跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳敬業
研究生(外文):Jing-Yeh Chen
論文名稱:血清素受體蛋白亞型之動力模擬暨配體結合模式評估
論文名稱(外文):Molecular-Dynamics Simulation of Serotonin Receptor Subtypes and Ligand Binding Mode Analysis
指導教授:林榮信
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:84
中文關鍵詞:血清素受體受體亞型選擇性藥物親合力評估同源蛋白模型分子嵌合
外文關鍵詞:Serotonin ReceptorsReceptor Subtype SelectivityDrug Affinity EvaluationHomology ModelingMolecular Docking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血清素受體均為穿膜蛋白,主要分佈在神經細胞上,分為七科,十四種亞型。除第三種亞型以外均隸屬 G 蛋白偶合受體(G Protein-coupled receptor, GPCR)。其訊息傳遞路徑在生理上具調控情緒、幻覺、記憶、橫紋肌收縮與飽食感等功能,也成為許多藥物分子的作用目標,臨床上已有抗精神病、抗憂鬱與偏頭痛藥物等應用。但多數血清素受體藥物以高度不具專一性著稱,副作用無法避免。而開發新藥時除了須讓藥物有能力辨識血清素受體與其他種類的 GPCRs ,受體亞型的選擇性(subtype selectivity)更是個尚待解決的議題。

不同受體與配體之間交互作用的差異,最好能由結構生物學探討其分子機制,即基於結構設計藥物(structure-based drug design)。然而,穿膜蛋白厭水與結構易變動的特性使其結晶困難,此類蛋白結構的解析仍為一大挑戰。目前實驗上尚未解得任何一種血清素受體結構,所幸近年陸續解出的數種 GPCRs 提供了電腦模擬的模板。在本論文中,將現存人類 GPCR 資料庫中 A 族群的所有序列與可得的結構模板,經多重序列比對結果引導,以現有視紫質蛋白(rhodopsin)與 β2 腎上腺素受體(β2-adrenergic receptor)為主要模版骨架,建構了 2A、2B、2C 與 4 至 7 等七種血清素受體亞型,以及補全缺失片段後的 β2 腎上腺素受體(作為控制組)之同源蛋白模型(homology/de novo models)。將這些初始蛋白模型埋入脂雙層膜--水系統中,運行奈秒時間尺度的分子動力模擬,探索穿膜蛋白在生理狀態下的未活化態結構。配體分子挑選實驗上具代表意義的選擇性抑制藥物,以量子化學執行結構最佳化後,參考模板結構,運用分子嵌合技術(molecular docking)預測藥物嵌入血清素受體的結合位置。

本論文挑選 5-HT7 與 5-HT2A 兩種受體亞型作為研究主體。在藥物的結合模式評估上,進行藥物受體複合物的分子動力學模擬,直接分析抑制性藥物在蛋白質受體內的運動結果。藉分析胺基酸與小分子官能基之間的交互作用差異,蛋白結合位置的大小與藥物分子佔據體積,可望在亞型選擇性的問題上做出分子層級上的解釋。此套模型建立的流程已半自動化,可望發展為一種相較於簡單評分函數更具物理意義的平台。日後可繼續拓展至其他血清素受體亞型,且進一步衍伸至親緣性相近的其他 GPCR 蛋白,如多巴胺受體(dopamine receptors)與鴉片受體(opioid receptors)等重要的藥物標靶之上。


An ideal serotonergic agent should not only distinguish its eponymous counterparts from other GPCRs, but also discriminate between subtypes. To achieve higher selectivity it is desirable to take a structure-based approach, and constructing in silico models by utilizing other GPCR structures is currently the only option for serotonin receptors.

In this work, multiple alignment was conducted across class A human GPCR sequences for guiding homology (de novo) model constructions. Using the crystal structures of rhodopsin and β2-adrenergic receptor being major templates, seven distinct serotonin receptor subtypes 5-HT2A~5-HT2C and 5-HT4~5-HT7) were built. Selective 5-HT receptor inhibitors were chosen, structurally optimized by quantum-chemical calculations, and docked into the binding pockets. Each apo-and bound-form receptor was then immersed into a lipid bilayer/water environment and subjected to nanosecond-scale molecular dynamics (MD) simulations. Based on both induced-fit and conformational selection hypotheses, favorable ligand binding mode(s) were sampled either by ligand-bound form MD simulations, which mimicked the induced-fit process upon binding, or by relaxed complex scheme (RCS), which captured various conformers from MD snapshots to be "selected" by massive dockings. The poses were then evaluated and ranked by scoring
functions.

Instead of exploring through all the subtypes exhaustively, the objective was first aimed on elucidating the molecular mechanism contributing to selectivity between 5-HT2A and 5-HT7 subtypes. By analyzing the "molecular switches" of each receptor, the orientation of key residues, and the occupied volumes by drugs, several key components confering selectivity were found. The aforementioned process is applicable to other serotonin subtypes as well as non-serotonergic GPCRs, such as dopamine receptors and opoid receptors. Automated implementation is also a feasible option, and can provide a virtual screening platform which accounts for the flexibility on both ligands and receptors.


口試委員會審定書 i
中文摘要 iii
Abstract v
List of Figures ix
List of Tables x

1 Introduction 1
1.1 G Protein-Coupled Receptor 1
1.1.1 Classification of GPCRs 2
1.1.2 Structure of GPCRs 2
1.1.3 General Molecular Switches in GPCRs 4
1.1.4 Ballesteros-Weinstein Nomenclature in GPCR 7
1.2 Serotonin Receptors 7
1.2.1 5-HT2A Receptor 9
1.2.2 5-HT7 Receptor 11

2 Homology Modeling 13
2.1 Multiple Sequence Alignment 14
2.2 Model Construction 23
2.3 Results 25
2.4 Discussion 27
2.4.1 Which Template to Use? 27
2.4.2 The Ionic Lock 28
2.4.3 The e2 Loop 29
2.4.4 The i3 Loop 29
2.4.5 C-terminal regions 30
2.5 Summary 31

3 Molecular Docking 33
3.1 Ligand Selection and Preparation 34
3.2 Docking Setups 37
3.3 Cognate Docking 38

4 Apo-Form MD Simulations 41
4.1 System Preparation 41
4.2 Molecular Dynamics 43
4.3 Results and Discussions 43
4.3.1 Root Mean Square Deviation (RMSD) Analysis 44
4.3.2 Root Mean Square Fluctuation (RMSF) and Structural Waters 46
4.3.3 Ionic Lock Formation 46
4.3.4 Rotamer Toggle Switches 51
4.4 Summary 51

5 Ligand Bound-Form MD Simulations 55
5.1 System Preparation 55
5.2 Binding Mode Analysis 57
5.2.1 Non-binder of 5-HT Receptors—Cyanopindolol 60
5.2.2 5-HT2AR Selective Inhibitor—Ketanserine and (R)-MDL-100,907 64
5.2.3 5-HT7R Selective Inhibitor—SB-269970 and SB-691673 68
5.2.4 Non-selective Inhibitor—Cyproheptadine and Spiperone 70
5.3 Summary 72

6 Concluding Remarks and Future Direction 75
6.1 Conclusions 75
6.2 Future directions 76
References 77


[1] Gether, U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 2000, 21, 90–113.
[2] Lagerström, M. C.; Schiöth, H. B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 2008, 7, 339–357.
[3] Fredriksson, R.; Lagerström, M. C.; Lundin, L.-G.; Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 2003, 63, 1256–1272.
[4] Flower, D. R. Modelling G-protein-coupled receptors for drug design. Biochim. Biophys. Acta 1999, 1422, 207–234.
[5] Imming, P.; Sinning, C.; Meyer, A. Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discov. 2006, 5, 821–834.
[6] Attwood, T. K.; Findlay, J. B. Fingerprinting G-protein-coupled receptors. Protein Eng. 1994, 7, 195–203.
[7] Kolakowski, L. F. GCRDb: a G-protein-coupled receptor database. Recept. Channels 1994, 2, 1–7.
[8] Barnard, E. A. Receptor classes and the transmitter-gated ion channels. Trends Biochem. Sci. 1992, 17, 368–374.
[9] Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Trong, I. L.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano, M. Crystal
structure of rhodopsin: A G protein-coupled receptor. Science 2000, 289, 739–745.
[10] Rasmussen, S. G. F.; Choi, H.-J.; Rosenbaum, D. M.; Kobilka, T. S.; Thian, F. S.; Edwards, P. C.; Burghammer, M.; Ratnala, V. R. P.; Sanishvili, R.; Fischetti, R. F.;
Schertler, G. F. X.;Weis,W. I.; Kobilka, B. K. Crystal structure of the human b2 adrenergic G-protein-coupled receptor. Nature 2007, 450, 383–387.
[11] Rosenbaum, D. M.; Rasmussen, S. G. F.; Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 2009, 459, 356–363.
[12] Jaakola, V.-P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; Lane, J. R.; Ijzerman,
A. P.; Stevens, R. C. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 2008, 322, 1211–1217.
[13] Warne, T.; Serrano-Vega, M. J.; Baker, J. G.; Moukhametzianov, R.; Edwards, P. C.; Henderson,
R.; Leslie, A. G. W.; Tate, C. G.; Schertler, G. F. X. Structure of a b1-adrenergic G-protein-coupled receptor. Nature 2008, 454, 486–491.
[14] Murakami, M.; Kouyama, T. Crystal structure of squid rhodopsin. Nature 2008, 453, 363–367.
[15] Hanson, M. A.; Stevens, R. C. Discovery of new GPCR biology: one receptor structure at a time. Structure 2009, 17, 8–14.
[16] Dohlman, H. G.; Bouvier, M.; Benovic, J. L.; Caron, M. G.; Lefkowitz, R. J. The multiple membrane spanning topography of the beta 2-adrenergic receptor. Localization of the sites of binding, glycosylation, and regulatory phosphorylation by limited proteolysis. J. Biol. Chem. 1987, 262, 14282–14288.
[17] Ahuja, S.; Smith, S. O. Multiple switches in G protein-coupled receptor activation. Trends Pharmacol. Sci. 2009, 30, 494–502.
[18] Nygaard, R.; Frimurer, T. M.; Holst, B.; Rosenkilde, M. M.; Schwartz, T. W. Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol. Sci. 2009, 30, 249–259.
[19] Ballesteros, J. A.; Shi, L.; Javitch, J. A. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol. Pharmacol. 2001, 60, 1–19.
[20] Vogel, R.; Mahalingam, M.; Lüdeke, S.; Huber, T.; Siebert, F.; Sakmar, T. P. Functional role of the “ionic lock"–an interhelical hydrogen-bond network in family A heptahelical receptors. J. Mol. Biol. 2008, 380, 648–655.
[21] Schneider, E. H.; Schnell, D.; Strasser, A.; Dove, S.; Seifert, R. Impact of the DRY motif and the missing “ionic lock” on constitutive activity and G-protein coupling of the human histamine H4 receptor. J. Pharmacol. Exp. Ther. 2010, 333, 382–392.
[22] Deupi, X.; Olivella, M.; Sanz, A.; Dölker, N.; Campillo, M.; Pardo, L. Influence of the g- conformation of Ser and Thr on the structure of transmembrane helices. J. Struct. Biol. 2010, 169, 116–123.
[23] Jongejan, A.; Bruysters, M.; Ballesteros, J. A.; Haaksma, E.; Bakker, R. A.; Pardo, L.; Leurs, R. Linking agonist binding to histamine H1 receptor activation. Nat. Chem. Biol. 2005, 1, 98–103.
[24] Shi, L.; Liapakis, G.; Xu, R.; Guarnieri, F.; Ballesteros, J. A.; Javitch, J. A. b2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J. Biol. Chem. 2002, 277, 40989–40996.
[25] Schertler, G. F. X. Structure of rhodopsin and the metarhodopsin I photointermediate. Curr. Opin. Struct. Biol. 2005, 15, 408–415.
[26] Angel, T. E.; Chance, M. R.; Palczewski, K. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 8555–8560.
[27] Lovell, P. J.; Bromidge, S. M.; Dabbs, S.; Duckworth, D. M.; Forbes, I. T.; Jennings, A. J.; King, F. D.; Middlemiss, D. N.; Rahman, S. K.; Saunders, D. V.; Collin, L. L.; Hagan, J. J.; Riley, G. J.; Thomas, D. R. A novel, potent, and selective 5-HT(7) antagonist: (R)-3-(2-(2-
(4-methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl) phenol (SB-269970). J. Med. Chem. 2000, 43, 342–345.
[28] Baldwin, J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993, 12, 1693–1703.
[29] Oliveira, L.; Paiva, A. C. M.; Vriend, G. A common motif in G-protein-coupled seven transmembrane helix receptors. J. Comput. Aided Mol. Des. 1993, 7, 649–658.
[30] Ballesteros, J. A.; Weinstein, H. Integrated methods for the construction of threedimensional models and computational probing of structure-function relations in G proteincoupled receptors. In Receptor Molecular Biology; Sealfon, S. C., Ed.; Academic Press, 1995; Chapter 19, pp 366–428.
[31] Hannon, J.; Hoyer, D. Molecular biology of 5-HT receptors. Behav. Brain Res. 2008, 195, 198–213.
[32] Hoyer, D.; Hannon, J. P.; Martin, G. R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 2002, 71, 533–554.
[33] Pauwels, P. J. 5-HT Receptors and their Ligands, 2003.
[34] Gaddum, J. H.; Picarelli, Z. P. Two kinds of tryptamine receptor. Br. J. Pharmacol. Chemother. 1957, 12, 323–328.
[35] White, F. A.; Ishaq, M.; Stoner, G. L.; Frisque, R. J. JC virus DNA is present in many human brain samples from patients without progressive multifocal leukoencephalopathy.
J. Virol. 1992, 66, 5726–5734.
[36] Hedlund, P. B.; Danielson, P. E.; Thomas, E. A.; Slanina, K.; Carson, M. J.; Sutcliffe, J. G. No hypothermic response to serotonin in 5-HT7 receptor knockout mice. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 1375–1380.
[37] Agosti, R. M. 5HT1F- and 5HT7-receptor agonists for the treatment of migraines. CNS Neurol. Disord. Drug Targets 2007, 6, 235–237.
[38] Rost, B. Twilight zone of protein sequence alignments. Protein Eng. 1999, 12, 85–94.
[39] Sali, A.; Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815.
[40] Chung, S. Y.; Subbiah, S. A structural explanation for the twilight zone of protein sequence homology. Structure 1996, 4, 1123–1127.
[41] Evers, A.; Klebe, G. Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model. J. Med. Chem. 2004, 47, 5381–5392.
[42] Evers, A.; Hessler, G.; Matter, H.; Klabunde, T. Virtual screening of biogenic aminebinding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols. J. Med. Chem. 2005, 48, 5448–5465.
[43] Radestock, S.; Weil, T.; Renner, S. Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring. J. Chem. Inf. Model. 2008, 48, 1104–1117.
[44] Horn, F.; Weare, J.; Beukers, M. W.; Hörsch, S.; Bairoch, A.; Chen, W.; Edvardsen, O.; Campagne, F.; Vriend, G. GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res. 1998, 26, 275–279.
[45] Do, C. B.; Mahabhashyam, M. S. P.; Brudno, M.; Batzoglou, S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 2005, 15, 330–340.
[46] Beitz, E. TEXshade: shading and labeling of multiple sequence alignments using LATEX2 epsilon. Bioinformatics 2000, 16, 135–139.
[47] Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H.-J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Highresolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 2007, 318, 1258–1265.
[48] Mobarec, J. C.; Sanchez, R.; Filizola, M. Modern Homology Modeling of G-Protein Coupled Receptors: Which Structural Template to Use? J. Med. Chem. 2009, 52, 5207–5216.
[49] Bockaert, J.; Marin, P.; Dumuis, A.; Fagni, L. The ‘magic tail’ of G protein-coupled receptors: an anchorage for functional protein networks. FEBS Lett. 2003, 546, 65–72.
[50] Buck, F.; Meyerhof, W.; Werr, H.; Richter, D. Characterization of N- and C-terminal deletion mutants of the rat serotonin HT2 receptor in Xenopus laevis oocytes. Biochem. Biophys. Res. Commun. 1991, 178, 1421–1428.
[51] Schneider, H.; Feyen, J. H.; Seuwen, K. A C-terminally truncated human parathyroid hormone receptor is functional and activates multiple G proteins. FEBS Lett. 1994, 351, 281–285.
[52] Krobert, K. A.; Bach, T.; Syversveen, T.; Kvingedal, A. M.; Levy, F. O. The cloned human 5-HT7 receptor splice variants: a comparative characterization of their pharmacology, function and distribution. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2001, 363, 620–632.
[53] Krobert, K. A.; Levy, F. O. The human 5-HT7 serotonin receptor splice variants: constitutive activity and inverse agonist effects. Br. J. Pharmacol. 2002, 135, 1563–1571.
[54] Sali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M. Evaluation of comparative protein modeling by MODELLER. Proteins 1995, 23, 318–326.
[55] Laskowski, R. A.; Rullmannn, J. A.; MacArthur, M. W.; Kaptein, R.; Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures
solved by NMR. J. Biomol. NMR 1996, 8, 477–486.
[56] Barak, L. S.; Ménard, L.; Ferguson, S. S.; Colapietro, A. M.; Caron, M. G. The conserved seven-transmembrane sequence NP(X)2,3Y of the G-protein-coupled receptor superfamily regulates multiple properties of the beta 2-adrenergic receptor. Biochemistry 1995, 34, 15407–15414.
[57] Scheer, A.; Costa, T.; Fanelli, F.; Benedetti, P. G. D.; Mhaouty-Kodja, S.; Abuin, L.; Nenniger-Tosato, M.; Cotecchia, S. Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the alpha(1b)-adrenergic receptor: effects on receptor
isomerization and activation. Mol. Pharmacol. 2000, 57, 219–231.
[58] Costanzi, S.; Mamedova, L.; Gao, Z.-G.; Jacobson, K. A. Architecture of P2Y nucleotide receptors: structural comparison based on sequence analysis, mutagenesis, and homology modeling. J. Med. Chem. 2004, 47, 5393–5404.
[59] Kim, J.; Jiang, Q.; Glashofer, M.; Yehle, S.;Wess, J.; Jacobson, K. A. Glutamate residues in the second extracellular loop of the human A2A adenosine receptor are required for ligand recognition. Mol. Pharmacol. 1996, 49, 683–691.
[60] Mehler, E. L.; Periole, X.; Hassan, S. A.; Weinstein, H. Key issues in the computational simulation of GPCR function: representation of loop domains. J. Comput. Aided Mol. Des. 2002, 16, 841–853.
[61] Costanzi, S. On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the beta2-adrenergic receptor. J. Med. Chem. 2008, 51, 2907–2914.
[62] Romo, T. D.; Grossfield, A.; Pitman, M. C. Concerted interconversion between ionic lock substates of the beta(2) adrenergic receptor revealed by microsecond timescale molecular dynamics. Biophys. J. 2010, 98, 76–84.
[63] Moro, O.; Lameh, J.; Högger, P.; Sadée, W. Hydrophobic amino acid in the i2 loop plays a key role in receptor-G protein coupling. J. Biol. Chem. 1993, 268, 22273–22276.
[64] Zeng, F. Y.; Soldner, A.; Schöneberg, T.; Wess, J. Conserved extracellular cysteine pair in the M3 muscarinic acetylcholine receptor is essential for proper receptor cell surface localization but not for G protein coupling. J. Neurochem. 1999, 72, 2404–2414.
[65] Rubenstein, R. C.; Wong, S. K.; Ross, E. M. The hydrophobic tryptic core of the betaadrenergic receptor retains Gs regulatory activity in response to agonists and thiols. J. Biol. Chem. 1987, 262, 16655–16662.
[66] Oksenberg, D.; Havlik, S.; Peroutka, S. J.; Ashkenazi, A. The third intracellular loop of the 5-hydroxytryptamine2A receptor determines effector coupling specificity. J. Neurochem. 1995, 64, 1440–1447.
[67] Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662.
[68] Forli, S.; Botta, M. Lennard-Jones potential and dummy atom settings to overcome the AUTODOCK limitation in treating flexible ring systems. J. Chem. Inf. Model. 2007, 47, 1481–1492.
[69] Kennett, G. A.; Pittaway, K.; Blackburn, T. P. Evidence that 5-HT2c receptor antagonists are anxiolytic in the rat Geller-Seifter model of anxiety. Psychopharmacology (Berl.) 1994, 114, 90–96.
[70] Ruat, M.; Traiffort, E.; Leurs, R.; Tardivel-Lacombe, J.; Diaz, J.; Arrang, J. M.; Schwartz, J. C. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 8547–8551.
[71] Schwartz, J.; Velly, J. The beta-adrenoceptor of pig coronary arteries: determination of beta1 and beta2 subtypes by radioligand binding. Br. J. Pharmacol. 1983, 79, 409–414.
[72] Wardle, K. A.; Ellis, E. S.; Baxter, G. S.; Kennett, G. A.; Gaster, L. M.; Sanger, G. J. The effects of SB 204070, a highly potent and selective 5-HT4 receptor antagonist, on guinea-pig distal colon. Br. J. Pharmacol. 1994, 112, 789–794.
[73] den Wyngaert, I. V.; Gommeren, W.; Verhasselt, P.; Jurzak, M.; Leysen, J.; Luyten, W.; Bender, E. Cloning and expression of a human serotonin 5-HT4 receptor cDNA. J. Neurochem. 1997, 69, 1810–1819.
[74] Bromidge, S. M. et al. Phenyl benzenesulfonamides are novel and selective 5-HT6 antagonists: identification of N-(2,5-dibromo-3-fluorophenyl)-4-methoxy-3-piperazin-1-
ylbenzenesulfonamide (SB-357134). Bioorg. Med. Chem. Lett. 2001, 11, 55–58.
[75] Bard, J. A.; Zgombick, J.; Adham, N.; Vaysse, P.; Branchek, T. A.; Weinshank, R. L. Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J. Biol. Chem. 1993, 268, 23422–23426.
[76] Herth, M. M.; Kramer, V.; Piel, M.; Palner, M.; Riss, P. J.; Knudsen, G. M.; Rösch, F. Synthesis and in vitro affinities of various MDL 100907 derivatives as potential 18Fradioligands for 5-HT2A receptor imaging with PET. Bioorg. Med. Chem. 2009, 17, 2989–3002.
[77] Palfreyman, M. G.; Schmidt, C. J.; Sorensen, S. M.; Dudley, M.W.; Kehne, J. H.; Moser, P.; Gittos, M.W.; Carr, A. A. Electrophysiological, biochemical and behavioral evidence for 5-HT2 and 5-HT3 mediated control of dopaminergic function. Psychopharmacology (Berl.)
1993, 112, S60–S67.
[78] Roth, B. L.; Craigo, S. C.; Choudhary, M. S.; Uluer, A.; Monsma, F. J.; Shen, Y.; Meltzer, H. Y.; Sibley, D. R. Binding of typical and atypical antipsychotic agents to
5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J. Pharmacol. Exp. Ther. 1994, 268, 1403–1410.
[79] Forbes, I. T.; Dabbs, S.; Duckworth, D. M.; Jennings, A. J.; King, F. D.; Lovell, P. J.; Brown, A. M.; Collin, L.; Hagan, J. J.; Middlemiss, D. N.; Riley, G. J.;
Thomas, D. R.; Upton, N. (R)-3,N-dimethyl-N-[1-methyl-3-(4-methyl-piperidin-1-yl) propyl]benzenesulfonamide: the first selective 5-HT7 receptor antagonist. J. Med. Chem.
1998, 41, 655–657.
[80] Knight, A. R.; Misra, A.; Quirk, K.; Benwell, K.; Revell, D.; Kennett, G.; Bickerdike, M. Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2004, 370, 114–123.
[81] Bourson, A.; Kapps, V.; Zwingelstein, C.; Rudler, A.; Boess, F. G.; Sleight, A. J. Correlation between 5-HT7 receptor affinity and protection against sound-induced seizures in DBA/2J mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1997, 356, 820–826.
[82] Honrubia, M. A.; Rodriguez, J.; Dominguez, R.; Lozoya, E.; Manaut, F.; Seijas, J. A.; Villaverde, M. C.; Calleja, J. M.; Cadavid, M. I.; Maayani, S.; Sanz, F.; Loza, M. I. Synthesis, affinity at 5-HT2A, 5-HT2B and 5-HT2C serotonin receptors and structure-activity relationships of a series of cyproheptadine analogues. Chem. Pharm. Bull. 1997, 45, 842–848.
[83] Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity–a rapid access to atomic charges. Tetrahedron 1980, 36, 3219–3228.
[84] Dolinsky, T. J.; Czodrowski, P.; Li, H.; Nielsen, J. E.; Jensen, J. H.; Klebe, G.; Baker, N. A. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007, 35, W522–W525.
[85] Heller, H. Doctoral Dissertation, Technical University of Munich, Germany, 1993.
[86] Lin, J.-H.; Baker, N. A.; McCammon, J. A. Bridging implicit and explicit solvent approaches for membrane electrostatics. Biophys. J. 2002, 83, 1374–1379.
[87] Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688.
[88] Vanni, S.; Neri, M.; Tavernelli, I.; Rothlisberger, U. Observation of “ionic lock” formation in molecular dynamics simulations of wild-type beta 1 and beta 2 adrenergic receptors. Biochemistry 2009, 48, 4789–4797.
[89] Ballesteros, J. A.; Jensen, A. D.; Liapakis, G.; Rasmussen, S. G.; Shi, L.; Gether, U.; Javitch, J. A. Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 2001, 276, 29171–29177.
[90] Engelhardt, S.; Grimmer, Y.; Fan, G. H.; Lohse, M. J. Constitutive activity of the human beta(1)-adrenergic receptor in beta(1)-receptor transgenic mice. Mol. Pharmacol. 2001, 60, 712–717.
[91] Grotewiel, M. S.; Sanders-Bush, E. Differences in agonist-independent activity of 5-HT2A and 5-HT2C receptors revealed by heterologous expression. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1999, 359, 21–27.
[92] Herrick-Davis, K. Constitutively Active Serotonin Receptors. In G Protein-Coupled Receptors as Drug Targets; Seifert, P. T. W. P. R., Ed.; Wiley-VCH, 2006; pp 223–241.
[93] Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J.W.; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197.
[94] Wang, J.; Cieplak, P.; Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 2000, 21, 1049–1074.
[95] Goddard, T. D.; Huang, C. C.; Ferrin, T. E. Software extensions to UCSF chimera for interactive visualization of large molecular assemblies. Structure 2005, 13, 473–482.
[96] Couch, G. S.; Hendrix, D. K.; Ferrin, T. E. Nucleic acid visualization with UCSF Chimera. Nucleic Acids Res. 2006, 34, e29.
[97] Clark, A. M.; Labute, P.; Santavy, M. 2D structure depiction. J. Chem. Inf. Model. 2006, 46, 1107–1123.
[98] Clark, A. M.; Labute, P. 2D depiction of protein-ligand complexes. J. Chem. Inf. Model. 2007, 47, 1933–1944.
[99] James, L. C.; Tawfik, D. S. Conformational diversity and protein evolution–a 60-year-old hypothesis revisited. Trends Biochem. Sci. 2003, 28, 361–368.
[100] de la Fuente, T.; Martín-Fontecha, M.; Sallander, J.; Benhamú, B.; Campillo, M.; Medina, R. A.; Pellissier, L. P.; Claeysen, S.; Dumuis, A.; Pardo, L.; López-Rodríguez, M. L. Benzimidazole derivatives as new serotonin 5-HT6 receptor antagonists. Molecular mechanisms of receptor inactivation. J. Med. Chem. 2010, 53, 1357–1369.
[101] Michino, M.; Abola, E.; participants, G. P. C. R. D. .; Brooks, C. L.; Dixon, J. S.; Moult, J.; Stevens, R. C. Community-wide assessment of GPCR structure modelling and ligand dock-ing: GPCR Dock 2008. Nat. Rev. Drug Discov. 2009, 8, 455–463.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top