間測場合之研究,第28屆測量及空間資訊研討會論文集,桃園。
馮倩君,2004,以多?考站為基礎之 GPS 即時動態定位演算法發展,國立成功大學測量工程研究所碩士論文,台南。
楊名、江凱偉,2009,全球導航衛星系統(GNSS)資料聯合處理技術,內政部國土測繪中心委託計劃報告,國立成功大學衛星資訊研究中心,台南。
楊名,1997,公分級 GPS 衛星即時動態定位系統,中國測?工程,第39卷,第四期,第1-18頁。
Bossche, M., Bourga, C. and Lobert, B., 2004, GPS Galileo Time Offset: How it Affects Positioning Accuracy and How to Cope with It, Proceedings of ION GNSS 2004, Long Beach, CA, pp. 654-659.
Brown, N., Troyer, L., Zelzer, O., and van Cranenbroek, J., 2006, Advances in RTK and Post Processed Monitoring with Single Frequency GPS , Journal of Global Positioning Systems, Vol. 5, No. 1-2, pp. 145-151.
Chen, H. C., Huang, Y.S., Chiang, K.W., Yang, M., and Rau, R.J., 2009, The Performance Comparison between GPS and BeiDou-2/Compass: a Perspective from Asia, Journal of Chinese Institute of Engineers, Vol. 32, No. 5, pp. 679-689.
de Jonge, P.J. and Tiberius, C.C.J.M., 1996, The LAMBDA Method for Integer Ambiguity Estimation: Implementation Aspects, Delft Geodetic Computing Centre LGR Series, No. 12, Delft University of Technology, The Netherlands.
European Commission, 2003, The Galileo project: Galileo Design Consolidation, Online available at: http://europa.eu.int/comm./dgs/energy_ transport
Feng, Y., 2003, Combined Galileo and GPS : A Technical Perspective. Journal of Global Positioning Systems, Vol. 2, No. 1, pp. 67-72.
Feng, Y., 2005, Future GNSS Performance Predictions Using GPS with a Virtual Galileo Constellation, GPS World, pp. 46-52.
Frei, E. and Beutler, G., 1990, Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach : the Alternative to Kinematic Positioning, Proceedings of Second International Symposium on Precise Positioning with Global Positioning System, pp. 1196-1216.
Gelb, A., 1974, Applied Optimal Estimation, Massachusetts, The M.I.T. Press, Cambridge, Massachusetts, and London, England, pp. 79.
Goad, C. and Goodman, L., 1974, A Modified Hopfield Tropospheric Refraction Correction Model, Proceedings of the Fall Annual Meeting of the American Geophysical Union, San Francisco, California.
Han, S., 1997, Carrier Phase-Based Long-Range GPS Kinematic Positioning, Ph.D. Dissertation, Dept. of Geomatic Eng., University of New South Wales Sydney NSW 2052, Australia.
Han, S. and Rizon, C., 1997, Comparing GPS Ambiguity Resolution Techniques, GPS World, Vol. 8, pp. 54-60.
Hatch, R., 1990, Instantaneous Ambiguity Resolution, Proceedings of IAG International Symposium No.107 on Kinematic System in Geodesy, Surveying and Remote Sensing, pp. 299-308.
Hein, G.W., Godet, J.I., Jean-Luc M., Jean-Christophe E., Philippe L., Rafael, K., and Pratt, T., 2002, Status of Galileo Frequency & Signal Design, Proceedings of ION GPS 2002, Portland, Oregon, pp. 24-27.
International GNSS Service (IGS) : http://igscb.jpl.nasa.gov/components/prods.html
Koch, K.R., 1999, Parameter Estimation and Hypothesis Testing in Linear Models, 2nd edition, Spring-Verlag, Germany.
Lachapelle, G., Alves, P., Fortes, L. P., and Cannon, M. E., DGPS RTK Positioning Using a Reference Network, Proceedings of ION GPS 2000, Salt Lake City, Utah, pp. 1165-1171.
Landau, H., 2000, GPS/GLONASS Reference Station Networks, Introduce the Concept of Virtual Reference Station in Real-Time Positioning, GPS Network 2000.
Landau, H., Vollath, U., and Chen, X., 2002, Virtual Reference Station System, Journal of Global Positioning Systems, Vol. 1, No. 2, pp. 137-143.
Landau, H., Vollath, U., Chen, X., and Allison, T., 2004, Benefits of Modernized GPS/Galileo to RTK Positioning, The 2004 International Symposium on GNSS/GPS, Sydney, Australia.
Le, A.Q. and Tiberius, C., 2007, Single-frequency Precise Point Positioning with Optimal Filtering, GPS Solutions, Vol. 11, No. 1, pp. 61-69.
Leick, A., 1995, GPS Satellite Surveying, 2nd edition, John Wiley & Sons, INC, New York, USA.
McDonald, K.D., 2002, The Modernization of GPS: Plans, New Capabilities and the Future Relationship to Galileo, Journal of Global Position System, Vol. 1, No. 1, pp. 1-17.
Miller, J., 2004, GPS & Galileo: Evolution towards GNSS, Proceedings of ION NTM 2004, San Diego, California, pp. 73-91.
Miller, J., 2007, Global Positioning System Policy and Program Update, Proceedings of ION GNSS 2007, Fort Worth, Texas.
Misra, P. and Enge, P., 2001, Global Positioning System: Signals, Measurements, and Performance, Ganga-Jamuna Press, MA.
O’Keefe, K., Julien, O., Cannon, M.E., and Lachapelle, G., 2006, Availability, Accuracy, Reliability, and Carrier-Phase Ambiguity Resolution with Galileo and GPS, Acta Astronautica, Vol. 58, pp. 422- 434.
Satirpod, C., Rizons, C., and Wang, J., 2001, GPS Single Point Positioning with SA off: How Accurate Can We Get? , Survey Review, Vol. 36, No.282, pp. 255-262.
Seeber, G., 2003, Satellite Geodesy, 2nd edition, Walter de Gruyter, Berlin, New York.
Swann, J., Lachapelle, G., Petovello, M., Fenton, P., and McCarthy, D. D., 2006, Reference Systems, UTC Leap Second, and L2C Receivers?, Inside GNSS, pp. 20-24.
Teunissen, P.J.G., 1995, The Least-square Ambiguity Decorrelation Adjustment : A method for Fast GPS Integer Ambiguity Estimation, Journal of Geodesy, Vol. 70, No. 1-2, pp. 65-82.
Tiberius, C., Pany, T., Eissfeller B., Joosten, P., and Verhagen S., 2002, 0.99999999 Confidence Ambiguity Resolution with GPS and Galileo, GPS Solutions, Vol. 6, pp. 96-99.
Verhagen, S., 2005, The GNSS Integer Ambiguities: Estimation and Validation, Ph. D Dissertation, Delft University of Technology, Nederland.
Volker, J., Roberts, C., Rizos, C., and Abidin, H.Z., 2002, Low-Cost GPS-based Volcano Deformation Monitoring at Mt. Papandayan Indonesia, Journal of Volcano and Geothermal Research, Vol. 115, pp. 139-151.
Vollath, U., Landau, H., Pagels, C., and Wagner, B., 2000, Multi-Base RTK Positioning Using Virtual Reference Stations, Proceedings of ION GPS 2000, Salt Lake City, Utah, pp. 123-131.
Welch, G., Bishop, G., 2006, An Introduction to the Kalman Filter, Department of Computer Science, University of North Carolina.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top