跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/08 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉德駿
研究生(外文):Te-Chun Liu
論文名稱:不同後熟特性番石榴品種ACC氧化酶cDNA之選殖與分析
論文名稱(外文):Cloning and Characterization of 1-Aminocyclopropane-1-carboxylate Oxidase cDNAs from Guava(Pisdium guajava L.) Varieties with Different Ripening-behaviour
指導教授:吳俊達吳俊達引用關係
指導教授(外文):Chun-Ta Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:136
中文關鍵詞:番石榴乙烯ACC氧化酶後熟更年選殖
外文關鍵詞:guavaethyleneACC oxidaseripeningclimactericcloning
相關次數:
  • 被引用被引用:5
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
番石榴(Psidium guajava L.)為常綠熱帶果樹,果實富含維生素、礦物質及具抗氧化能力之特點,為臺灣極具發展潛力之經濟果樹。本島栽培番石榴品種依果實後熟特性可分為更年型與非更年型。試驗分析目前臺灣常見的非更年型番石榴栽培品種:‘珍珠拔’、‘水晶拔’、‘帝王拔’、‘二十世紀拔’及大村‘紅心拔’,果實採收後於20℃貯藏204 hr過程之乙烯生成率皆低於 0.20 μL C2H4‧kg-1‧hr-1,試驗期間皆沒有顯著乙烯生成的變化;相較於更年型品種‘梨仔拔’果實於20℃環境貯藏,其乙烯生成率可達71.02 μL C2H4‧kg-1‧hr-1,明顯高於非更年之品種。非更年型番石榴品種於自然環境下果實缺少大量的自生乙烯,而無劇烈軟化、轉色、濃郁香味生成的後熟反應,因此具有較長的儲運壽命與商品價值;而另以外施丙烯處理的結果顯示,丙烯可誘導非更年型番石榴果實進行後熟相關的生理變化,卻無法產生大量系統Ⅱ內生乙烯,顯示其後熟機制應與乙烯之生合成能力有著密切的關係,而非乙烯感受能力的差異所致。
以RT-PCR(reverse transcriptase- polymerase chain reaction)策略針對‘珍珠拔’及‘梨仔拔’兩品種番石榴組織進行ACO cDNA之選殖,兩品種果實皆可分離出兩個相同的番石榴cDNA選殖系,分別具有1,259及1,241個核苷酸,推估可轉譯出321個胺基酸,具有ACO活性相關的12個胺基酸與 4 個白胺酸拉鍊(leucine zipper)的結構位,其估算分子量為36.21及36.28 kDa,等電點(pI)為5.39 及 5.78。進一步將兩cDNA選殖系由大腸菌異源表現系統表達,皆能產生具有ACO活性的融合蛋白質,確認其為番石榴 ACO cDNA選殖系,分別命名為Pg-ACO1及Pg-ACO2。南方氏墨點法分析結果推估ACO基因在番石榴組基因的拷貝數約為4至5個。
北方墨點分析及RT-PCR分析Pg-ACO1及Pg-ACO2的表現結果,番石榴果實及枝條具有Pg-ACO1及Pg-ACO2轉錄產物的累積,而花朵及葉片無顯著轉錄產物的累積。Pg-ACO1於‘珍珠拔’與‘梨仔拔’分別於花後第60及120天持續表現至採後第12天,轉錄產物累積於不同天數並無明顯變化;Pg-ACO2於‘珍珠拔’與‘梨仔拔’皆於花後第15天幼果可偵測到轉錄產物的累積,隨後表現降低,分別於花後第60及120天才又恢復mRNA累積的情形。‘梨仔拔’果實Pg-ACO1及Pg-ACO2轉錄產物累積量於後熟過程皆有顯著上升趨勢,‘珍珠拔’則於採後貯藏期間持續表達。以100 μL‧L-1乙烯及10 mg‧L-1 1-MCP處理‘梨仔拔’番石榴綠熟果實,結果顯示Pg-ACO1及Pg-ACO2皆可受到乙烯誘導而增加轉錄產物的累積量;而1-MCP處理則具有壓抑兩者表達的效果,因而推估兩者皆具“系統Ⅱ”乙烯生成特性的ACO cDNA選殖系,兩選殖系皆可於‘珍珠拔’果實發育第60天即可偵測到轉錄產物的累積,又可於果實後熟階段表達,兩者表現的特性類似番茄無明顯系統區分的ACO基因,皆能參與果實乙烯生成系統Ⅰ與系統Ⅱ期間的乙烯生合成。果實組織酵素活性分析的結果得知,‘珍珠拔’果實組織ACO活性於採後第0~10天皆顯著高於‘梨仔拔’果實組織,顯示兩類型品種果實組織皆具催化ACC為乙烯的能力。
由上述結果指出,‘梨仔拔’與‘珍珠拔’之後熟特性差異並非Pg-ACO1及Pg-ACO2無法表達或缺乏ACO活性所造成。Pg-ACO1及Pg-ACO2於番石榴果實乙烯生成並無明顯的系統區分,Pg-ACO2為果實後熟主要表達的ACO。


Guava (Psidium guajava L.) is a tropical evergreen fruit crop of Myrtaceae, and its fruit is rich in vitamins and minerals and has antioxidant capacity. The guava cultivars in Taiwan are divided into 2 groups, climacteric and non-climacteric, based on their ripening behavior. Five of the common non-climacteric guava cultivars in Taiwan, ‘Jen-Ju Bar’, ‘Shuei-Jin Bar’, ‘Di-Wang Bar’, ‘Er-Shr-Shr-Ji Bar’ and ‘Hung-Shin Bar’, and one of the climacteric guava cultivar, ‘Li-Tzy Bar’, were used to investigated the postharvest physiology. The ethylene production of non-climacteric fruits remained under 0.20 μL‧kg-1‧L-1 during 204 hours storage at 20℃, while that of climacteic fruits could reach 71.02 μL‧kg-1‧L-1. Treatment of exogenous propylene induced the ripening related response of non-climacteric cultivar guava, indicating that the ripening mechanism in cultivars of this group is closely linked with ethylene synthesis instead of ethylene perception.
The two ACO cDNA clones in ‘Jen-Ju Bar’ and in ‘Li-Tzy Bar’ tissues were isolated by RT-PCR (reverse transcriptase- polymerase chain reaction). The numbers of base pairs, molecular weights of the derived amino acid sequence, and the pI value of these two cDNA clones were 1,259 and 1,241, 36.21 and 36.28 kDa, and 5.39 and 5.78, respectively. It was estimated that both of the cDNA clones were able to translate 321 amino acids, in which with 12 ACO activity related conserved residues and 4 leucine zipper sites. Fusion proteins of the two cDNA clones obtained by using E. coli heterologous expression system demonstrated ACO enzymatic activity, which confirm that the two cDNA clones are guava ACO cDNA clones, and thus named as Pg-ACO1and Pg-ACO2.The result of Southern blotting suggested that the copy number of ACO genes in guava genome is approximately 4 or 5.
The results of northern blotting and RT-PCR assay on Pg-ACO1and Pg-ACO2 showed that there was accumulation of transcripts of Pg-ACO1and Pg-ACO2 in guava fruits and shoots but not significant in flowers and leaves. Pg-ACO1 in ‘Jen-Ju Bar’ and in ‘Li-Tzy Bar’ constitutively expressed from 60 and 120 days after anthesis, respectively, to 12 days during postharvest. Pg-ACO2 transcripts in ‘Jen-Ju Bar’ and in ‘Li-Tzy Bar’ were detectable in the 15th day after anthesis, and then decreased until the 60th and 120th day after anthesis, respectively. Transcripts of Pg-ACO1and Pg-ACO2 in ‘Li-Tzy Bar’ fruit significantly increased during ripening, and that in ‘Jen-Ju Bar’ constitutively expressed during storage. The results of 100 μL‧L-1 ethylene and 10 mg‧L-1 1-MCP treatments showed that the transcripts of Pg-ACO1 and Pg-ACO2 in mature green ‘Li-Tzy Bar’ were both increased by ethylene elicitation and suppressed by 1-MCP. Therefore, it was inferred that two ACO cDNA clones possess the characteristics of “system Ⅱ” ethylene synthesis. However, in ‘Jen-Ju Bar’ fruits, the two ACO transcripts were detected from 60th day after anthesis to 12th day postharvest suggesting that both ACO clones might be involved in ethylene biosynthesis in both fruit development and ripening stage and that the two ACO transcripts possess characteristics of both “system Ⅰ” and “system Ⅱ”. In addition, the ACO activity of ‘Jen-Ju Bar’ was significantly higher than that of ‘Li-Tzy Bar’ during the first 10 days postharvest.
The results shown above indicate that the difference in the ripening behaviors between ‘Li-Tzy Bar’ and ‘Jen-Ju Bar’ is neither caused by silence of Pg-ACO1and Pg-ACO2 nor by the lack of ACO activity. Furthermore, according the ethylene and 1-MCP experiment on ACO transcripts in ‘Jen-Ju Bar’ fruits, it is hard to conclude which system of ethylene synthesis that both of Pg-ACO1 and Pg-ACO2 belong to.


口試委員會審定書........………………………………………………………………..i誌謝........………………………………………………………………………………..ii中文摘要………………………………………………………………………………..iii
英文摘要………………………………………………………………………………...v
第壹章 前言………………………………………………………………………...1
第貳章 前人研究…………………………………………………………………...3
一、 臺灣番石榴栽培品種更替演變…………………………………...3
二、 乙烯於高等植物之生理作用、訊息傳導與生合成……………...6
三、 ACC氧化酶之研究……………………………………………….12
四、 果實後熟與乙烯….………………………………………………24
第參章 臺灣常見非更年型番石榴品種果實後熟生理機制差異之探討
一、 前言……………………………………………………………….33
二、 材料與方法………………………………………………..…….. 35
三、 結果與討論……………………………………………………… 37
第肆章 番石榴ACC氧化酶cDNA之選殖與分析
一、 前言……………………………………………………………… 49
二、 材料與方法……………………………………………………… 51
三、 結果與討論……………………………………………………… 68
第伍章 番石榴ACC氧化酶cDNA表現及活性分析
一、 前言……………………………………………………………… 83
二、 材料與方法……………………………………………………… 85
三、 結果與討論……………………………………………………… 92
第陸章 結論………………………………………………………………….......107
參考文獻………………………………………………………………………..…….110
附錄………………………………………………………………………………..… 134


王茗慧. 2005. ‘帝王’番石榴無機養分週年變化果實後熟生理及貯藏之研究,國立中興大學園藝學系所碩士論文.
林慧玲. 1998. 番石榴果實後熟生理之研究,國立臺灣大學園藝學硏究所博士論文.
林慧玲、黃瑞華、王自存. 2005. 番石榴果實之貯運技術,行政院農業委員會農業試驗所編印.
張哲嘉、林宗賢. 1998. 台灣番石榴生產之現況與改進. 中國園藝. 44: 116-124.
張唐維. 1994. 香蕉乙烯形成酶cDNA之選殖及分析,國立臺灣大學園藝學硏究所碩士論文.
陳國恩. 2009. 不同後熟特性番石榴品種ACC合成酶cDNA選殖與分析,國立臺灣大學園藝學硏究所碩士論文.
蔡平里. 1997. 蔬果芬芳錄 12種有香味的台灣果菜. 豐年社, 台北市.
賴信忠. 1997. 香蕉ACC氧化酶基因載體表達與純化及生化特性分析,國立臺灣大學園藝學硏究所碩士論文.
謝慶昌. 1985. 楊桃果實生長調查及採收後處理之研究,國立臺灣大學園藝學研究所碩士論文.
謝鴻業. 1998. 台灣番石榴品種的演進與發展. 農業世界雜誌. 174: 23-25.
謝鴻業. 2000. 珍珠拔與水晶拔之特性與栽培管理. 高雄區農業專訊. 31: 16-17.
謝鴻業. 2002. 台灣番石榴產業發展現況與未來. 農業世界雜誌. 231: 10-13.
謝鴻業. 2006. 台灣番石榴產業問題及發展方向之探討. 國立嘉義大學園藝系編印.
謝鴻業、王智立. 2006. 番石榴之種原及育種. 國立屏東科技大學農園系編印.
顏秀芬. 1996. 番石榴果實呼吸型式及控制大氣組成貯藏延長其櫃架壽命之研究,國立臺灣大學園藝學研究所碩士論文.
Abeles, F., P. Morgan, and M. Saltveit. 1992. Ethylene in plant biology. Academic Press, New York, USA.
Adams, D.and S. Yang. 1977. Methionine metabolism in apple tissue: implication of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol. 60: 892-896.
Adams, D.O.and S.F. Yang. 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA. 76: 170-174.
Adams, D.O.and S.F. Yang. 1981. Ethylene the gaseous plant hormone - mechanism and regulation of biosynthesis. Trends Biochem. Sci. 6: 161-164.
Akashi, Y., S. Shiomi, Y. Kubo, M. Masuda, and K. Kato. 2001. Microsatellite and CAPS markers for ethylene-related genes, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase genes, and their variation in melon (Cucumis melo L.). Breeding Sci. 51: 107-112.
Alonso, J.M., T. Hirayama, G. Roman, S. Nourizadeh, and J.R. Ecker. 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 284: 2148-2152.
Anjanasree, K.N., P.K. Verma, and K.C. Bansal. 2005. Differential expression of tomato ACC oxidase gene family in relation to fruit ripening. Curr. Sci. India. 89: 1394-1399.
Ayub, R., M. Guis, M. BenAmor, L. Gillot, J.P. Roustan, A. Latche, M. Bouzayen, and J.C. Pech. 1996. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat. Biotechnol. 14: 862-866.
Azuma, R., H. Kurata, M. Adachi, and K. Shimokawa. 1999. Degreening of Citrus unshiu fruits via ethylene-induced soluble chlorophyllase. J. Jpn. Soc. Hortic. Sci. 68: 558-562.
Backlund, P., C. Chang, and R. Smith. 1982. Identification of 2-keto-4-methylthiobutyrate as an intermediate compound in methionine synthesis from 5''-methylthioadenosine. J. Biol. Chem. 257: 4196-4202.
Bapat, V.A., P.K. Trivedi, A. Ghosh, V.A. Sane, T.R. Ganapathi, and P. Nath. 2010. Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnol. Adv. 28: 94-107.
Barry, C.S., B. Blume, M. Bouzayen, W. Cooper, A.J. Hamilton, and D. Grierson. 1996. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J. 9: 525-535.
Barry, C.S.and J.J. Giovannoni. 2006. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc. Natl. Acad. Sci. USA. 103: 7923-7928.
Barry, C.S.and J.J. Giovannoni. 2007. Ethylene and fruit ripening. J. Plant. Growth. Regul. 26: 143-159.
Barry, C.S., M.I. Llop-Tous, and D. Grierson. 2000. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 123: 979-986.
Baur, A.and S. Yang. 1972. Methionine metabolism in apple tissue in relation to ethylene biosynthesis. Phytochemistry. 11: 3207-3214.
Benavente, L.M.and J.M. Alonso. 2006. Molecular mechanisms of ethylene signaling in Arabidopsis. Mol. Biosyst. 2: 165-173.
Bidonde, S., M.A. Ferrer, H. Zegzouti, S. Ramassamy, A. Latche, J.C. Pech, A.J. Hamilton, D. Grierson, and M. Bouzayen. 1998. Expression and characterization of three tomato 1-aminocyclopropane-1-carboxylate oxidase cDNAs in yeast. Eur. J. Biochem. 253: 20-26.
Binder, B.M. 2008. The ethylene receptors: Complex perception for a simple gas. Plant Sci. 175: 8-17.
Binnie, I.E.and M.T. McManus. 2009. Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh. Phytochemistry. 70: 348-360.
Bleecker, A.B., M.A. Estelle, C. Somerville, and H. Kende. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science. 241: 1086-1089.
Blume, B.and D. Grierson. 1997. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J. 12: 731-746.
Bolitho, K.M., M. LayYee, M.L. Knighton, and G.S. Ross. 1997. Antisense apple ACC-oxidase RNA reduces ethylene production in transgenic tomato fruit. Plant Sci. 122: 91-99.
Boller, T., R. Herner, and H. Kende. 1979. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta. 145: 293-303.
Bouquin, T., E. Lasserre, J. Pradier, J.C. Pech, and C. Balague. 1997. Wound and ethylene induction of the ACC oxidase melon gene CM-ACO1 occurs via two direct and independent transduction pathways. Plant Mol. Biol. 35: 1029-1035.
Bradford, K.J. 2008. Shang Fa Yang: Pioneer in plant ethylene biochemistry. Plant Sci. 175: 2-7.
Bradford, M.M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Burg, S. 1973. Ethylene in plant growth. Proc. Natl. Acad. Sci. USA. 70: 591-597.
Burg, S.P. 1959. Tracer experiments on the formation of ethylene by apple tissue. Arch. Biochem. Biophys. 84: 543-546.
Burg, S.P.and K.V. Thimann. 1959. The physiology of ethylene formation in apples. Proc. Natl. Acad. Sci. USA. . 45: 335.
Calvo, A.P., C. Nicolas, O. Lorenzo, G. Nicolas, and D. Rodriguez. 2004. Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds. J. Plant Growth Regul. 23: 44-53.
Cara, B.and J.J. Giovannoni. 2008. Molecular biology of ethylene during tomato fruit development and maturation. Plant Sci. 175: 106-113.
Chae, H.S., Y.G. Cho, M.Y. Park, M.C. Lee, M.Y. Eun, B.G. Kang, and W.T. Kim. 2000. Hormonal cross-talk between auxin and ethylene differentially regulates the expression of two members of the 1-aminocyclopropane-1-carboxylate oxidase gene family in rice (Oryza sativa L.). Plant Cell Physiol. 41: 354-362.
Chang, C., S.F. Kwok, A.B. Bleecker, and E.M. Meyerowitz. 1993. Arabidopsis ehylene-response gene Etr1 - similarity of product to 2-component regulators. Science. 262: 539-544.
Chang, S., J. Puryear, and J. Cairney. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113-116.
Chao, Q.M., M. Rothenberg, R. Solano, G. Roman, W. Terzaghi, and J.R. Ecker. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 89: 1133-1144.
Chen, Y.F., M.D. Randlett, J.L. Findell, and G.E. Schaller. 2002. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J. Biol. Chem. 277: 19861-19866.
Chen, Y.T., Y.R. Lee, C.Y. Yang, Y.T. Wang, S.F. Yang, and J.F. Shaw. 2003. A novel papaya ACC oxidase gene (CP-ACO2) associated with late stage fruit ripening and leaf senescence. Plant Sci. 164: 531-540.
Cheng, W.H., M.H. Chiang, S.G. Hwang, and P.C. Lin. 2009. Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Mol. Biol. 71: 61-80.
Chervin, C., A. El-Kereamy, J.P. Roustan, A. Latche, J. Lamon, and M. Bouzayen. 2004. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci. 167: 1301-1305.
Choudhury, S.R., S. Roy, and D.N. Senguptaa. 2008. Characterization of transcriptional profiles of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding, cold and different photoperiods during ripening in banana fruit. J. Plant Physiol. 165: 1865-1878.
Clark, K.L., P.B. Larsen, X.X. Wang, and C. Chang. 1998. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. P. Natl. Acad. Sci. USA. 95: 5401-5406.
Cohen, S.N., A.C.Y. Chang, and L. Hsu. 1972. Nonchromosomal antibiotic resistance in bacteria - genetic transformation of Escherichia coli by R-factor DNA. P. Natl. Acad. Sci. USA. 69: 2110-2114.
Crocker, W. 1932. The effect of ethylene upon living organisms. Proc. Am. Philos. Soc. 71: 295-298.
Do, Y.Y., T.S. Thay, T.W. Chang, and P.L. Huang. 2005. Molecular cloning and characterization of a novel 1-aminocyclopropane-1-carboxylate oxidase gene involved in ripening of banana fruits. J. Agr. Food. Chem. 53: 8239-8247.
Dong, J.G., J.C. Fernandezmaculet, and S.F. Yang. 1992a. Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc. Natl. Acad. Sci. U.S.A. 89: 9789-9793.
Dong, J.G., D. Olson, A. Silverstone, and S.F. Yang. 1992b. Sequence of a cDNA coding for a 1-aminocyclopropane-1-carboxylate oxidase homolog from apple fruit. Plant Physiol. 98: 1530-1531.
Dunlap, J.R.and K.M. Robacker. 1994. Wound-induced ethylene production from excised muskmelon fruit tissue. J. Hortic. Sci. 69: 189-195.
Dupille, E.and L. Zacarias. 1996. Extraction and biochemical characterization of wound-induced ACC oxidase from citrus peel. Plant Sci. 114: 53-60.
Ecker, J.R. 1995. The ethylene signal transduction pathway in plants. Science. 268: 667-675.
Escribano, M.I., C. Merodio, and P. John. 1996. Characterization of 1-aminocyclopropane-1-carboxylate oxidase partially purified from cherimoya fruit. J. Agr. Food Chem. 44: 730-735.
Fan, X.T., J.P. Mattheis, and J.K. Fellman. 1996. Inhibition of apple fruit 1-aminocyclopropane-1-carboxylic acid oxidase activity and respiration by acetylsalicylic acid. J. Plant Physiol. 149: 469-471.
Ferrarese, L., L. Trainotti, P. Moretto, P. Polverino de Laureto, N. Rascio, and G. Casadoro. 1995. Differential ethylene-inducible expression of cellulase in pepper plants. Plant Mol. Biol. 29: 735-747.
Gane, R. 1934. Production of ethylene by some ripening fruits. Nature. 134: 1008.
Gao, M., N. Matsuta, H. Murayama, T. Toyomasu, W. Mitsuhashi, A.M. Dandekar, R. Tao, and K. Nishimura. 2007. Gene expression and ethylene production in transgenic pear (Pyrus communis cv. ''La France'') with sense or antisense cDNA encoding ACC oxidase. Plant Sci. 173: 32-42.
Gao, Z.Y., Y.F. Chen, M.D. Randlett, X.C. Zhao, J.L. Findell, J.J. Kieber, and G.E. Schaller. 2003. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J. Biol. Chem. 278: 34725-34732.
Gapper, N.E., S.A. Coupe, M.J. McKenzie, B.K. Sinclair, R.E. Lill, and P.E. Jameson. 2005. Regulation of harvest-induced senescence in broccoli (Brassica oleracea var. Italica) by cytokinin, ethylene, and sucrose. J. Plant Growth Regul. 24: 153-165.
Gepstein, S.and K. Thimann. 1980. The effect of light on the production of ethylene from 1-aminocyclopropane-1-carboxylic acid by leaves. Planta. 149: 196-199.
Giovannoni, J. 2001. Molecular biology of fruit maturation and ripening. Annu. Rev. Plant Phys. 52: 725-749.
Gomez, M.L.P.A.and F.M. Lajolo. 2008. Ascorbic acid metabolism in fruits: activity of enzymes involved in synthesis and degradation during ripening in mango and guava. J. Sci. Food Agr. 88: 756-762.
Gong, Y.P.and J.P. Mattheis. 2003. Effect of ethylene and 1-methylcyclopropene on chlorophyll catabolism of broccoli florets. Plant Growth Regulation. 40: 33-38.
Grierson, D., A. Slater, J. Speirs, and G. Tucker. 1985. The appearance of polygalacturonase mRNA in tomatoes: one of a series of changes in gene expression during development and ripening. Planta. 163: 263-271.
Grierson, D., G. Tucker, J. Keen, J. Ray, C. Bird, and W. Schuch. 1986. Sequencing and identification of a cDNA done for tomato polygalacturonase. Nucleic Acids Res. 14: 8595.
Grodzinski, B., I. Boesel, and R. Horton. 1982. Ethylene release from leaves of Xanthium strumarium L. and Zea mays L. J. Exp. Bot. 33: 344.
Guo, H.W.and J.R. Ecker. 2003. Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell. 115: 667-677.
Guo, H.W.and J.R. Ecker. 2004. The ethylene signaling pathway: new insights. Curr. Opin. Plant Biol. 7: 40-49.
Guzman, P.and J.R. Ecker. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 2: 513-523.
Haji, T., H. Yaegaki, and M. Yamaguchi. 2003. Softening of stony hard peach by ethylene and the induction of endogenous ethylene by 1-aminocyclopropane-1-carboxylic acid (ACC). J. Jpn. Soc. Hortic. Sci. 72: 212-217.
Hall, A.E., J.L. Findell, G.E. Schaller, E.C. Sisler, and A.B. Bleecker. 2000. Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol. 123: 1449-1457.
Hall, B.P., S.N. Shakeel, and G.E. Schaller. 2007. Ethylene receptors: Ethylene perception and signal transduction. J. Plant Growth Regul. 26: 118-130.
Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98.
Hamilton, A., M. Bouzayen, and D. Grierson. 1991. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc. Natl. Acad. Sci. USA. 88: 7434-7437.
Hamilton, A.J., G.W. Lycett, and D. Grierson. 1990. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature: 284-287.
Hansen, E. 1942. Quantitative study of ethylene production in relation to respiration of pears. Bot. Gaz.: 543-558.
Harada, T., T. Sunako, Y. Wakasa, J. Soejima, T. Satoh, and M. Niizeki. 2000. An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor. Appl. Genet. 101: 742-746.
Hirayama, T., J.J. Kieber, N. Hirayama, M. Kogan, P. Guzman, S. Nourizadeh, J.M. Alonso, W.P. Dailey, A. Dancis, and J.R. Ecker. 1999. Responsive-to-antagonist1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell. 97: 383-393.
Holdsworth, M., C. Bird, J. Ray, W. Schuch, and D. Grierson. 1987. Structure and expression of an ethylene-related mRNA from tomato. Nucleic Acids Res. 15: 731-739.
Hua, J.and E.M. Meyerowitz. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell. 94: 261-271.
Huang, L.C., U.L. Lai, S.F. Yang, M.J. Chu, C.I. Kuo, M.F. Tsai, and C.W. Sun. 2007. Delayed flower senescence of Petunia hybrida plants transformed with antisense broccoli ACC synthase and ACC oxidase genes. Postharvest Biol. Tec. 46: 47-53.
Huang, P.L., Y.Y. Do, F.C. Huang, T.S. Thay, and T.W. Chang. 1997. Characterization and expression analysis of a banana gene encoding 1-aminocyclopropane-1-carboxylate oxidase. Biochem. Mol. Biol. Int. 41: 941-950.
Huang, Y.F., H. Li, C.E. Hutchison, J. Laskey, and J.J. Kieber. 2003. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 33: 221-233.
Hudgins, J.W., S.G. Ralph, V.R. Franceschi, and J. Bohlmann. 2006. Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta. 224: 865-877.
Hyodo, H., C. Hashimoto, S. Morozumi, W.Z. Hu, and K. Tanaka. 1993. Characterization and induction of the activity of 1-aminocyclopropane-1-carboxylate oxidase in the wounded mesocarp tissue of Cucurbita Maxima. Plant Cell Physiol. 34: 667-671.
Ichimura, K., H. Shimizu-Yumoto, and R. Goto. 2009. Ethylene production by gynoecium and receptacle is associated with sepal abscission in cut Delphinium flowers. Postharvest Biol. Tec. 52: 267-272.
Inaba, A. 2007. Studies on the internal feedback regulation of ethylene biosynthesis and signal transduction during fruit ripening, and the improvement of fruit quality. J. Jpn. Soc. Hortic. Sci. 76: 1-12.
Inaba, A., X.J. Liu, N. Yokotani, M. Yamane, W.J. Lu, R. Nakano, and Y. Kubo. 2007. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit. J. Exp. Bot. 58: 1047-1057.
Jacomino, A.P., R.A. Kluge, C.I.G. Sarantopoulos, and J.M.M. Sigrist. 2001a. Evaluation of plastic packages for guava refrigerated preservation. Packag. Technol. Sci. 14: 11-19.
Jacomino, A.P., C.I.G.D. Sarantopoulos, J.M.M. Sigrist, R.A. Kluge, and K. Minami. 2001b. Sensorial characteristics of "Kumagai" guavas submitted to passive modified atmosphere in plastic packages. J. Plast. Film Sheet. 17: 6-21.
Jin, Y.F., Y.Z. Zhang, and S.L. Zhang. 1999. Effect of ripening, wounding and ethylene treatment on expression of ACC oxidase gene of peach tissue. Acta Bot. Sin. 41: 222-225.
John, P. 1983. The coupling of ethylene biosynthesis to a transmembrane, electrogenic proton flux. FEBS Letters. 152: 141-143.
John, P. 1991. How plant molecular biologists revealed a surprising relationship between two enzymes, which took an enzyme out of a membrane where it was not located, and put it into the soluble phase where it could be studied. Plant Mol. Biol. Rep. 9: 192-194.
Kader, A.A. 1992. Postharvest Biology and Technology: An Overview, p. 15-20. In: A.A. Kader (ed.). Postharvest Technology of Horticultural Crops. University of California, Oakland.
Kadyrzhanova, D., T. McCully, T. Warner, K. Vlachonasios, Z. Wang, and D. Dilley. 1999. Analysis of ACC oxidase by site-directed mutagenesis of conserved amino acid residues, p. 7-12. In: A.K. Kanellis (ed.). Biology and biotechnology of the plant hormone ethylene II. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Kaneta, T., T. Kakimoto, and H. Shibaoka. 1997. Gibberellin A3 causes a decrease in the accumulation of mRNA for ACC oxidase and in the activity of the enzyme in azuki bean (Vigna angularis) epicotyls. Plant Cell Physiol. 38: 1135-1141.
Kao, C.and S. Yang. 1982. Light inhibition of the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in leaves is mediated through carbon dioxide. Planta. 155: 261-266.
Kasai, Y., H. Hyodo, Y. Ikoma, and M. Yano. 1998. Characterization of 1-aminocyclopropane-1-carboxylate (ACC) oxidase in broccoli florets and from Escherichia coli cells transformed with cDNA of broccoli ACC oxidase. Bot. Bull. Acad. Sinica. 39: 225-230.
Kays, S.and R. Paull. 2004. Postharvest biology. Exon Press, Athens, Georgia.
Kende, H. 1993. Ethylene biosynthesis. Annu. Rev. Plant Biol. 44: 283-307.
Kendrick, M.D.and C. Chang. 2008. Ethylene signaling: new levels of complexity and regulation. Curr. Opin. Plant Biol. 11: 479-485.
Kepczynski, J., B. Bialecka, and E. Kepczynska. 1999. Ethylene biosynthesis in Amaranthus caudatus seeds in response to methyl jasmonate. Plant Growth Regul. 28: 59-65.
Ketsa, S., S. Chidtragool, J.D. Klein, and S. Lurie. 1999. Ethylene synthesis in mango fruit following heat treatment. Postharvest Biol. Tec. 15: 65-72.
Kevany, B.M., D.M. Tieman, M.G. Taylor, V. Dal Cin, and H.J. Klee. 2007. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J. 51: 458-467.
Kieber, J.J. 1997. The ethylene signal transduction pathway in Arabidopsis. J. Exp. Bot. 48: 211-218.
Kieber, J.J., M. Rothenberg, G. Roman, K.A. Feldmann, and J.R. Ecker. 1993. Ctr1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein-kinases. Cell. 72: 427-441.
Kim, J.H. 2006. Ethylene-regulated expression of ACC oxidase and ACC synthase genes in mung bean hypocotyls. J. Plant Biol. 49: 291-297.
Kim, Y.S., D. Choi, M.M. Lee, S.H. Lee, and W.T. Kim. 1998. Biotic and abiotic stress-related expression of 1-aminocyclopropane-1-carboxylate oxidase gene family in Nicotiana glutinosa L. Plant Cell Physiol. 39: 565-573.
Klee, H.and D. Tieman. 2002. The tomato ethylene receptor gene family: Form and function. Physiol. Plantarum. 115: 336-341.
Kondo, S., S. Meemak, Y. Ban, T. Moriguchi, and T. Harada. 2009. Effects of auxin and jasmonates on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression during ripening of apple fruit. Postharvest Biol. Technol. 51: 281-284.
Kondo, S., H. Yamada, and S. Setha. 2007. Effect of jasmonates differed at fruit ripening stages on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression in pears. J. Am. Soc. Hortic. Sci. 132: 120-125.
Kushad, M.M., D.G. Richardson, and A.J. Ferro. 1983. Intermediates in the recycling of 5-methylthioribose to methionine in fruits. Plant Physiol. 73: 257.
Laemmli, U.K. 1970. Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature. 227: 680-685.
Lagunes, L., B. Tovar, M. Mata, J.C. Vinay-Vadillo, J. De La Cruz, and H.S. Garcia. 2007. Effect of exogenous ethylene on ACC content and ACC oxidase activity during ripening of manila mangoes subjected to hot water treatment. Plant Food Hum. Nutr. 62: 157-163.
Lam, P.F.and C.K. Wan. 1987. Ethylene and carbon-dioxide production of starfruits (Averrhoa carambola L.) stored at various temperatures and in different gas and relative humidity atmospheres. Trop. Agr. 64: 181-184.
Lashbrook, C.C., D.M. Tieman, and H.J. Klee. 1998. Differential regulation of the tomato ETR gene family throughout plant development. Plant J. 15: 243-252.
Lasserre, E., T. Bouquin, J.A. Hernandez, J. Bull, J.C. Pech, and C. Balague. 1996. Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol. Gen. Genet. 251: 81-90.
Lay, V.J., A.G. Prescott, P.G. Thomas, and P. John. 1996. Heterologous expression and site-directed mutagenesis of the 1-aminocyclopropane-1-carboxylate oxidase from kiwi fruit. Eur. J. Biochem. 242: 228-234.
Lee, J.H., X.W. Deng, and W.T. Kim. 2006. Possible role of light in the maintenance of EIN3/EIL1 stability in Arabidopsis seedlings. Biochem. Bioph. Res. Co. 350: 484-491.
Lee, M.M., S.H. Lee, and K.Y. Park. 1997. Effects of spermine on ethylene biosynthesis in cut carnation (Dianthus caryophyllus L) flowers during senescence. J. Plant Physiol. 151: 68-73.
Lee, S., E.J. Chung, Y.H. Joung, and D. Choi. 2010. Non-climacteric fruit ripening in pepper: increased transcription of EIL-like genes normally regulated by ethylene. Funct. Integr. Genomic. 10: 135-146.
Lelievre, J.M., L. Tichit, P. Dao, L. Fillion, Y.W. Nam, J.C. Pech, and A. Latche. 1997. Effects of chilling on the expression of ethylene biosynthetic genes in Passe-Crassane pear (Pyrus communis L) fruits. Plant Mol. Biol. 33: 847-855.
Lieberman, M. 1979. Biosynthesis and action of ethylene. Ann. Rev. Pl. Physiol. 30: 533-591.
Lieberman, M., A. Kunishi, L.W. Mapson, and D.A. Wardale. 1966. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol. 41: 376-382.
Lieberman, M.and L. Mapson. 1964. Genesis and biogenesis of ethylene. Nature. 204: 343-345.
Lin, Z., S. Zhong, and D. Grierson. 2009. Recent advances in ethylene research. J. Exp. Bot. 60: 3311-3336.
Lin, Z.F., Y.G. Hong, M.G. Yin, C.Y. Li, K. Zhang, and D. Grierson. 2008. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J. 55: 301-310.
Liu, J.H., S.H. LeeTamon, and D.M. Reid. 1997. Differential and wound-inducible expression of 1-aminocyclopropane-1-carboxylate oxidase genes in sunflower seedlings. Plant Mol. Biol. 34: 923-933.
Liu, X., S. Shiomi, A. Nakatsuka, Y. Kubo, R. Nakamura, and A. Inaba. 1999. Characterization of ethylene biosynthesis associated with ripening in banana fruit. Plant Physiol. 121: 1257-1266.
Lopez-Gomez, R., J.L. Cabrera-Ponce, L.J. Saucedo-Arias, L. Carreto-Montoya, R. Villanueva-Arce, J.C. Diaz-Perez, M.A. Gomez-Lim, and L. Herrera-Estrella. 2009. Ripening in papaya fruit is altered by ACC oxidase cosuppression. Transgenic Res. 18: 89-97.
Ma, B., M.L. Cui, H.J. Sun, K. Takada, H. Mori, H. Kamada, and H. Ezura. 2006. Subcellular localization and membrane topology of the melon ethylene receptor CmERS1. Plant Physiol. 141: 587-597.
Manavella, P.A., A.L. Arce, C.A. Dezar, F. Bitton, J.P. Renou, M. Crespi, and R.L. Chan. 2006. Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J. 48: 125-137.
Manning, K., M. Tor, M. Poole, Y. Hong, A.J. Thompson, G.J. King, J.J. Giovannoni, and G.B. Seymour. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38: 948-952.
Mattoo, A.K.and W.B. White. 1991. Regulation of ethylene biosynthesis.
Maunders, M., M. Holdsworth, A. Slater, J. Knapp, C. Bird, W. Schuch, and D. Grierson. 1987. Ethylene stimulates the accumulation of ripening-related mRNAs in tomatoes. Plant Cell Environ. 10: 177-184.
Mayne, R.G.and H. Kende. 1986. Ethylene biosynthesis in isolated vacuoles of Vicia faba L. — requirement for membrane integrity Planta. 167: 159-165.
McGarvey, D.J., R. Sirevag, and R.E. Christoffersen. 1992. Ripening-related gene from avocado fruit: ethylene-inducible expression of the messenger-RNA and polypeptide. Plant Physiol. 98: 554-559.
McGarvey, D.J., H. Yu, and R.E. Christoffersen. 1990. Nucleotide-sequence of a ripening-related cDNA from avocado fruit. Plant Mol. Biol. 15: 165-167.
McMurchie, E.J., W.B. McGlasson, and I.L. Eaks. 1972. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature. 237: 235-236.
Mita, S., C. Kirita, M. Kato, and H. Hyodo. 1999. Expression of ACC synthase is enhanced earlier than that of ACC oxidase during fruit ripening of mume (Prunus mume). Physiol. Plantarum. 107: 319-328.
Moussatche, P.and H.J. Klee. 2004. Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J. Biol. Chem. 279: 48734-48741.
Mukkun, L.and Z. Singh. 2009. Methyl jasmonate plays a role in fruit ripening of ''Pajaro'' strawberry through stimulation of ethylene biosynthesis. Sci. Hortic. 123: 5-10.
Murr, D.and S. Yang. 1975. Inhibition of in vivo conversion of methionine to ethylene by L-canaline and 2, 4-dinitrophenol. Plant Physiol. 55: 79-82.
Nakatsuka, A., S. Murachi, H. Okunishi, S. Shiomi, R. Nakano, Y. Kubo, and A. Inaba. 1998. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1 -carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol. 118: 1295-1305.
Nakatsuka, A., S. Shiomi, Y. Kubo, and A. Inaba. 1997. Expression and internal feedback regulation of ACC synthase and ACC oxidase genes in ripening tomato fruit. Plant Cell Physiol. 38: 1103-1110.
Nie, X.Z., R.P. Singh, and G.C.C. Tai. 2002. Molecular characterization and expression analysis of 1-aminocyclopropane-1-carboxylate oxidase homologs from potato under abiotic and biotic stresses. Genome. 45: 905-913.
Nunez-Palenius, H.G., D.J. Cantliffe, D.J. Huber, J. Ciardi, and H.J. Klee. 2006. Transformation of a muskmelon ''Galia'' hybrid parental line (Cucumis melo L. var. reticulatus Ser.) with an antisense ACC oxidase gene. Plant Cell Rep. 25: 198-205.
O''Hare, T.J. 1993. Postharvest physiology and storage of carambola (starfruit): a review. Postharv. Biol. Technol. 2: 257-267.
O''Malley, R.C., F.I. Rodriguez, J.J. Esch, B.M. Binder, P. O''Donnell, H.J. Klee, and A.B. Bleecker. 2005. Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. Plant J. 41: 651-659.
Oraguzie, N.C., H. Iwanami, J. Soejima, T. Harada, and A. Hall. 2004. Inheritance of the Md-ACS1 gene and its relationship to fruit softening in apple (Malus x domestica Borkh.). Theor. Appl. Genet. 108: 1526-1533.
Ouaked, F., W. Rozhon, D. Lecourieux, and H. Hirt. 2003. A MAPK pathway mediates ethylene signaling in plants. Embo J. 22: 1282-1288.
Owino, W.O., R. Nakano, Y. Kubo, and A. Inaba. 2002. Differential regulation of genes encoding ethylene biosynthesis enzymes and ethylene response sensor ortholog during ripening and in response to wounding in avocados. J. Am. Soc. Hortic. Sci. 127: 520-527.
Pan, G.and C.F. Lou. 2008. Isolation of an 1-aminocyclopropane-1-carboxylate oxidase gene from mulberry (Morus alba L.) and analysis of the function of this gene in plant development and stresses response. J. Plant Physiol. 165: 1204-1213.
Pang, X.M., K. Nada, J.H. Liu, H. Kitashiba, C. Honda, H. Yamashita, M. Tatsuki, and T. Moriguchi. 2006. Interrelationship between polyamine and ethylene in 1-methylcyclopropene treated apple fruits after harvest. Physiol. Plantarum. 128: 351-359.
Pech, J.C., M. Bouzayen, and A. Latche. 2008. Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 175: 114-120.
Porter, A., J. Borlakoglu, and P. John. 1986. Activity of the ethylene-forming enzyme in relation to plant cell structure and organization. J. Plant Physiol. 125: 207-216.
Prasanna, V., T.N. Prabha, and R.N. Tharanathan. 2007. Fruit ripening phenomena - An overview. Crit. Rev. Food Sci. 47: 1-19.
Qiao, H., K.N. Chang, J. Yazaki, and J.R. Ecker. 2009. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev. 23: 512-521.
Qin, J., K.J. Zuo, J.Y. Zhao, H. Ling, Y.F. Cao, C.X. Qiu, F.P. Li, X.F. Sun, and K.X. Tang. 2006. Overexpression of GbERF confers alteration of ethylene-responsive gene expression and enhanced resistance to Pseudomonas syringae in transgenic tobacco. J. Biosciences. 31: 255-263.
Rai, M.K., P. Asthana, V.S. Jaiswal, and U. Jaiswal. 2010. Biotechnological advances in guava (Psidium guajava L.): recent developments and prospects for further research. Trees-Struct. Funct. 24: 1-12.
Rocklin, A., D. Tierney, V. Kofman, N. Brunhuber, B. Hoffman, R. Christoffersen, N. Reich, J. Lipscomb, and L. Que. 1999. Role of the nonheme Fe (II) center in the biosynthesis of the plant hormone ethylene. Proc. Natl. Acad. Sci. USA. 96: 7905-7909.
Rocklin, A.M., K. Kato, H.W. Liu, L. Que, Jr., and J.D. Lipscomb. 2004. Mechanistic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: single turnover reaction. J. Biol. Inorg. Chem. 9: 171-182.
Rodriguez, F.I., J.J. Esch, A.E. Hall, B.M. Binder, G.E. Schaller, and A.B. Bleecker. 1999. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science. 283: 996-998.
Ross, G.S., M.L. Knighton, and M. Layyee. 1992. An ethylene-related cDNA from ripening apples. Plant Mol. Biol. 19: 231-238.
Sambrook, J.and D.W. Russell. 2001. Molecular cloning: a laboratory manual. 3rd. vol. 1, 2, 3. Cold Spring Harbor laboratory press, N.Y.
Schaller, G.E.and A.B. Bleecker. 1995a. Ethylene-Binding Sites Generated in Yeast Expressing the Arabidopsis Etr1 Gene. Science. 270: 1809-1811.
Schaller, G.E.and A.B. Bleecker. 1995b. Ethylene-binding sites generated in yeast rxpressing the Arabidopsis Etr1 gene. Science. 270: 1809-1811.
Shiomi, S., M. Yamamoto, R. Nakamura, and A. Inaba. 1999. Expression of ACC synthase and ACC oxidase genes in melons harvested at different stages of maturity. J. Jpn. Soc. Hortic. Sci. 68: 10-17.
Shiomi, S., M. Yamamoto, T. Ono, K. Kakiuchi, J. Nakamoto, A. Nakatsuka, Y. Kubo, R. Nakamura, A. Inaba, and H. Imaseki. 1998. cDNA cloning of ACC synthase and ACC oxidase genes in cucumber fruit and their differential expression by wounding and auxin. J. Japan. Soc. Hort. Sci. 67: 685-692.
Singh, G. 2005. Strategies for improved production in guava., p. 26-39. In: M.A. Kishun R, Singh G, Chandra R (ed.). Proceeding of 1st international guava symposium. CISH, Lucknow, India.
Singh, S.P.and R.K. Pal. 2008. Controlled atmosphere storage of guava (Psidium guajava L.) fruit. Postharvest Biol. Tec. 47: 296-306.
Smith, C., A. Slater, and D. Grierson. 1986. Rapid appearance of an mRNA correlated with ethylene synthesis encoding a protein ofmolecular weight 35000. Planta. 168: 94-100.
Smith, J.J., Z.H. Zhang, C.J. Schofield, P. John, and J.E. Baldwin. 1994. Inactivation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase. J. Exp. Bot. 45: 521-527.
Solano, R., A. Stepanova, Q. Chao, and J.R. Ecker. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 12: 3703-3714.
Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel-electrophoresis. J. Mol. Biol. 98: 503-514.
Stepanova, A.N.and J.M. Alonso. 2005. Ethylene signalling and response pathway: a unique signalling cascade with a multitude of inputs and outputs. Physiol. Plantarum. 123: 195-206.
Sunako, T., W. Sakuraba, M. Senda, S. Akada, R. Ishikawa, M. Niizeki, and T. Harada. 1999. An allele of the ripening-specific 1-aminocyclopropane-1-carboxylic acid synthase gene (ACS1) in apple fruit with a long storage life. Plant Physiol. 119: 1297-1304.
Takahashi, H., T. Kobayashi, K. Sato-Nara, K. Tomita, and H. Ezura. 2002. Detection of ethylene receptor protein Cm-ERS1 during fruit development in melon (Cucumis melo L.). J. Exp. Bot. 53: 415-422.
Tassoni, A., C.B. Watkins, and P.J. Davies. 2006. Inhibition of the ethylene response by 1-MCP in tomato suggests that polyamines are not involved in delaying ripening, but may moderate the rate of ripening or over-ripening. J. Exp. Bot. 57: 3313-3325.
Tatsuki, M., T. Haji, and M. Yamaguchi. 2006. The involvement of 1-aminocyclopropane-1-carboxylic acid synthase isogene, Pp-ACS1, in peach fruit softening. J. Exp. Bot. 57: 1281-1289.
Tian, M.S., S. Prakash, N.X. Zhang, and G.S. Ross. 2002. Chilling-induced ethylene biosynthesis in Braeburn apples. Plant Growth Regul. 38: 249-257.
Tieman, D.M., J.A. Ciardi, M.G. Taylor, and H.J. Klee. 2001. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J. 26: 47-58.
Verlinden, S.and W.R. Woodson. 1998. The physiological and molecular responses of carnation flowers to high temperature. Postharvest Biol. Tec. 14: 185-192.
Ververidis, P.and P. John. 1991. Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry. 30: 725-727.
Villavicencio, L., S.M. Blankenship, D.C. Sanders, and W.H. Swallow. 1999. Ethylene and carbon dioxide production in detached fruit of selected pepper cultivars. J. Am. Soc. Hortic. Sci. 124: 402-406.
Villavicencio, L.E., S.M. Blankenship, D.C. Sanders, and W.H. Swallow. 2001. Ethylene and carbon dioxide concentrations in attached fruits of pepper cultivars during ripening. Sci. Hortic. 91: 17-24.
Vrebalov, J., D. Ruezinsky, V. Padmanabhan, R. White, D. Medrano, R. Drake, W. Schuch, and J. Giovannoni. 2002. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science. 296: 343-346.
Wang, A., J. Yamakake, H. Kudo, Y. Wakasa, Y. Hatsuyama, M. Igarashi, A. Kasai, T.Z. Li, and T. Harada. 2009a. Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit. Plant Physiol. 151: 391-399.
Wang, H.and W.R. Woodson. 1991. A flower senescence-related messenger-RNA from carnation shares sequence similarity with fruit ripening-related messenger-RNAs involved in ethylene biosynthesis. Plant Physiol. 96: 1000-1001.
Wang, Z.W., H.W. Duan, and C.Y. Hu. 2009b. Modelling the respiration rate of guava (Psidium guajava L.) fruit using enzyme kinetics, chemical kinetics and artificial neural network. European Food Research and Technology. 229: 495-503.
Wilkinson, J.Q., M.B. Lanahan, H.C. Yen, J.J. Giovannoni, and H.J. Klee. 1995. An ethylene-inducible component of signal-transduction encoded by Never-Ripe. Science. 270: 1807-1809.
Xu, Z.C., H. Hyodo, Y. Ikoma, M. Yano, and K. Ogawa. 1998. Biochemical characterization and expression of recombinant ACC oxidase in Escherichia coli and endogenous ACC oxidase from kiwifruit. Postharvest Biol. Tec. 14: 41-50.
Yamane, M., D. Abe, S. Yasui, N. Yokotani, W. Kimata, K. Ushijima, R. Nakano, Y. Kubo, and A. Inaba. 2007. Differential expression of ethylene biosynthetic genes in climacteric and non-climacteric Chinese pear fruit. Postharvest Biol. Tec. 44: 220-227.
Yang, S. 1974. The biochemistry of ethylene: biogenesis and metabolism. Recent Adv. Phytochem. 7: 131-164.
Yang, S.F.and N.E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher-plants. Annu. Rev. Plant Phys. 35: 155-189.
Yuan, R.C.and J.G. Li. 2008. Effect of sprayable 1-MCP, AVG, and NAA on ethylene biosynthesis, preharvest fruit drop, fruit maturity, and quality of ''Delicious'' apples. Hortscience. 43: 1454-1460.
Zhang, M., B. Yuan, and P. Leng. 2009a. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J. Exp. Bot. 60: 1579-1588.
Zhang, Y., K.S. Chen, S.L. Zhang, and I. Ferguson. 2003. The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biol. Tec. 28: 67-74.
Zhang, Z., J.S. Ren, I.J. Clifton, and C.J. Schofield. 2004. Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase--the ethylene-forming enzyme. Chem. Biol. 11: 1383-1394.
Zhang, Z.J., H.W. Zhang, R.D. Quan, X.C. Wang, and R.F. Huang. 2009b. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol. 150: 365-377.
Zheng, Q.L., A. Nakatsuka, and H. Itamura. 2005. Extraction and characterization of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase from wounded persimmon fruit. J. Jpn. Soc. Hortic. Sci. 74: 159-166.
Zheng, Y., W. Wolff, and M. Crosby. 2002. Genetics of ethylene biosynthesis and restriction fragment length polymorphisms (RFLPs) of ACC oxidase and synthase genes in melon ( Cucumis melo L.). Theor. Appl. Genet. 105: 397-403.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top