跳到主要內容

臺灣博碩士論文加值系統

(18.208.186.139) 您好!臺灣時間:2022/05/29 03:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧昌偉
研究生(外文):Chang-Wei Teng
論文名稱:探討牛樟芝對糖尿病腎病變小鼠之藥理活性及作用機轉
論文名稱(外文):Pharmacological Studies of the mechanisms on Antrodia camphorata improving diabetic nephropathy in mouse model
指導教授:褚俊傑褚俊傑引用關係
指導教授(外文):Jiunn-Jye Chuu
學位類別:碩士
校院名稱:南台科技大學
系所名稱:生物科技系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:77
中文關鍵詞:牛樟芝糖尿病性腎病變低蛋白飲食吉多利錠動物模式
外文關鍵詞:Antrodia camphoratediabetic nephropathylow-protein dietanimal model
相關次數:
  • 被引用被引用:1
  • 點閱點閱:5586
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
 糖尿病為全世界最嚴重的慢性疾病,也是造成末期腎臟疾病最主要的原因。在台灣,糖尿病的患者逐年攀升,而近年來末期腎臟疾病的盛行率以及發生率更攀升為世界第一,使得糖尿病與其併發症所造成的死亡人數直逼惡性腫瘤,耗費健保資源龐大。臨床上為了延緩尿毒症患者走向末期腎臟疾病的時程,會被建議以低蛋白飲食控制腎臟功能的衰竭病徵,吉多利錠(ketosteril)即為在低蛋白飲食下的一種必需胺基酸補充藥品,在動物以及人體試驗中皆能有效減緩尿毒症以及腎功能衰竭,但在糖尿病性腎病變中的研究報告較少。國內外有關腎臟病變的研究,包含糖尿病或非糖尿病所誘發之腎毒性動物模式,除了昂貴的基因缺陷型,如KK/HIJ 小鼠或是使用脂多醣的化學藥劑誘導型以外,都沒有便利且具實用性的糖尿病性腎病變動物模式,來提供研究者進一步探討糖尿病性腎病變後期的病理進程,如腎纖維化之形成的分子機轉等。
  牛樟芝,或稱樟芝或牛樟菇,為台灣特有的一種真菌,在現代醫學的應用廣泛已被大量研究發表,其所含有的活性成分在動物以及細胞模式中證實具有抗纖維化、抗氧化、抗發炎以及降血糖的功效,正是近幾年糖尿病性腎病變的研究報告中,被討論的主要治療途徑。近幾年的研究報告已證實牛樟芝具有治療慢性腎臟疾病的潛力,可抑制血中尿毒素的上升並降低蛋白尿的排泄量,並觀察到可減少腎絲球基底膜的增厚情形。目前國內外關於牛樟芝的疾病研究,仍以癌症以及肝纖維化等主軸占多數,對於腎臟病變方面的研究仍寥寥可數,更無人探討牛樟芝對於糖尿病性腎病變的生理活性,因此,探討牛樟芝對於糖尿病性腎病變的治療作用以及其機轉,是一個具前瞻性的研究議題。
  本論文利用低劑量的STZ誘導方式,合併高脂質飼料的選擇性給予,建立一個便利且具實用性之第二型糖尿病性腎病變動物模式,並將其分別應用在探討低蛋白飲食合併吉多利錠以及牛樟芝子實體萃取物改善第二型糖尿病性腎病變之藥理活性。在低蛋白飲食合併吉多利錠研究中,我們發現吉多利錠可經由抑制乙型轉型生長因子(TGF-β) 以及腫瘤壞死因子(TNF-α)之機轉,有效改善第二型糖尿病性腎臟病變情形。此外,在牛樟芝合併低蛋白飲食研究中,第二型糖尿病性腎病變小鼠經由牛樟芝子實體萃取物投予後,發現單獨餵食牛樟芝即可藉由降低血清中葡萄糖濃度、改善血中脂質代謝調控以及減少尿蛋白排出量的方式,有效改善腎間質堆積情形。利用免疫組織染色法,我們證實牛樟芝可藉由降低腎纖維化因子TGF-β以及α-SMA的表現及分佈,來達到抑制腎臟基質增生及後期纖維化之功效,顯示牛樟芝不需要配合低蛋白飲食,即有顯著提升糖尿病小鼠腎臟功能及抑制進行性腎病變之藥理活性,值得進一步去評估開發治療糖尿病性腎病變之新用途。
Diabetic nephropathy (DN) is one of the major diseases that results in chronic kidney disease (CKD). It is also a common and serious complication of diabetes mellitus, which leads to renal failure in up to 30% of individuals with diabetes and thus becomes the most important end-stage renal diseases (ESRD). In the study, we look for constructing several kinds of non-genetic deficient diabetic nephropathy (DN) mouse models. It is suggested that disease models prior to serving with renal fibrosis, which may be utilized for advanced studies on DN animal models. A nongenetic model of type 2 diabetes has been described that involves feeding rats a high fat diet and administering a low dose of STZ. Therefore, it is important to establish a strain-appropriate STZ dosage protocol for achieving hyperglycaemia before embarking on a major study of diabetic nephropathy using this model. Restricting dietary protein is the one of major components of therapy in CKD patients and aims to slow the progression of renal failure and to provide optimum nutritional status. Many authors have demonstrated that low-protein diet (LPD) and very low-protein diet (VLPD) mixture of EAA ketoanalogs, which are used to prevent nutritional deficiencies caused by protein-restricted diets. It contains insulin resistance, hyperlipidemia and delay the start of renal replacement.
Antrodia camphorata (AC) is a unique fungal species that used as a folk medicine, has attracted extreme attention for inflammation syndromes and liver-related diseases research in Taiwan. It has been known that AC can play the role on anti-oxidation, has recently been marketed in the forms of nutraceuticals. It has been suggested that AC protects the kidney from auto-immune disease. However, the ability of AC to DN has not been subjected to scientific scrutiny.
This study investigated the non-genetic deficient DN animal models, which closely simulates the metabolic abnormalities of the human disease, and it is also been available by cost-effective. The hyperglycemia and hyperinsulinaemia were induced on these HFD-controlled C57BL/6 mice (fasting blood glucose over 180 mg/dl, and ACR over 60 g/mg, alternatively). We also evaluated the metabolic profiles, renal histology and the mechanism of AC treated mice in DN models. We found that the AC has improve the glucose tolerance and increasing blood high density lipoprotein-low density lipoprotein ratio. Immunohistochemical evaluation also showed weak TGF-β and α-SMA staining in the renal glomeruli of native and AC group, while the signal revealed markedly stronger in the control group. In conclusion, our data shows a new non-genetic deficient DN animal models, and prove that the alcoholic extract from AC treatment has shown a potential anti-fibrosis effect in HFD-induced diabetic nephropathy mice.
總目錄
中文摘要……………………………………………………………………………….I
英文摘要…………………………………………………………………………..…...II
圖及表目錄…………………………………………..………………………………...V
縮寫對照表…………………………………………………………………………….VII
一、 緒論……………………………………………………………………………..1
二、 文獻回顧…………………………………………….………………………….4
1. 糖尿病性腎病變之研究
1.1糖尿病性末期腎臟病變......................................................................................4
1.2高血糖與糖尿病性腎臟病變……………………………………….………….5
1.3高度糖化終產物與糖尿病性腎臟病變………………………………..............6
1.4氧化壓力與糖尿病性腎臟病變………………………………………..……....8
1.5蛋白尿與糖尿病性腎臟病變……………………………………….…..…..….9
1.6糖尿病性腎病變之分子標靶及機制………………………….….………..….10
1.7糖尿病性腎病變小鼠模式建立……………………………………..….……..13
2. 糖尿病腎病變治療藥物及其機轉
2.1胰島素增敏劑………………………………………………………..………...16
2.2吉多利錠( ketosteril )………………………………………….…...………..…...18
2.3牛樟芝在現代醫學的應用潛力……………………………….………..……..19
三、 研究動機與目的…………………………………………….…..……. ……....23
四、 實驗材料與方法…………………………………………….……....................24
4.1實驗材料……………………………………………………….…….....….…..24
4.2儀器設備…………………………………………..…………………………...25
4.3不同STZ濃度與HFD給予誘導糖尿病性腎病變動物模式研究………......26
4.4吉多利錠合併低蛋白飲食改善糖尿病性腎病變機制研究…………….…....29
4.5牛樟芝合併低蛋白飲食改善糖尿病性腎病變機制研究………………….....30
五、 結果與討論………………………………………………………………….....35
5.1不同STZ濃度與HFD給予誘導糖尿病性腎病變動物模式研究……….....35
5.2吉多利錠合併低蛋白飲食改善糖尿病性腎病變機制研究…………...….….37
5.3牛樟芝合併低蛋白飲食改善糖尿病性腎病變機制研究.................................39
六、 結論…………………………………..………………………………….……...43
七、 結果圖表………………………………………………………………….…….44
八、 參考文獻…………………………………………………………………….….73
1. 林苡芬,不同發酵碳源之牛樟芝菌絲體發酵過濾液對人類肝癌細胞株之影響,國立台灣大學食品科技研究所碩士論文,2004。
2. 陳怡欣,牛樟芝發酵過濾液對大白鼠肝臟生理機能之影響,中國醫藥大學營養學研究所碩士論文,2001。
3. 李貞宜,樟芝保肝作用之探討,南台科技大學生物科技研究所碩士論文,2005。
4. 洪薇雯,辛錫璋,張哲銘,從新陳代謝與免疫機制的觀點探討PPARγ扮演的角色與對糖尿病腎病變的影響,內科學誌,2008:19:121-127.
5. 陳鴻鈞,氧自由基在腎絲球硬化的致病性中所扮演的角色,高雄醫學大學醫學研究所博士論文,2000。
6. 張東柱,牛樟芝病害,牛樟生物學及育林技術研討會論文集,1997,林業叢刊第72號:127-131。
7. 郭淑卿,樟芝發酵液對大鼠肝臟纖維化及胃腸功能之改善作用,中國醫藥大學營養學研究所碩士論文,2001。
8. 劉翠玲,樟芝對倉鼠體內脂質代謝與抗氧化狀態之影響,輔仁大學食品營養學研究所碩士論文,2001。
9. 蔡雁輝,樟芝深層培養液及其多醣體之抗氧化特性,國立中興大學食品科學研究所碩士論文,2002。
10. 廖英明,菇類中的許不了-樟芝,1998,農業世界雜誌,176:76-79。蘇慶華,健康的守護神(國寶樟芝),愛克思文化事業有限公司。台北,2002,38-39。
11. 嚴貴榮,樟芝對STZ誘發高血糖鼠血糖調節與抗氧化之影響,輔仁大學食品營養學研究所碩士論文,2002。
12. 蘇慶華,健康的守護神(國寶樟芝),愛克思文化事業有限公司。台北,台灣,2002 ,38-39。
13. Andra´ s Masszi, Caterina Di Ciano, Ga´bor Sirokma´ ny, William T. Arthur, Ori D. Rotstein, Jiaxu Wang, Christopher A. G. McCulloch, La´ szlo´ Rosivall, Istva´n Mucsi, and Andra´ s Kapus1. Central role for Rho in TGF-β1-induced α-smooth muscle actin expression during epithelial-mesenchymal transition. Am J Physiol Renal Physiol. 2003 284(5):F911-24.
14. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649-83.
15. Barit D, Cooper ME. Diabetic patients and kidney protection: an attainable target. J Hypertens Suppl. 2008 26(2):S3-7. Review.
16. Bellizzi V, Di Iorio BR, Nicola L De, Minutolo R, Zamboli P, Trucillo P, Catapano F, Cristofano C, Scalfi L and Conte G on behalf of the ERIKA Study-group. Very low protein diet supplemented with ketoanalogs improves blood pressure control in chronic kidney disease. Kidney International. 2007 71, 245–251.
17. Bertelli R, Valenti F, Oleggini R, Caridi G, Altieri P, Coviello DA, Botti G, Ravazzolo R, Ghiggeri GM. Cell-specific regulation of alpha1(III) and alpha2(V) collagen by TGF-beta1 in tubulointerstitial cell models. Nephrol Dial Transplant. 1998 13(3):573-9.
18. Breyer MD, Böttinger E, Brosius FC 3rd, Coffman TM, Harris RC, Heilig CW, Sharma K; AMDCC. Mouse models of diabetic nephropathy. J Am Soc Nephrol. 2005 Jan;16(1):27-45.
19. Carrero JJ, Park SH, Axelsson J, Lindholm B, Stenvinkel P: Cytokines, Atherogenesis, and Hypercatabolism in Chronic Kidney Disease: A Dreadful Triad. Semin Dial. 2009 22(4):381-6. Review.
20. Chang JH, Kim DK, Park JT, Kang EW, Yoo TH, Kim BS, Choi KH, Lee HY, Han DS, Shin SK. Influence of ketoanalogs supplementation on the progression in chronic kidney disease patients who had training on low-protein diet. Nephrology. 2009 14, 750–757.
21. Chang JM, Lee YR, Hung LM, Liu SY, Kuo MT, Wen WC, Chen P. An Extract of Antrodia camphorata Mycelia Attenuates the Progression of Nephritis in Systemic Lupus Erythematosus–Prone NZB/W F1 Mice. Evid Based Complement Alternat Med. 2008 Sep 2. [Epub ahead of print]
22. Chang, T.T., Chou, W.N. Antrodia camphorate sp. Cinnomomum Kamehirai in Taiwan. Mycol. Res. 1995 99: 756-8.
23. Chiou WF, Liu HK, Juan CW. Abnormal protein expression in the corpus cavernosum impairs erectile function in type 2 diabetes. BJU Int. 2010 105(5):674-80.
24. Craven PA, Studer RK, Negrete H, DeRubertis FR: Protein kinase C in diabetic nephropathy. J Diabet Compl. 1995 9:241-245.
25. Dinarello, CA. Biologic basis for interleukin-1 in disease. Blood. 1996 87:2095-147.
26. Djamali A, Samaniego M:Fibrogenesis in kidney transplantation: potential targets for prevention and therapy. Transplantation. 2009 27;88(10):1149-56.
27. E Sánchez-López, R Rodrigues Díez, J Rodríguez Vita, S Rayego Mateos RR. Rodrigues Díez E. Rodríguez García, C Lavoz Barria, S Mezzano, R Selgas, J. Egido A. Ortiz M. Ruiz-Ortega. Connective tissue growth factor (CTGF): a key factorin the onset and progression of kidney damage. Nefrología. 2009 29(5):382-391.
28. Faraci FM, Didion SP. Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol. 2004 24: 1367–1373.
29. Feiten SF, Draibe SA, Watanabe R, Duenhas MR, Baxmann AC, Nerbass FB, Cuppari L., Short-term effects of a very-low-protein diet supplemented with ketoacids in nondialyzed chronic kidney disease patients. Eur J Clin Nutr. 2005 59(1):129-36.
30. Gibbs, J.B. Mechanism-based target identification and drug discovery in cancer research. Science. 2000 287: 1969-1973.
31. Hiroki Fujita, Hiromi Fujishima, Shinsuke Chida, Keiko Takahashi, Zhonghua Qi, Yukiko Kanetsuna, Matthew D. Breyer, Raymond C. Harris, Yuichiro Yamada, and Takamune Takahashi. Reduction of renal superoxide dismutase in progressive diabetic nephropathy. J Am Soc Nephrol. 2009 20(6):1303-13.
32. Hseu, Y.C., Wu, F.Y., Wu, J.J., Chen, J.Y., Chang, W.H., Lu, F.J., Lai, Y.C., Yang, H.L. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-nB pathway. International immunopharmacology. 2005 5: 1914-1925.
33. Huang JS, Guh JY, Chen HC, Hung WC, Lai YH Chuang LY: Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. J Cell Biochem. 2001 81:102- 113.
34. Juan Jesus Carrero, Sun-Hee Park, Jonas Axelsson, Bengt Lindholm, and Peter Stenvinkel : Cytokines, Atherogenesis, and Hypercatabolism in Chronic Kidney Disease: A Dreadful Triad. Semin Dial. 2009 22(4):381-6.
35. Kelly DJ, Gilbert RE, Cox AJ, Soulis T, Jerums G, Cooper ME:Aminoguanidine ameliorates overexpression of prosclerotic growth factors and collagen deposition in experimental diabetic nephropathy. J Am Soc Nephrol. 2001 12(10):2098-2107.
36. Masszi A, Di Ciano C, Sirokmány G, Arthur WT, Rotstein OD, Wang J, McCulloch CA, Rosivall L, Mucsi I, Kapus A. Central role for Rho in TGF-β1-induced α-smooth muscle actin expression during epithelial-mesenchymal transition. Am J Physiol Renal Physiol. 2003 284(5):F911-24.
37. Noonan WT, and Banks, RO. Renal function and glucose transport in male and female mice with diet-induced type II diabetes mellitus. Proc.Soc.Exp.Biol.Med. 2000 225:221-230.
38. Prakash S, Pande DP, Sharma S, Sharma D, Bal CS, Kulkarni H., Randomized, double-blind, placebo-controlled trial to evaluate efficacy of ketodiet in predialytic chronic renal failure. J Ren Nutr. 2004 14(2):89-96.
39. Puren, AJ, Fantuzzi G, and C.A. Dinarello. Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci. USA 1999 96:2256-61.
40. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, Reaven GM. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000 49(11):1390-4.
41. Rigalleau V, Blanchetier V, Combe C, Guillot C, Deleris G, Aubertin J, Aparicio M Gin H. A low-protein diet improves insulin sensitivity of endogenous glucose production in predialytic uremic patients. Am. J. Clin. Nutr. 1997 65, 1512–1516.
42. Salahudeen AK, Kanji V, Reckelhoff JF, Schmidt AM: Pathogenesis of diabetic nephropathy: a radical approach. Nephrol Dial Transplant. 1997 12(4):664-8.
43. Sánchez-López E, Rodrigues Díez R, Rodríguez Vita J, Rayego Mateos S, Rodrigues Díez RR, Rodríguez García E, Lavoz Barria C, Mezzano S, Egido J, Ortiz A, Ruiz-Ortega M, Selgas R: Connective tissue growth factor (CTGF): a key factor in the onset and progression of kidney damage. Nefrología 2009 29(5):382-391.
44. Semehaovich CF. TZDs and diabetes : testing the waters . Nat Med. 2005 ; 11 : 822-4 .
45. Sheetz MJ, King GL: Molecular understanding of hyperglycemia's adverse effects for diabetic complications. JAMA. 2002 288(20):2579-88.
46. Shi Q, Wang J, Wang XL, VandeBerg JL. Comparative Analysis of Vascular Endothelial Cell Activation by TNF-alpha and LPS in Humans and Baboons. Cell Biochem Biophys. 2004;40:289-304.
47. Simm A, Munch G, Seif F, Schenk D, Heidland A, Richter H, Vamvakas S, Schinzel R:Advanced glycation end products stimulate the MAP-kinase pathway in tubules cell line LLCpk1. FEBS Lett. 1997 410:481-484.
48. Stavniichuk R, Drel VR, Shevalye H, Vareniuk I, Stevens MJ, Nadler JL, Obrosova IG. Role of 12/15-lipoxygenase in nitrosative stress and peripheral prediabetic and diabetic neuropathies. Free Radic Biol Med. 2010 Jun 22. [Epub ahead of print]
49. Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol. 2007 27(2):130-43
50. Tesch GH, Allen TJ. Methods in Renal Research: Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology. 2007 12(3):261-6
51. Thomas Ernandez1 and Tanya N. Mayadas. Immunoregulatory role of TNFα in inflammatory kidney diseases. Kidney Int. 2009 76(3):262-76.
52. Tzekov VD, Tilkian EE, Pandeva SM, Nikolov DG, Kumchev EP, Manev EI, Dimitrakov DJ. Low protein diet and ketosteril in predialysis patients with renal failure. Folia medica 2000;42(2):34-7.
53. US Renal Data System. USRDS 2009 Annual Data Report, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. Bethesda, MD, 2009.
54. Xiang Gao, Jianxiang Wu, Zheyi Dong, Can Hua, Huimin Hu and Changlin Mei. A low-protein diet supplemented with ketoacids plays a more protective role against oxidative stress of rat kidney tissue with 5/6 nephrectomy than a low-protein diet alone. British Journal of Nutrition. 2010 103(4):608-16
55. Zimmet P, Alberti KG, and Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001 414:782-787.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top