跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃佳婷
研究生(外文):Chia-Ting Huang
論文名稱:在隨機波動率下之雙變數樹評價模型
論文名稱(外文):On Bivariate Lattices for Option Pricing under Stochastic Volatility Models
指導教授:呂育道呂育道引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:36
中文關鍵詞:隨機波動率雙變數2/3-元樹模型
外文關鍵詞:stochastic volatilitybivariate bino-trinomial model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Hilliard和Schwartz(1996)提出一個雙變數二元樹模型,其模型可以在隨機波動率下評價選擇權,並允許股價與波動率有相關性。本論文旨在探討 Hilliard和 Schwartz(1996)的雙變數二元樹模型演算法之缺點,以及提供一個部分修正方案。論文針對在 Hilliard和Schwartz(1996)模型中會發生錯誤機率的股價二元樹,改用平均數追蹤法建構的三元樹,而波動率還是維持二元樹,稱此架構為雙變數2/3-元樹模型,最後用此模型去評價選擇權。

The bivariate binomial framework of Hilliard and Schwartz (1996) allows non-zero correlation between the stochastic volatility and the underlying process. It can also be used to value American options. This thesis points out the problems with their bivariate binomial model. It also provides a partial solution to deal with those problems.
When pricing options with the Hilliard-Schwartz model, it is easy to demonstrate that incorrect probabilities will occur in some situations. We use the mean-tracking method to construct trinomial trees instead of binomial trees for one dimension. Nevertheless, the stochastic volatility dimension still adopts the binomial tree as Hilliard and Schwartz (1996). The framework will be called the bivariate bino-trinomial model, and it is used to evaluate options.


目 錄
口試委員會審定書 ........................................................................................................... i
致 謝 ............................................................................................................................... ii
摘 要 ............................................................................................................................... iii
Abstract ............................................................................................................................ iv
圖目錄 ............................................................................................................................. vi
表目錄 ............................................................................................................................ vii
第一章 緒論 .................................................................................................................. 1
1.1研究目的與動機 .................................................................................................... 1
1.2論文架構 ................................................................................................................ 2
第二章 Hilliard和Schwartz(1996)的雙變數二元樹模型 ..................................... 3
2.1隨機波動率模型假設 ............................................................................................ 3
2.2 建構雙變數二元樹 ............................................................................................... 3
2.3 跳動幅度和聯合機率 ........................................................................................... 5
2.4 Hilliard和Schwartz(1996)演算法的問題 ....................................................... 7
第三章 雙變數2/3-元樹模型 ....................................................................................... 9
3.1 隨機波動率模型假設與轉換 ............................................................................... 9
3.2平均數追蹤法(mean-tracking method) ............................................................ 9
3.3 跳動幅度和聯合機率 ......................................................................................... 16
第四章 數值資料與分析 ............................................................................................ 19
第五章 結論與展望 .................................................................................................... 25
附 錄 .............................................................................................................................. 26
參考文獻 ........................................................................................................................ 36

[1] Yung-Chi Chu. Option Pricing with Stochastic Volatility. MBA thesis, NTU, 2006.
[2] Tian-Shyr Dai and Yuh-Dauh Lyuu. The Bino-Trinomial Tree: A Simple Model for Efficient and Accurate Option Pricing. Journal of Derivatives, Vol. 17 (2010), 7–24.
[3] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. The Review of Financial Studies, 6, No. 2 (1993), 327–343.
[4] J. Hilliard and A. Schwartz. Binomial Option Pricing under Stochastic Volatility and Correlated State Variables. Journal of Derivatives, Fall 1996, 23–39.
[5] J. Hull and A. White. The Pricing of Options on Assets with Stochastic Volatility. Journal of Finance, 42, No. 2 (June 1987), 281–300.
[6] H. Johnson and D. Shanno. Option Pricing when the Variance is Changing. The Journal of Financial and Quantitative Analysis, 22, No. 2 (June 1987), 143–151.
[7] Yuh-Dauh Lyuu. Financial Engineering and Computation. Cambridge University, UK, 2002.
[8] Yuh-Dauh Lyuu and Chi-Ning Wu. On Accurate and Provably Efficient GARCH Option Pricing Algorithms. Quantitative Finance, 5, No. 2 (April 2005), 181–198.
[9] D. B. Nelson and K. Ramaswamy. Simple Binomial Processes as Diffusion Approximations in Financial Models. Review of Financial Studies, Vol. 3 (1990), 393–430.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文