跳到主要內容

臺灣博碩士論文加值系統

(3.215.79.68) 您好!臺灣時間:2022/07/04 04:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫翊騰
研究生(外文):Yi-TengSun
論文名稱:適用於電離層高活動期間之現代化GPS長基線計算方法
論文名稱(外文):A modernized GPS long baseline computation method for high ionospheric activity periods
指導教授:楊名楊名引用關係
指導教授(外文):Ming Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系碩博士班
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:87
中文關鍵詞:現代化GPS電離層二階項誤差無電離層線性組合
外文關鍵詞:modernized GPSsecond-order ionospheric errorsionosphere free combination
相關次數:
  • 被引用被引用:3
  • 點閱點閱:909
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
電離層是GPS測量中最大的誤差來源之一。傳統改正電離層誤差最有效的方法,是利用雙頻無電離層組合來消除電離層一階項誤差,而二階項誤差雖然無法一併被消除,但因為它的量級在大部分情況下會在公分以內,因此一般會將它忽略。然而在電離層高活動期間,全電子含量(Total Electron Content, TEC)會大幅增加,二階項誤差的量級也會達到好幾公分,為了避免因二階項誤差造成定位的錯誤,此時就應該把二階項的影響也考慮進去。GPS現代化之後將提供三頻觀測量,因此未來我們將可以利用三頻無電離層組合來消除二階項誤差。本研究模擬了15條長基線的現代化GPS觀測量,評估在電離層高活動期間二階項誤差對於定位精度之影響;此外也分別利用三頻無電離層組合以及根據二次差TEC作為門檻值來搭配使用雙頻和三頻組合這兩種方法做計算,並評估它們的計算效益。研究結果顯示,二階項誤差對於定位誤差之影響可達到1~2公分;使用三頻無電離層組合雖然可消除二階項,但因為受到雜訊過大的影響,只有少數基線有明顯改善;而雙頻和三頻組合搭配使用後,因為發揮了各自的優點,約有2/3的基線計算成果因而明顯變好。
The ionosphere is one of the biggest error sources in GPS positioning. Traditionally, one can eliminate the first-order ionospheric errors by forming the dual-frequency ionosphere-free combination, and ignore the residual second-order terms since their magnitude is below one centimeter in most cases. However, during high ionospheric activity periods, the ionospheric TEC will become very high and the second-order terms could reach several centimeters. It is therefore needed to correct for these terms in order to avoid large positioning errors during these periods. Since the L5 frequency will be added to modernized GPS, one can eliminate the second-order ionospheric errors by forming the triple-frequency ionosphere-free combination. However, since the noise level of the triple-frequency combination is very large, in this study we propose a new method which integrates the dual- and triple-frequency ionosphere-free combinations. We first simulated modernized GPS observations for 15 long baselines during active ionospheric periods to assess the effect of second-order terms on baseline positioning accuracy. Then we compared long baseline computation performances of using the traditional dual-frequency combination, the triple-frequency combination, and the integrated approach. The results show that due to the second-order terms, the positioning error can reach 1~2 cm when using the traditional dual-frequency method. Although the triple-frequency method can eliminate the second-order terms, its positioning accuracy is significantly affected by large measurement noises. The integrated approach, which combines both advantages, therefore provides the best positioning results.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 3
1.4 研究方法 4
1.5 論文架構 5
第二章 GPS基本定位原理與現代化 7
2.1 GPS基本定位原理 7
2.1.1 GPS觀測量 7
2.1.2 GPS誤差來源 8
2.1.2.1和衛星有關的誤差 8
2.1.2.2和訊號傳播有關的誤差 10
2.1.2.3和接收儀有關的誤差 12
2.1.3 GPS定位方法 13
2.1.3.1 絕對定位 13
2.1.3.2 相對定位 13
2.2 GPS現代化 14
第三章 電離層概論 18
3.1 電離層簡介 18
3.2 電離層結構 18
3.3 電離層的變化特性 20
3.3.1 隨地理位置變化 20
3.3.2 隨時間及太陽周期變化 23
3.3.3 特殊現象 25
3.4 電離層對GPS訊號之影響 30
第四章 現代化GPS長基線相對定位演算法 35
4.1 無電離層線性組合 35
4.1.1 雙頻無電離層線性組合 36
4.1.2 三頻無電離層線性組合 38
4.1.3 雙頻搭配三頻無電離層線性組合 40
4.2 相位-電碼觀測量線性組合 43
4.3 對流層參數 44
4.4 基線計算模型 45
4.4.1 函數模型 45
4.4.2 隨機模型 47
4.5 最小二乘平差計算 48
4.6 整數週波值求解策略 49
第五章 實驗方法與結果 52
5.1 模擬現代化GPS觀測量 52
5.1.1 衛星星群模擬 53
5.1.2 系統誤差模擬 56
5.1.2.1 電離層誤差模擬 57
5.1.2.2 對流層誤差模擬 62
5.2 實驗設計 64
5.3 實驗結果與分析 72
第六章 結論與建議 80
參考文獻 82

伍岳,2005,第二代導航衛星系統多頻資料處理理論及應用,武漢大學博士論文。
周忠謨、易杰軍、周琪,1997,GPS衛星測量原理與應用,測繪出版社,北京。
林建宏,2005,磁暴時低緯度電離層變化,國立中央大學太空科學研究所博士論文,桃園。
范勝軍,2005,顧及地磁場影響的電離層高階項改正算法研究,武漢大學碩士論文。
陳乃華,2005,RHESSI觀測M型太陽閃焰的動態結構分析,國立中央大學太空科學研究所碩士論文,桃園。
張耀允,2007,GNSS單一時刻即時動態週波未定值解算:使用LAMBDA和CAR兩種方法,國立成功大學測量工程研究所碩士論文,台南。
楊名、江凱偉,2009,全球衛星導航系統(GNSS)資料聯合處理技術,內政部國土測繪中心委託計畫報告,國立成功大學測量及空間資訊學系,台南。
楊銘仁,2005,由GPS追蹤站2004年資料建構區域性電離層模式及其影響定位精度之研究,國立成功大學測量及空間資訊學系研究所碩士論文,台南。
蔡和芳,1999,全球定位系統觀測電離層赤道異常之研究,國立中央大學太空科學研究所博士論文,桃園。
Appleton EV (1946) Two anomalies in the ionosphere. Nature 157:691–691. doi:10.1038/157691a0.
Bassiri S, Hajj GA (1993) Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manuscripta Geodaetica 18(6):280–289.
Berg H (1948) Allgemeine meteorologie. D?mmler’s Verlag, Bonn.
Beutler G, Bock H, Dach R, Fridez P, G?de A, Hugentobler U, J?ggi A, Meindl M, Mervart L, Prange L, Schaer S, Springer T, Urschl C, Walser P (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, Switzerland.
Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research 97(D14):15787–15801. doi: 10.1029/92JD01517.
Brunner FK, Gu M (1991) An improved model for the dual frequency ionospheric correction of GPS observations. Manuscripta Geodaetica 16(3):205–214.
Datta-Barua S, Walter T, Blanch J, Enge P (2006) Bounding higher order ionosphere errors for the dual frequency GPS user. Proceedings of ION GNSS 2006, Fort Worth, Texas.
Davies K (1990) Ionospheric radio. Peter Peregrinus Ltd, London.
de Jonge PJ, Tiberius CCJM (1996) The LAMBDA method for integer ambiguity estimation: implementation aspects. LGR-series 12, Delft Geodetic Computing Centre.
Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy 83:191–198. doi:10.1007/s00190-008-0300-3.
Feng Y (2008) GNSS three carrier ambiguity resolution using ionosphere- reduced virtual signals. Journal of Geodesy 82:847–862. doi:10.1007/ s00190-008-0209-x.
Fleury R, Clemente M, Carvalho F, Lassudrie-Duchesne (2009) Modelling of ionospheric high-order errors for new generation GNSS. Annals of Telecommunications 64:615–623. doi:10.1007/s12243-009-0090-5.
Goad CC, Goodman L (1974) A modified Hopfield tropospheric refraction correction model. Proceedings of the Fall Annual Meeting of the American Geophysical Union, San Francisco, California.
Goad CC, Yang M (1997) A new approach to precision airborne GPS positioning for photogrammetry. Photogrammetric Engineering & Remote Sensing 63(9):1067–1077.
Han S, Rizos C (1999) The impact of two additional civilian GPS frequencies on ambiguity resolution strategies. Proceedings of ION Annual Technical Meeting, Cambridge, Massachusetts.
Harrington P (2008) GPS program update. Proceedings of ICG Expert Meeting on GNSS, Montreal, Canada.
Hatch R, Jung J, Enge P, Pervan B (2000) Civilian GPS: The benefit of three frequencies. GPS Solutions 3(4):1–9. doi: 10.1007/PL00012810.
Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global Positioning System: theory and practice. 6th edn. Springer-Verlag, New York.
Hoque MM, Jakowski N (2006) Higher order ionospheric effects in precise GNSS positioning. Journal of Geodesy 81(4):259–268. doi:10.1007/s001 90-006-0106-0.
Hunsucker RD, Hargreaves JK (2003) The high-latitude ionosphere and its effects on radio propagation. Cambridge University Press, Cambridge.
International Association of Geomagnetism and Aeronomy, IAGA. http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
International GNSS Service, IGS. http://igscb.jpl.nasa.gov
International Service of Geomagnetic Indices, ISGI. http://www.cetp.ispl.fr/~isgi/ homepag1.htm
Janes HW, Langley RB, Newby SP (1991) Analysis of tropospheric delay prediction models: comparison with ray-tracing and implications for GPS relative positioning. Bulletin G?od?sique 65(3):151–161. doi: 10.1007/BF00806344.
Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophysical Research Letters 30(16):1829. doi:10.1029/2003GL017639.
Klobuchar JA (1987) Ionospheric time-delay algorithm for single frequency GPS users. IEEE Transactions on Aerospace and Electronic Systems AES-23(3):325–331. doi:10.1109/TAES.1987.310829.
Klobuchar JA (1996) Ionospheric effects on GPS. In: Parkinson BW (ed) Global Positioning System: theory and applications. pp 485–515, vol 1, American Institute of Aeronautics and Astronautics, Washington, DC.
Koch KR (1999) Parameter estimation and hypothesis testing in linear models. 2nd edn. Springer-Verlag, Germany.
Komjathy A (1997) Global ionospheric total electron content mapping using the Global Positioning System. Dissertation, University of New Brunswick, Canada.
Lachapelle G (2002) NAVSTAR GPS: theory and applications. Lecture Notes, University of Calgary, Canada.
Langel RA (1987) Main field. In: Jacobs JA (ed) Geomagnetism. pp 249–512, vol 1, Academic Press, London.
Leick A (1995) GPS satellite surveying. 2nd edn. John Wiley and Sons, New York.
Luo N (2001) Precise relative positioning multiple moving platforms using GPS carrier phase observables Dissertation, University of Calgary, Canada.
Ma LH, Han YB, Yin ZQ (2009) Periodicities in global mean TEC from GNSS observations. Earth Moon Planet 105:3–10. doi:10.1007/s11038-0 08-9242-2.
Mannucci AJ, Tsurutani BT, Iijima BA, Komjathy A, Saito A, Gonzalez WD, Guarnieri FL, Kozyra JU, Skoug R (2005) Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003 “Halloween Storms. Geophysical Research Letters 32(L12S02). doi: 10.1029/2004GL021467.
Massatt P, Zeitzew M (1998) The GPS constellation design– current and projected. Proceedings of ION National Technical Meeting, Long Beach, California.
McNamara LF (1991) The ionosphere: communications, surveillance, and direction finding. Krieger Publishing Company, Florida.
Miller J (2007) Global Positioning System policy and program update. Proceedings of ION GNSS 2007, Fort Worth, Texas.
Misra P, Enge P (2001) Global Positioning System: signals, measurements, and performance. Ganga-Jamuna Press, Lincoln, Massachusetts.
National Aeronautics and Space Administration, NASA. http://www.nasa.gov/
National Oceanic and Atmospheric Administration, NOAA. http://www.swpc.noaa.gov/
Rose DC, Ziauddin S (1962) The polar cap absorption effect. Space Science Reviews 1:115–134. doi:10.1007/BF00174638.
Schaer S (1999) Mapping and predicting the earth’s ionosphere using the Global Positioning System. Dissertation, University of Bern, Switzerland.
Schaer S, Gurtner W, Feltens J (1998) IONEX: the IONosphere map EXchange format version 1. Proceedings of IGS Analysis Center Workshop, Darmstadt, Germany.
Seeber G (2003) Satellite geodesy. 2nd edn. Walter de Gruyter, New York.
Skone SH (2001) The impact of magnetic storms on GPS receiver performance. Journal of Geodesy 75:457–468. doi:10.1007/s0019001001 98.
Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy 70:65–82. doi:10.1007/BF00863419.
Teunissen PJG, Odijk D (2003) Rank-defect integer estimation and phase-only modernized GPS ambiguity resolution. Journal of Geodesy 76(9):523–535. doi:10.1007/s00190-002-0285-2.
Tsurutani BT, Mannucci AJ, Iijima B, Guarnieri FL, Gonzalez WD, Judge DL, Gangopadhyay P, Pap J (2006) The extreme Halloween 2003 solar flares (and Bastille Day, 2000 Flare), ICMEs, and resultant extreme ionospheric effects: A review. Advances in Space Research 37:1583–1588. doi:10.1016/j.asr.2005.05.114.
van Nee RDJ (1992) Multipath effects on GPS code phase measurements. Navigation 39(2):177–190.
Wang G, Chen Z, Chen W, Xu G (1988) The principle of GPS precise positioning system. Surveying Press, Peking.
Wang Z, Wu Y, Zhang K, Meng Y (2005) Triple-frequency method for high-order ionospheric refractive error modelling in GPS modernization. Journal of Global Positioning Systems 4(1-2):291–295.
Wanninger L (1993) Effects of the equatorial ionosphere on GPS. GPS World 4(7):48–54.
Xu G (2003) GPS theory, algorithms and applications. Springer-Verlag, Germany.
Yeh KC, Liu CH (1972) Theory of ionospheric waves. Academic Press, New York.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊