跳到主要內容

臺灣博碩士論文加值系統

(3.229.117.123) 您好!臺灣時間:2022/08/18 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施政杰
研究生(外文):Cheng-Chieh Shih
論文名稱:應用於彩色共焦顯微術之繞射元件設計
論文名稱(外文):The design of diffractive optical element applied to chromatic confocal microscopy
指導教授:陳奇夆
指導教授(外文):Chi-Feng Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:63
中文關鍵詞:折射/繞射複合光學元件色散範圍最小線寬光源發散角
外文關鍵詞:the minimum line widthdispersion rangerefraction/diffraction composite optical elementdivergence angle of light
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討利用繞射光學理論設計出折射/繞射複合光學元件,實現在光軸上產生線性色散的光學特性,搭配準直透鏡來彙整折射/繞射複合光學元件所產生的色散光線,並且利用顯微物鏡來提升解析度,所組合而成的彩色共焦模組,以建立物體表面三維結構量測技術。
利用繞射光學理論設計出兩顆折射/繞射複合光學元件,實現在光軸上產生線性色散的光學特性,而且色散範圍皆在38000μm左右,利用可見光波長範圍“400 nm ~ 800 nm”來作為彩色共焦模組的工作波長,使搭配折射/繞射複合光學元件的彩色共焦模組的色散範圍可達2000μm左右,色散呈現線性趨勢。在降低光源發散角的敏感度的測試中,我們以相同色散範圍條件下,比較色散趨勢為正與色散趨勢為負的折射/繞射複合光學元件,發現色散趨勢為負的元件可使各波長後焦距誤差下降至-4.9%~-2.7%,而光斑半徑也縮小至783μm~584μm,而搭配色散趨勢為負的元件所組成彩色共焦模組的各波長後焦距誤差在-9.2%~-11.5%內,而光斑半徑更可縮小至176μm ~138μm,且此顆折射/繞射複合光學元件的最小線寬為30.5μm,可以進行超精密加工。
This paper focuses on the use of diffractive optics theory to design refraction / diffraction composite optical elements to realize the optical axis to generate the optical properties of linear dispersion, with coupling lens to compile with refraction / diffraction composite dispersion optical elements produced by light, and the use of microscopy to improve resolution, the chromatic confocal module to create three dimensional structure of a surface measurement technique.
Diffractive optics theory to design two refractive / diffractive optical elements combined to achieve the optical axis to generate the optical properties of linear dispersion and dispersion are in 38000μm about the scope of the use of visible light wavelength "400 nm ~ 800 nm" to chromatic confocal module, as the work of the wavelength, so that with a refractive / diffractive optical elements for chromatic confocal module is about the dispersion range of up to 2000μm, the dispersion in a linear trend. Reduce the divergence angle in the light sensitivity of the test, in the same range of dispersion conditions, compare the positive dispersion trend and negative dispersion trend refraction / diffractive optical elements, found that the trend is negative dispersion allows all wavelengths components the error of back focal length dropped to -4.9% ~ -2.7%, while the spot radius is also reduced to 783μm ~ 584μm, while the trend with a negative dispersion of components of the chromatic confocal module the error of back focal length dropped to -9.2% ~ -11.5 %, and the spot radius can shrink to 176μm ~ 138μm, and the minimum line width of refractive / diffractive optical elements was 30.5μm, can be ultra-precision machining.
中文摘要 I
英文摘要 III
誌謝 IV
表目錄 VII
圖目錄 IX
第 1 章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 技術與文獻回顧 3
1.4 論文架構 12
第 2 章 彩色共焦顯微術基礎理論 13
2.1 彩色共焦顯微術原理 13
2.2 彩色共焦顯微術數學模型 16
第 3 章 折射/繞射複合光學元件設計與彩色共焦模組分析 19
3.1 折射/繞射複合光學元件之規格與設計流程 19
3.2 折射/繞射複合光學元件設計與光學性質分析 21
3.3 彩色共焦模組光學性質分析 33
3.4 折射/繞射複合光學元件與彩色共焦模組之結論 42
第 4 章 發散光源對折射/繞射複合光學元件與彩色共焦模組之影響 44
4.1 發散光源對折射/繞射複合光學元件的光學特性影響 44
4.2 發散光源對彩色共焦模組的光學特性影響 48
4.3 發散光源對彩色共焦模組的量測誤差分析 50
4.4 發散光源對折射/繞射複合光學元件與彩色共焦模組影響之結論 57
第 5 章 結論與未來展望 59
參考文獻 61
[1]J. R. Garzon, J. Meneses, A. Plata, T. Gharbi and G. Tribillon, “Analysis of the longitudinal point spread function of a confocal microscopy based on the chromatic aberrationprinciples”, Rev. Col. Fis., Vol. 38, p561-564, 2006.
[2]J. R. Garzon, J. Meneses, G. Tribillon, T. Gharbi and A. Plata, “Chromatic confocal microscopy by means of continuum light generated throuugh a standard single-mode fibre”, J. Opt. A: Pure Appl. Opt., Vol. 6, p544-548, 2004.
[3]J. R. Garzon, J. Meneses, G. Tribillon, T. Gharbi and A. Plata, “Axial resolution of a chromatic dispersion confocal microscopy”, Proc. Spie, Vol. 5622, p766-771, 2004.
[4]B. S. Chun, K. Kim and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope”, Rev. Sci. Instrum., Vol. 80, p1-7, 2009.
[5]K. Shi, P. Li, S. Yin and Z. Liu, “Chromatic confocal microscopy using supercontinuum light”, Opt. Express, Vol. 12, p2096-2101, 2004.
[6]K. Shi, S. H. Nam, P. Li, S. Yin and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum”, Opt. Commun., Vol. 263, p156-162, 2006.
[7]W. P. Kuhn and P. C. Baker, “Distance Measuring Confocal Microscope ”, United States Patent 5785651.
[8]S. L. Dobson, P. C. Sun and Y. Fainman, “Diffractive lenses for chromatic confocal imaging”, Appl. Opt., Vol. 36,p4744-4748, 1997.
[9]T. Wilson and S. J. Hewlett, “Superresolution in confocal scanning microscopy,” Opt. Lett., Vol. 16, p1062–1064, 1991.
[10]D. K. Hamilton, T. Wilson and C. J. R. Sheppard, “Experimental observations of depth-discrimination properties of scanning microscopes,” Opt. Lett., Vol. 6, p625–626, 1981.
[11]陳柏菁,“共焦顯微術系統之設計與裝置”,國立台灣大學,碩士論文,民國91年。
[12]徐得銘,“繞射/折射複合光學元件設計與模擬”,國立交通大學,碩士論文,民國91年。
[13]林美燕,“二元光學元件應用於顯微物鏡之色差分析”,國立中央大學,碩士論文,民國94年。
[14]D. A. Buralli and G. M. Morris, “Design of diffractive singlets for monochromatic imaging”, Appl. Opt., Vol. 30,p2151-2158, 1991.
[15]L. N. Hazra, Y. Han and C. A. Delisle, “Kinoform lenses: Sweatt model and phase function”, Opt. Commun., Vol. 117. p31-36, 1995.
[16]M. Young, “Zone Plates and Their Aberrations”, J. Opt. Soc. Am., Vol. 62, p972-976, 1972.
[17]K. Kamiya, “Theory of Fresnel Zone Plate”, Sci. Light, Vol. 12, p35-49, 1963.
[18]H. Dammann, “Blazed synthetic phase only holograms”, Optik, Vol. 3. p95-104, 1970.
[19]D. A. Buralli, G. M. Morris and J. R. Rogers, “Optical performance of holographic kinoforms”, Appl. Opt., Vol. 28. p976-983, 1989.
[20]W. C. Sweatt, “Describing holographic optical elements as lenses”, J. Opt. Soc. Am., Vol. 67,p803-808, 1977.
[21]W. C. Sweatt, “Mathematical equiva-lence between a holographic optical element and an ultra-high index lens”, J. Opt. Soc. Am., Vol. 69, p486-487, 1979.
[22]E. B. Champagne, “Nonparaxial Imaging, Magnification andAberration Properties in Holography”, J. Opt. Soc. Am., Vol. 57, p51-55 , 1967.
[23]R. W. Meier, “Magnification and Third-Order Aberrations in Holography”, J. Opt. Soc. Am., Vol. 55, p987-992, 1965.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top