|
[1] Gether, U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 2000, 21, 90–113. [2] Lagerström, M. C.; Schiöth, H. B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 2008, 7, 339–357. [3] Fredriksson, R.; Lagerström, M. C.; Lundin, L.-G.; Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 2003, 63, 1256–1272. [4] Flower, D. R. Modelling G-protein-coupled receptors for drug design. Biochim. Biophys. Acta 1999, 1422, 207–234. [5] Imming, P.; Sinning, C.; Meyer, A. Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discov. 2006, 5, 821–834. [6] Attwood, T. K.; Findlay, J. B. Fingerprinting G-protein-coupled receptors. Protein Eng. 1994, 7, 195–203. [7] Kolakowski, L. F. GCRDb: a G-protein-coupled receptor database. Recept. Channels 1994, 2, 1–7. [8] Barnard, E. A. Receptor classes and the transmitter-gated ion channels. Trends Biochem. Sci. 1992, 17, 368–374. [9] Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Trong, I. L.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano, M. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000, 289, 739–745. [10] Rasmussen, S. G. F.; Choi, H.-J.; Rosenbaum, D. M.; Kobilka, T. S.; Thian, F. S.; Edwards, P. C.; Burghammer, M.; Ratnala, V. R. P.; Sanishvili, R.; Fischetti, R. F.; Schertler, G. F. X.;Weis,W. I.; Kobilka, B. K. Crystal structure of the human b2 adrenergic G-protein-coupled receptor. Nature 2007, 450, 383–387. [11] Rosenbaum, D. M.; Rasmussen, S. G. F.; Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 2009, 459, 356–363. [12] Jaakola, V.-P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; Lane, J. R.; Ijzerman, A. P.; Stevens, R. C. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 2008, 322, 1211–1217. [13] Warne, T.; Serrano-Vega, M. J.; Baker, J. G.; Moukhametzianov, R.; Edwards, P. C.; Henderson, R.; Leslie, A. G. W.; Tate, C. G.; Schertler, G. F. X. Structure of a b1-adrenergic G-protein-coupled receptor. Nature 2008, 454, 486–491. [14] Murakami, M.; Kouyama, T. Crystal structure of squid rhodopsin. Nature 2008, 453, 363–367. [15] Hanson, M. A.; Stevens, R. C. Discovery of new GPCR biology: one receptor structure at a time. Structure 2009, 17, 8–14. [16] Dohlman, H. G.; Bouvier, M.; Benovic, J. L.; Caron, M. G.; Lefkowitz, R. J. The multiple membrane spanning topography of the beta 2-adrenergic receptor. Localization of the sites of binding, glycosylation, and regulatory phosphorylation by limited proteolysis. J. Biol. Chem. 1987, 262, 14282–14288. [17] Ahuja, S.; Smith, S. O. Multiple switches in G protein-coupled receptor activation. Trends Pharmacol. Sci. 2009, 30, 494–502. [18] Nygaard, R.; Frimurer, T. M.; Holst, B.; Rosenkilde, M. M.; Schwartz, T. W. Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol. Sci. 2009, 30, 249–259. [19] Ballesteros, J. A.; Shi, L.; Javitch, J. A. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol. Pharmacol. 2001, 60, 1–19. [20] Vogel, R.; Mahalingam, M.; Lüdeke, S.; Huber, T.; Siebert, F.; Sakmar, T. P. Functional role of the “ionic lock"–an interhelical hydrogen-bond network in family A heptahelical receptors. J. Mol. Biol. 2008, 380, 648–655. [21] Schneider, E. H.; Schnell, D.; Strasser, A.; Dove, S.; Seifert, R. Impact of the DRY motif and the missing “ionic lock” on constitutive activity and G-protein coupling of the human histamine H4 receptor. J. Pharmacol. Exp. Ther. 2010, 333, 382–392. [22] Deupi, X.; Olivella, M.; Sanz, A.; Dölker, N.; Campillo, M.; Pardo, L. Influence of the g- conformation of Ser and Thr on the structure of transmembrane helices. J. Struct. Biol. 2010, 169, 116–123. [23] Jongejan, A.; Bruysters, M.; Ballesteros, J. A.; Haaksma, E.; Bakker, R. A.; Pardo, L.; Leurs, R. Linking agonist binding to histamine H1 receptor activation. Nat. Chem. Biol. 2005, 1, 98–103. [24] Shi, L.; Liapakis, G.; Xu, R.; Guarnieri, F.; Ballesteros, J. A.; Javitch, J. A. b2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J. Biol. Chem. 2002, 277, 40989–40996. [25] Schertler, G. F. X. Structure of rhodopsin and the metarhodopsin I photointermediate. Curr. Opin. Struct. Biol. 2005, 15, 408–415. [26] Angel, T. E.; Chance, M. R.; Palczewski, K. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 8555–8560. [27] Lovell, P. J.; Bromidge, S. M.; Dabbs, S.; Duckworth, D. M.; Forbes, I. T.; Jennings, A. J.; King, F. D.; Middlemiss, D. N.; Rahman, S. K.; Saunders, D. V.; Collin, L. L.; Hagan, J. J.; Riley, G. J.; Thomas, D. R. A novel, potent, and selective 5-HT(7) antagonist: (R)-3-(2-(2- (4-methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl) phenol (SB-269970). J. Med. Chem. 2000, 43, 342–345. [28] Baldwin, J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993, 12, 1693–1703. [29] Oliveira, L.; Paiva, A. C. M.; Vriend, G. A common motif in G-protein-coupled seven transmembrane helix receptors. J. Comput. Aided Mol. Des. 1993, 7, 649–658. [30] Ballesteros, J. A.; Weinstein, H. Integrated methods for the construction of threedimensional models and computational probing of structure-function relations in G proteincoupled receptors. In Receptor Molecular Biology; Sealfon, S. C., Ed.; Academic Press, 1995; Chapter 19, pp 366–428. [31] Hannon, J.; Hoyer, D. Molecular biology of 5-HT receptors. Behav. Brain Res. 2008, 195, 198–213. [32] Hoyer, D.; Hannon, J. P.; Martin, G. R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 2002, 71, 533–554. [33] Pauwels, P. J. 5-HT Receptors and their Ligands, 2003. [34] Gaddum, J. H.; Picarelli, Z. P. Two kinds of tryptamine receptor. Br. J. Pharmacol. Chemother. 1957, 12, 323–328. [35] White, F. A.; Ishaq, M.; Stoner, G. L.; Frisque, R. J. JC virus DNA is present in many human brain samples from patients without progressive multifocal leukoencephalopathy. J. Virol. 1992, 66, 5726–5734. [36] Hedlund, P. B.; Danielson, P. E.; Thomas, E. A.; Slanina, K.; Carson, M. J.; Sutcliffe, J. G. No hypothermic response to serotonin in 5-HT7 receptor knockout mice. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 1375–1380. [37] Agosti, R. M. 5HT1F- and 5HT7-receptor agonists for the treatment of migraines. CNS Neurol. Disord. Drug Targets 2007, 6, 235–237. [38] Rost, B. Twilight zone of protein sequence alignments. Protein Eng. 1999, 12, 85–94. [39] Sali, A.; Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815. [40] Chung, S. Y.; Subbiah, S. A structural explanation for the twilight zone of protein sequence homology. Structure 1996, 4, 1123–1127. [41] Evers, A.; Klebe, G. Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model. J. Med. Chem. 2004, 47, 5381–5392. [42] Evers, A.; Hessler, G.; Matter, H.; Klabunde, T. Virtual screening of biogenic aminebinding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols. J. Med. Chem. 2005, 48, 5448–5465. [43] Radestock, S.; Weil, T.; Renner, S. Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring. J. Chem. Inf. Model. 2008, 48, 1104–1117. [44] Horn, F.; Weare, J.; Beukers, M. W.; Hörsch, S.; Bairoch, A.; Chen, W.; Edvardsen, O.; Campagne, F.; Vriend, G. GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res. 1998, 26, 275–279. [45] Do, C. B.; Mahabhashyam, M. S. P.; Brudno, M.; Batzoglou, S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 2005, 15, 330–340. [46] Beitz, E. TEXshade: shading and labeling of multiple sequence alignments using LATEX2 epsilon. Bioinformatics 2000, 16, 135–139. [47] Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H.-J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Highresolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 2007, 318, 1258–1265. [48] Mobarec, J. C.; Sanchez, R.; Filizola, M. Modern Homology Modeling of G-Protein Coupled Receptors: Which Structural Template to Use? J. Med. Chem. 2009, 52, 5207–5216. [49] Bockaert, J.; Marin, P.; Dumuis, A.; Fagni, L. The ‘magic tail’ of G protein-coupled receptors: an anchorage for functional protein networks. FEBS Lett. 2003, 546, 65–72. [50] Buck, F.; Meyerhof, W.; Werr, H.; Richter, D. Characterization of N- and C-terminal deletion mutants of the rat serotonin HT2 receptor in Xenopus laevis oocytes. Biochem. Biophys. Res. Commun. 1991, 178, 1421–1428. [51] Schneider, H.; Feyen, J. H.; Seuwen, K. A C-terminally truncated human parathyroid hormone receptor is functional and activates multiple G proteins. FEBS Lett. 1994, 351, 281–285. [52] Krobert, K. A.; Bach, T.; Syversveen, T.; Kvingedal, A. M.; Levy, F. O. The cloned human 5-HT7 receptor splice variants: a comparative characterization of their pharmacology, function and distribution. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2001, 363, 620–632. [53] Krobert, K. A.; Levy, F. O. The human 5-HT7 serotonin receptor splice variants: constitutive activity and inverse agonist effects. Br. J. Pharmacol. 2002, 135, 1563–1571. [54] Sali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M. Evaluation of comparative protein modeling by MODELLER. Proteins 1995, 23, 318–326. [55] Laskowski, R. A.; Rullmannn, J. A.; MacArthur, M. W.; Kaptein, R.; Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996, 8, 477–486. [56] Barak, L. S.; Ménard, L.; Ferguson, S. S.; Colapietro, A. M.; Caron, M. G. The conserved seven-transmembrane sequence NP(X)2,3Y of the G-protein-coupled receptor superfamily regulates multiple properties of the beta 2-adrenergic receptor. Biochemistry 1995, 34, 15407–15414. [57] Scheer, A.; Costa, T.; Fanelli, F.; Benedetti, P. G. D.; Mhaouty-Kodja, S.; Abuin, L.; Nenniger-Tosato, M.; Cotecchia, S. Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the alpha(1b)-adrenergic receptor: effects on receptor isomerization and activation. Mol. Pharmacol. 2000, 57, 219–231. [58] Costanzi, S.; Mamedova, L.; Gao, Z.-G.; Jacobson, K. A. Architecture of P2Y nucleotide receptors: structural comparison based on sequence analysis, mutagenesis, and homology modeling. J. Med. Chem. 2004, 47, 5393–5404. [59] Kim, J.; Jiang, Q.; Glashofer, M.; Yehle, S.;Wess, J.; Jacobson, K. A. Glutamate residues in the second extracellular loop of the human A2A adenosine receptor are required for ligand recognition. Mol. Pharmacol. 1996, 49, 683–691. [60] Mehler, E. L.; Periole, X.; Hassan, S. A.; Weinstein, H. Key issues in the computational simulation of GPCR function: representation of loop domains. J. Comput. Aided Mol. Des. 2002, 16, 841–853. [61] Costanzi, S. On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the beta2-adrenergic receptor. J. Med. Chem. 2008, 51, 2907–2914. [62] Romo, T. D.; Grossfield, A.; Pitman, M. C. Concerted interconversion between ionic lock substates of the beta(2) adrenergic receptor revealed by microsecond timescale molecular dynamics. Biophys. J. 2010, 98, 76–84. [63] Moro, O.; Lameh, J.; Högger, P.; Sadée, W. Hydrophobic amino acid in the i2 loop plays a key role in receptor-G protein coupling. J. Biol. Chem. 1993, 268, 22273–22276. [64] Zeng, F. Y.; Soldner, A.; Schöneberg, T.; Wess, J. Conserved extracellular cysteine pair in the M3 muscarinic acetylcholine receptor is essential for proper receptor cell surface localization but not for G protein coupling. J. Neurochem. 1999, 72, 2404–2414. [65] Rubenstein, R. C.; Wong, S. K.; Ross, E. M. The hydrophobic tryptic core of the betaadrenergic receptor retains Gs regulatory activity in response to agonists and thiols. J. Biol. Chem. 1987, 262, 16655–16662. [66] Oksenberg, D.; Havlik, S.; Peroutka, S. J.; Ashkenazi, A. The third intracellular loop of the 5-hydroxytryptamine2A receptor determines effector coupling specificity. J. Neurochem. 1995, 64, 1440–1447. [67] Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [68] Forli, S.; Botta, M. Lennard-Jones potential and dummy atom settings to overcome the AUTODOCK limitation in treating flexible ring systems. J. Chem. Inf. Model. 2007, 47, 1481–1492. [69] Kennett, G. A.; Pittaway, K.; Blackburn, T. P. Evidence that 5-HT2c receptor antagonists are anxiolytic in the rat Geller-Seifter model of anxiety. Psychopharmacology (Berl.) 1994, 114, 90–96. [70] Ruat, M.; Traiffort, E.; Leurs, R.; Tardivel-Lacombe, J.; Diaz, J.; Arrang, J. M.; Schwartz, J. C. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 8547–8551. [71] Schwartz, J.; Velly, J. The beta-adrenoceptor of pig coronary arteries: determination of beta1 and beta2 subtypes by radioligand binding. Br. J. Pharmacol. 1983, 79, 409–414. [72] Wardle, K. A.; Ellis, E. S.; Baxter, G. S.; Kennett, G. A.; Gaster, L. M.; Sanger, G. J. The effects of SB 204070, a highly potent and selective 5-HT4 receptor antagonist, on guinea-pig distal colon. Br. J. Pharmacol. 1994, 112, 789–794. [73] den Wyngaert, I. V.; Gommeren, W.; Verhasselt, P.; Jurzak, M.; Leysen, J.; Luyten, W.; Bender, E. Cloning and expression of a human serotonin 5-HT4 receptor cDNA. J. Neurochem. 1997, 69, 1810–1819. [74] Bromidge, S. M. et al. Phenyl benzenesulfonamides are novel and selective 5-HT6 antagonists: identification of N-(2,5-dibromo-3-fluorophenyl)-4-methoxy-3-piperazin-1- ylbenzenesulfonamide (SB-357134). Bioorg. Med. Chem. Lett. 2001, 11, 55–58. [75] Bard, J. A.; Zgombick, J.; Adham, N.; Vaysse, P.; Branchek, T. A.; Weinshank, R. L. Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J. Biol. Chem. 1993, 268, 23422–23426. [76] Herth, M. M.; Kramer, V.; Piel, M.; Palner, M.; Riss, P. J.; Knudsen, G. M.; Rösch, F. Synthesis and in vitro affinities of various MDL 100907 derivatives as potential 18Fradioligands for 5-HT2A receptor imaging with PET. Bioorg. Med. Chem. 2009, 17, 2989–3002. [77] Palfreyman, M. G.; Schmidt, C. J.; Sorensen, S. M.; Dudley, M.W.; Kehne, J. H.; Moser, P.; Gittos, M.W.; Carr, A. A. Electrophysiological, biochemical and behavioral evidence for 5-HT2 and 5-HT3 mediated control of dopaminergic function. Psychopharmacology (Berl.) 1993, 112, S60–S67. [78] Roth, B. L.; Craigo, S. C.; Choudhary, M. S.; Uluer, A.; Monsma, F. J.; Shen, Y.; Meltzer, H. Y.; Sibley, D. R. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J. Pharmacol. Exp. Ther. 1994, 268, 1403–1410. [79] Forbes, I. T.; Dabbs, S.; Duckworth, D. M.; Jennings, A. J.; King, F. D.; Lovell, P. J.; Brown, A. M.; Collin, L.; Hagan, J. J.; Middlemiss, D. N.; Riley, G. J.; Thomas, D. R.; Upton, N. (R)-3,N-dimethyl-N-[1-methyl-3-(4-methyl-piperidin-1-yl) propyl]benzenesulfonamide: the first selective 5-HT7 receptor antagonist. J. Med. Chem. 1998, 41, 655–657. [80] Knight, A. R.; Misra, A.; Quirk, K.; Benwell, K.; Revell, D.; Kennett, G.; Bickerdike, M. Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2004, 370, 114–123. [81] Bourson, A.; Kapps, V.; Zwingelstein, C.; Rudler, A.; Boess, F. G.; Sleight, A. J. Correlation between 5-HT7 receptor affinity and protection against sound-induced seizures in DBA/2J mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1997, 356, 820–826. [82] Honrubia, M. A.; Rodriguez, J.; Dominguez, R.; Lozoya, E.; Manaut, F.; Seijas, J. A.; Villaverde, M. C.; Calleja, J. M.; Cadavid, M. I.; Maayani, S.; Sanz, F.; Loza, M. I. Synthesis, affinity at 5-HT2A, 5-HT2B and 5-HT2C serotonin receptors and structure-activity relationships of a series of cyproheptadine analogues. Chem. Pharm. Bull. 1997, 45, 842–848. [83] Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity–a rapid access to atomic charges. Tetrahedron 1980, 36, 3219–3228. [84] Dolinsky, T. J.; Czodrowski, P.; Li, H.; Nielsen, J. E.; Jensen, J. H.; Klebe, G.; Baker, N. A. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007, 35, W522–W525. [85] Heller, H. Doctoral Dissertation, Technical University of Munich, Germany, 1993. [86] Lin, J.-H.; Baker, N. A.; McCammon, J. A. Bridging implicit and explicit solvent approaches for membrane electrostatics. Biophys. J. 2002, 83, 1374–1379. [87] Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [88] Vanni, S.; Neri, M.; Tavernelli, I.; Rothlisberger, U. Observation of “ionic lock” formation in molecular dynamics simulations of wild-type beta 1 and beta 2 adrenergic receptors. Biochemistry 2009, 48, 4789–4797. [89] Ballesteros, J. A.; Jensen, A. D.; Liapakis, G.; Rasmussen, S. G.; Shi, L.; Gether, U.; Javitch, J. A. Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 2001, 276, 29171–29177. [90] Engelhardt, S.; Grimmer, Y.; Fan, G. H.; Lohse, M. J. Constitutive activity of the human beta(1)-adrenergic receptor in beta(1)-receptor transgenic mice. Mol. Pharmacol. 2001, 60, 712–717. [91] Grotewiel, M. S.; Sanders-Bush, E. Differences in agonist-independent activity of 5-HT2A and 5-HT2C receptors revealed by heterologous expression. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1999, 359, 21–27. [92] Herrick-Davis, K. Constitutively Active Serotonin Receptors. In G Protein-Coupled Receptors as Drug Targets; Seifert, P. T. W. P. R., Ed.; Wiley-VCH, 2006; pp 223–241. [93] Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J.W.; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. [94] Wang, J.; Cieplak, P.; Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 2000, 21, 1049–1074. [95] Goddard, T. D.; Huang, C. C.; Ferrin, T. E. Software extensions to UCSF chimera for interactive visualization of large molecular assemblies. Structure 2005, 13, 473–482. [96] Couch, G. S.; Hendrix, D. K.; Ferrin, T. E. Nucleic acid visualization with UCSF Chimera. Nucleic Acids Res. 2006, 34, e29. [97] Clark, A. M.; Labute, P.; Santavy, M. 2D structure depiction. J. Chem. Inf. Model. 2006, 46, 1107–1123. [98] Clark, A. M.; Labute, P. 2D depiction of protein-ligand complexes. J. Chem. Inf. Model. 2007, 47, 1933–1944. [99] James, L. C.; Tawfik, D. S. Conformational diversity and protein evolution–a 60-year-old hypothesis revisited. Trends Biochem. Sci. 2003, 28, 361–368. [100] de la Fuente, T.; Martín-Fontecha, M.; Sallander, J.; Benhamú, B.; Campillo, M.; Medina, R. A.; Pellissier, L. P.; Claeysen, S.; Dumuis, A.; Pardo, L.; López-Rodríguez, M. L. Benzimidazole derivatives as new serotonin 5-HT6 receptor antagonists. Molecular mechanisms of receptor inactivation. J. Med. Chem. 2010, 53, 1357–1369. [101] Michino, M.; Abola, E.; participants, G. P. C. R. D. .; Brooks, C. L.; Dixon, J. S.; Moult, J.; Stevens, R. C. Community-wide assessment of GPCR structure modelling and ligand dock-ing: GPCR Dock 2008. Nat. Rev. Drug Discov. 2009, 8, 455–463.
|