跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 03:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宗翰
研究生(外文):Tsung Han,Chen
論文名稱:指叉微電極在生物感測元件的應用
論文名稱(外文):The Application of Biosensing Device Using Interdigitated Microelectrodes
指導教授:蕭桂森
指導教授(外文):Vincent K.S Hsiao
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:生物醫學科技研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:51
中文關鍵詞:指叉微電極無酵素固定葡萄糖感測
外文關鍵詞:interdigitated microelectrodesmicrofluidic channelenzyme-free glucose sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:501
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電化學阻抗分析法為一歷史悠久、功能強大應用廣泛的分析方法,可用於感測固態、液態及氣態物質之物理及化學現象。因具備量測微小變化能力近幾年更廣泛結合生物感測器應用,藉由在感測器表面修飾抗體來偵測蛋白質、核酸及細胞活動等等。指叉微電極元件為一連串互相平行之金屬導板所構成之電容器陣列,可以感測外界微小之電量變化,同時具有體積小、耐用及快速達到感測穩態等優點,亦有許多期刊文章發表於生物感測領域之應用。
大部分葡萄糖生物感測器的開發需要葡萄糖酵素的參與。本研究使用電化學阻抗分析法結合指叉微電極元件在無表面修飾下進行葡萄糖、尿酸及尿素溶液的感測,同時也應用微流道技術以實現即時偵測之目的。論文內容也提到表面聲波元件的製作,但由於實際感測上遭遇困難,因此研究主題主要仍於指叉微電極感測器的開發與實現。
We demonstrated an enzyme-free biosensor based on interdigitated microelectrodes (IMEs) for rapid detection of glucose、uric acid and urea dissolved in 10xPBS by measuring the capacitance signal. A microfluidic channel was used for real-time monitoring purpose. The addition of analyte in the buffer solution tends to increase the solution dielectric constant, result in increasing capacitance signal.
中文摘要 I
英文摘要 II
圖目錄 V
表目錄 VIII
第一章 序論 1
1.1 前言及研究動機.......................................................1
1.2 論文架構概述.........................................................3
第二章 元件原理簡介 4
2.1 表面聲波元件........................................................ 4
2.1.1 表面聲波概述......................................................... 4
2.1.2 表面聲波元件工作原理................................................. 6
2.1.3 壓電基板的選擇....................................................... 8
2.1.4 元件製程及測量方式...................................................11
2.1.5 表面聲波訊號量測.....................................................13
2.2 指叉微電極元件概述..................................................13
2.3 指叉微電極設計原理..................................................15
2.4 元件量測原理........................................................15
第三章 實驗方法與實驗架構 17
3.1 元件之製備..........................................................17
3.2 微流道製備..........................................................19
3.3 實驗系統架構........................................................21
3.4 實驗待測物..........................................................22

第四章 實驗結果與討論 24
4.1 初始實驗............................................................24
4.2 葡萄糖量測..........................................................26
4.2.1 電容量測…….........................................................26
4.2.2 等效電路分析.........................................................29
4.3 尿酸量測............................................................39
4.4 尿素量測............................................................40
4.5 使用微流道進行感測的優點............................................42
4.5 不同線寬元件測試....................................................43
第五章 結論與未來展望 44
第六章 參考資料 45
1] M. Varshney, Y. Li, B. Srinivasan, S. Tung (2007).
A label-free, microfluidics and interdigitated array microelectrode-based
impedance biosensor in combination with nanoparticles immunoseparation
for detection of Escherichia coli O157:H7 in food samples. Sensors and Actuators B. 128, pp. 99-107.

[2] L. Yang, Y. Li, C. L.Griffis, M. G. Johnson (2004).
Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosensors & Bioelectronics. 19, pp.1139-1147.

[3] R. Wang, Y. Wang, K. Lassiter, Y. Li, B. Hargis, S. Tung, L. Berghman, W. Bottje (2009).
Interdigitated array microelectrode based impedance immunosensor for detection of avian influenza virus H5N1. Talanta. 79, pp.159-164.

[4] T. Houssin, J. Follet, A. Follet, E. Dei-Cas. V. Senez (2010).
Label-free analysis of water-polluting parasite by electrochemical impedance
spectroscopy. Biosensors & Bioelectronics. 25, pp.1122-1129.

[5] Z. Zou, J. Kai, M. J. Rust, J. Han, C. H. Ahn (2007)
Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sensors and Actuators A. 136, pp.518–526.

[6] V. Dharuman, T. Grunwald, E. Nebling, J. Albers, L. Blohm, R. Hintsche (2005).
Label-free impedance detection of oligonucleotide hybridisation on interdigitated ultramicroelectrodes using electrochemical redox probes.
Biosensors & Bioelectronics. 21, pp.645-654.

[7] J. Min, A. J. Baeumner (2003).
Characterization and optimization of interdigitated ultramicroelectrode arrays
as electrochemical biosensor transducers. Electroanalysis. 16, pp.724-729.

[8] C. R. Chaudhuri, R. D. Das (2010).
A biomolecule compatible electrical model of microimpedance affinity
biosensor for sensitivity improvement in cell detection. Sensors and
Actuators A. 157, pp.280–289.

[9] L. Yang, Y. Li (2006).
Detection of viable salmonella using microelectrode-based capacitance
measurement coupled with immunomagnetic separation. Journal of Microbiological Methods. 64, pp.9–16.

[10] L. Yang (2008)
Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta. 74, pp.1621-1629.

[11] 歷年糖尿病死亡概況 ---- 按年齡別分。衛生署統計資訊網
Available: http://www.doh.gov.tw/statistic/index.htm. Last accessed 18th June 2010.

[12] Diabetes
Available: http://www.who.int/topics/diabetes_mellitus/en/ . Last accessed 18th June 2010.

[13] R. M. White and F. W. Voltmer. (1965)
Direct piezoelectric coupling to surface elastic waves. Appl. Phys. 17, pp. 314-316.

[14] Lord Rayleigh
Available:http://www.tamagawa.ac.jp/GAKUBU/KOUGAKU/iis/professor/takeuti/introduction/SAW.html. Last accessed 4th May 2010.

[15] R. M. White
Available: http://www.eecs.berkeley.edu/~rwhite. Last accessed 4th May 2010.

[16] I. D. Avramov, Member IEEE, S. Kurosawa, M. Rapp, P. Krawczak, E. I. Radeva (2001).
Investigations on plasma-polymer-coated SAW and STW resonators for chemical gas-sening applications. IEEE Transactions on Microwave Theory and Techniques, 49, pp. 827-837.

[17] M. Bisoffi, B. Hjelle, D. C. Brown, D. W. Branch, T. L. Edwards, S. M. Brozik, V. S. Bondu-Hawkins, R. S. Larson (2008).
Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. Biosensors and Bioelectronics, 23, pp.1397-1403.

[18] K. Lange, B. E. Rapp, M. Rapp (2008).
Surface acoustic wave biosensors: a review. Anal Bioanal Chem, 391, pp.1509-1519.

[19] J. Kondoh, T. Muramatsu, T. Nakanishi, Y. Matsui, S. Shiokawa (2003).
Development of practical surface acoustic wave liquid sensing system and its application for measurement of Japanese tea. Sensors and Actuators B. 92, pp.191-198.

[20] H. Wohltjen, R. Dessy (1979).
Surface acoustic wave probe for chemical analysis introduction and instrument description, Anal. Chem, 51.

[21] E. Gizel, N. J. Goddard, C. R. Lowe, A. C. Stevenson (1992).
A love plate biosensor utilizing a polymer layer. Sensors and Actuators B, 6.

[22] 黃仕泓、柯正浩 (2004),表面聲波感測器之前瞻研究。物理雙月刊,廿三卷六期2004年6月。

[23] Y. T. Shen (2005).
Investigation, fabrication and development of surface acoustic wave sensor chip and system. Tainan, Taiwan, R.O.C. National Cheng Kung University. p78.

[24] 楊證富 (1990),無線通訊之關鍵零組件 - 表面聲波元件。橋學報,第七期。

[25] 吳朗 (1994),電子陶瓷 : 壓電陶瓷。全欣資訊圖書股份有限公司。

[26] C. K. Campbell (1998).
Surface acoustic wave devices for mobile and wireless communications, Academic Press, New York.

[27] 林易賞(2005),表面聲波生物感測器開發與製作。國立海洋大學機械與輪機工程學系。

[28] T. Palacios, F. Calle, E. Nonroy (2002).
Nanotechnology for SAW devices on AIN epilayers. Materials Science and Engineering, pp.154-158.

[29] 林進康,祁子年 (2002),網路分析儀。新通訊元件雜誌,第15期。

[30] O. Niwa (1995).
Electroanalysis with inderdigitated array microelectrodes. Electroanalysis, 7, pp.606-613.

[31] M. Varshneya, Y. Li (2009).
Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Biosensors & Bioelectronics. 24, pp.2951-2960.

[32] J. Bernstein (1868). Uber den zeitlichen verlanf der negativen schwankung des nervenstroms. The Journal of the Center for Archaeoastronomy, 1, pp.173 – 207.

[33] J. Shan Y. A. Ottova, H. T. Tien, F. S. Sheu (2003).
Nanostructured platinum-lipid bilayer composite as biosensor. Bioelectrochemidstry, 59, pp,65-72.

[34] A. J. Bard, L. R. Faulkner (1980).
Electrochemical methods : fundamentals and application. Wiley, New York.

[35] 尿酸過高及痛風衛教
Available: http://www.vghks.gov.tw/META/goutedu.htm. Last accessed
18th June 2010.

[36] 常見臨床檢驗原理及數據判讀
Available: http://www.stm.org.tw/Mt/%C0%CB%C5%E7%A4%B6%B2%
D001.htm. Last accessed 18th June 2010.

[37] Glucose
Available: http://en.wikipedia.org/wiki/Glucose. Last accessed 19th June 2010.

[38] Uric acid
Available: http://en.wikipedia.org/wiki/Uric_acid. Last accessed 19th June
2010.

[39] Urea
Available: http://en.wikipedia.org/wiki/Urea. Last accessed 19th June 2010.

[40] T. Karacolak, E. C. Moreland, E. Topsakal.
Cole-cole model for glucose-dependent dielectric properties of blood plasma for continuous glucose monitoring. Mississippi State, Department of Electrical and Computer Engineering Mississippi State University.

[41] A. Tura, S. Sbrignadello, S. Barison, S. Conti, G. Pacini (2007).
Impedance spectroscopy of solutions at physiological glucose concentrations.
Biophysical Chemistry. 129, pp.235-241.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top