跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/18 08:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王柏雄
研究生(外文):Bo-Xiong Wang
論文名稱:草酸鈉及醋酸鈉經生物濾床分解後出水中之有機物性質
論文名稱(外文):The organic property of the effluent from biofilter utilizing the sodium oxalate and sodium acetate
指導教授:賴文亮賴文亮引用關係
指導教授(外文):Wen-Liang Lai
學位類別:碩士
校院名稱:大仁科技大學
系所名稱:環境管理研究所
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:121
中文關鍵詞:平均螢光強度值螢光激發發射光譜圖生物濾床非揮發性溶解性有碳
外文關鍵詞:Non-purgeable organic carbonAverage fluorescent intensityBiofilterExcitation emission fluorescent Matrix
相關次數:
  • 被引用被引用:0
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究實驗之初取澄清湖原水進行三種臭氧劑量O3/NPDOC =0、1及2,反應後數小時後,植入澄清湖之原生菌液,再利用蠕動幫浦將臭氧化原水導入循環式生物濾床,啟動濾床,操作數月後,使其具生物活性化及達成穩定化,除比較三種穩定後之生物濾床對醋酸鈉及草酸鈉分解能力之差異外,並利用螢光激發發射光譜圖進行濾床出水與濾床在不同深度之水相及附著濾料表面有機物性質之定性及定量,藉以瞭解不同有機物經生物濾床分解後,濾床出水中及濾床不同深度之有機物性質變化。
依實驗結果顯示,臭氧化生物濾床,初期(1天)對醋酸鈉碳之分解能力,O3/NPDOC=2明顯優於O3/NPDOC=0及1,但濾床操作6天時,差別並不明顯,並於在長期操作時 (13 days),對醋酸鈉碳之去除,O3/NPDOC=1之生物濾床明顯因濾床內微生物有機物之釋出,降低其對醋酸鈉碳之去除,並低於O3/NPDOC=2之生物濾床,而三種生物濾床對草酸鈉之分解,在操作10天後,生物濾床出水之NPDOC值高於第6天,此表示生物濾床在長期操作下,濾床內微生物可釋出有機物,並可能導致有機物去除能力之下降。
生物濾床分解醋酸鈉後,濾床出水中之螢光激發發射光譜圖之波峰之發射波長為410-430 nm,而激發波長則是220-240 nm及310 nm為主。生物濾床分解草酸鈉之濾床出水中之螢光激發發射光譜圖,發射波長為410-430 nm,出現2個波峰之位置與生物濾床分解醋酸鈉之濾床出水相同。另一發射波長小於400 nm。O3/(NPDOC of KHP)=1濾床出水出現兩個波峰,但O3/(NPDOC of KHP)=2濾床出水出現1個波峰。生物濾床在分解草酸鈉及醋酸鈉碳時,主要之特徵波峰之螢光強度值均隨操作時間之增加而增加。
生物濾床分解醋酸鈉時,出水中有機物性質之平均螢光強度值(AFI),以黃酸成份最高,而芳香族蛋白質與腐植酸接近;但生物濾床分解草酸鈉時,AFI值依序為黃酸、芳香族蛋白質與腐植酸。生物濾床分解醋酸鈉及草酸鈉至13天時,濾床在不同深度之水相及濾料表面之有機物性質,均呈現水相以黃酸為主,但濾料表面則以芳香族蛋白質為主。
The source water, Cheng Chin Lake (CCL), filtered by 0.2 µm membrane filter , was mixed with different ozone dosages to make the ratios of ozone to NPDOC (non-purgeable organic carbon) be 1 and 2 respectively. Then, the indigenous bacterium taken from CCL was put into the ozonated source water to make sure the bacterial number close to 103 cells/mL. Later, ozonated source water with microorganisms was transferred into a 5 L bottle wrapped with aluminum foil to avoid sunlight. It was draw into a chromatography packed with glass bead using peristaltic pump. The effluent from this filter was also collected using the collection bottle, and pumped into filter again. This process is called recirculated biofilter. Both biofilter systems were operated about 100 days to make it assure have biodegradability. In this study, the EEFMs (excitation emission fluorescent matrices) of the effluents from both stabilizing biofilters used to utilize the artificial water prepared by sodium acetate and sodium oxalate, were monitored for further understanding its organic properties. Of course, both parameters such as NPDOC (Non-purgeable organic carbon) and amino acids were measured in this study for getting more information about the effluents.
The biodegradability of acetate-C by ozonated biofilter with O3/(NPDOC of KHP)=2 was higher than by ozonated biofilter with O3/(NPDOC of KHP)=1 when the operation day was the first day. However, insignificant difference about the acetate-C removal was found between both ozonated biofilter when the operational day reached six days. After long operation of thirteen days, the biodegradability of acetate-C by ozonated biofilter with O3/(NPDOC of KHP)=1 also less than that by ozonated biofilter with O3/(NPDOC of KHP)=2 was attributed to more organic release from O3/(NPDOC of KHP)=1 than O3/(NPDOC of KHP)=1.
The EEFMs of effluent from ozonated biofilter decomposing the 5 mg-acetate C/L existed in two peak positions dominant in long emission wavelength of 410-430 nm and excitation respective wavelength of 220-240 nm and 310 nm. This phenomena also appeared in the EEFMs of the effluent from ozonated biofilter treating oxalate-C. Beside for the previous peak location appeared in the effluent from ozonzated biofilter treating oxalate-C, emission wavelength less than 400 nm, two peaks in EEFMs existed in biofilter with O3/NPDOC=1 while only one peak in EEFM appeared in O3/NPDOC=2. No matter what ozonated biofilter was used to decompose the acetate-C or oxalate-C, the intensity in the approximate peak location in EEFMs of the effluent was increased with the increase of operational days.
The average fluorescent intensity (AFI) for fulvic-like of the effluent from the biofilter decomposing sodium acetate is the largest, and those happened in the following aliphatic protein and humic-like had an equivalent content. However, The average fluorescent intensity (AFI) for fulvic-like of the effluent from the biofilter decomposing oxylate acetate was in order from large and small, fulvic-like, aliphatic protein, and least humic-like. The organic properties existed in bulk solution of the filters and the surface of filters were respectively dominiated by the fulvic-like and aliphatic protein whichever the sodium acetate or sodium oxalate was utilized by the ozonated biofilter till thirteen days. This is an interesting finding.
摘要 I
ABSTRACT III
誌謝 V
目錄 VI
圖目錄 X
表目錄 XIV
壹、前言 1
一、 研究背景 1
二、 研究目的 3
貳、文獻回顧 4
一、 水體中有機物之性質 4
二、 生物可分解性有機質之評估方式 5
三、 生物膜之形成及對配水管網之影響 8
四、 兩種淨水程序對生物可分解性有機物之去除 10
(一)混凝程序 10
(二)生物濾床 11
五、影響生物濾床穩定性之操作因素 13
(一)臭氧與有機物之相關性 14
(二)生物濾床種類 15
六、 後生長之問題及控制 17
(一)後生長 17
(二)影響因子 19
(三)控制 20
七、 螢光光譜儀 (EEFM)之應用 21
八、 環境微生物分生技術之應用 22
(一)16S rDNA的特性與應用 23
(二)聚合酶連鎖反應(PCR) 24
(三)變性梯度膠體電泳(DGGE) 25
參、實驗材料與方法 27
一、 研究流程與規劃 27
二、生物濾床訓養之操作系統 29
三、 臭氧反應系統及操作 29
四、 基質更換之步驟 31
五、 生物性參數分析 31
(一)總菌及活菌之測定 31
(二)電子顯微鏡( Scanning Electron Microscope, SEM) 32
(三)DNA之萃取 33
(四)利用PCR增殖16S rDNA片段 33
(五) Agarose Gel Method 35
(六)膠體中DNA回收純化 35
(七)變性梯度膠體電泳 36
(八)SYBR green I 染色與膠體拍攝與分析統計 37
(九)Ligation 37
(十)Transformation 38
(十一)菌相序列之比對 38
六、 化學性參數分析 39
(一)非揮發性之溶解性有機碳(NPDOC) 39
(二)有機物分子量大小 39
(三)醣類 40
(四)胺基酸 40
(五)螢光激發與發射光譜圖(EEFM) 43
肆、結果與討論 45
一、 人工基質經生物濾床分解後出水中有機碳量及有機物性質 45
(一)不同臭氧化穩定後之生物濾床對草酸鈉及醋酸鈉之分解 45
(二)不同臭氧化穩定後之生物濾床對草酸鈉及醋酸鈉之分解後出水中之螢光激發發射光譜圖 49
(三)不同臭氧化穩定後之生物濾床對草酸鈉及醋酸鈉之分解後出水中之同步掃描圖 55
(四)以平均螢光強度值評估生物濾床出水中有機物性質 59
二、 不同深度之生物濾床在水相及濾料表面之有機物性質 66
(一)草酸鈉及醋酸鈉經生物濾床分解後,不同深度水相及濾料表面之螢光激發發射光譜圖 66
(二) 以平均螢光強度值評估穩定後生物濾床水相及濾料表面有機物性質之變化 72
(三)不同深度濾料與水相之菌相SEM觀測 83
(四)不同深度之微生物 genomic DNA萃取 88
(五) DGGE電泳分析與比對 91
伍、結論 97
陸、參考文獻 98
范姜仁茂, 曾迪華, & 郭家倫. (2001). 預臭氧程序提升工業廢水生物可分解性之回顧與評析. 國立中央大學環境工程學刊, 7, 19-38.
張建裕, & 張建國. (2004). 基礎 PCR. 台北: 藝軒圖書出版社.
張鎮南, 李福順, & 辛汎峰. (1998). 大甲溪流域溶解性有機物分布及生成消毒副產物特性之探討. 自來水會刊, 17(2), 49-64.
黃文鑑. (1997). 混凝, 吸附對溶解性有機物去除及受預氯影響之研究. 博士論文, 國立成功大學環境工程研究所, 台南.
葉宣顯, 曾怡禎, 賴文亮, & 施惠日. (1997). 配水管網中水質生物穩定性之研究. 第十四屆給水技術研討會論文集, 台北.
賴文亮. (2002). 各種淨水程序對生物可分解有機質及消毒副產物之控制. 國立成功大學環境工程所博士論文.
賴文亮, & 陳振正. (2001). 不同處理程序對生物可分解有機物質去除之影響. 自來水會刑, 20(4), 17-40.
Ahmad, S. R., & Reynolds, D. M. (1995). Synchronous fluorescence spectroscopy of wastewater and some potential constituents. Water Research, 29(6), 1599-1602.
Bano, N., & Hollibaugh, J. T. (2000). Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Arctic Ocean. Applied and Environmental Microbiology, 66(5), 1960.
Bano, N., & Hollibaugh, J. T. (2002). Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Applied and Environmental Microbiology, 68(2), 505.
Bertin, L., Colao, M. C., Ruzzi, M., Marchetti, L., & Fava, F. (2006). Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor. Microbial Cell Factories, 5(1), 16.
Blears, M. J., De Grandis, S. A., Lee, H., & Trevors, J. T. (1998). Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. Journal of Industrial Microbiology and Biotechnology, 21(3), 99-114.
Bohn, H. (1992). Consider biofiltration for decontaminating gases. Chemical Engineering Progress, 88(4), 34-40.
Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3), 314.
Bouwer, E. J., & Crowe, P. B. (1988). Biological processes in drinking water treatment. Journal American Water Works Association, 80(9), 82-93.
Bull, R. J. (1982). Health effects of drinking water disinfectants and disinfectant by-products. Environmental Science and Technology, 16(10).
Cappelier, J. M., Lazaro, B., Rossero, A., Fernandez-Astorga, A., & Federighi, M. (1997). Double staining (CTC-DAPI) for detection and enumeration of viable but non-culturable Campylobacter jejuni cells. Veterinary research, 28(6), 547.
Chandy, J. P., & Angles, M. L. (2001). Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay. Water Research, 35(11), 2677-2682.
Characklis, W. G., & Cooksey, K. E. (1983). Biofilms and microbial fouling. Adv. Appl. Microbiol, 29, 93-138.
Chen, J., LeBoeuf, E. J., Dai, S., & Gu, B. (2003). Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere, 50(5), 639-647.
Chen, P. H., Jenq, C. H., & Chen, K. M. (1996). Evaluation of granular activated carbon for removal of trace organic compounds in drinking water. Environment International, 22(3), 343-359.
Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51(4), 325-346.
Croue, J. P., Debroux, J. F., Amy, G. L., Aiken, G. R., & Leenheer, J. A. (1999). Natural organic matter: structural characteristics and reactive properties. Formation and Control of Disinfection By-Products in Drinking Water, 65–93.
Del Castillo, C. E., Coble, P. G., Morell, J. M., Lopez, J. M., & Corredor, J. E. (1999). Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Marine Chemistry, 66(1-2), 35-51.
Dharmavaram, S., Casey, J., Timmermans, T., & van Lith, C. (1993). Experimental evaluation of a biofiltration unit for removal of acetone.
Dukan, S., Levi, Y., Piriou, P., Guyon, F., & Villon, P. (1996). Dynamic modelling of bacterial growth in drinking water networks. Water Research, 30(9), 1991-2002.
Emtiazi, F., Schwartz, T., Marten, S. M., Krolla-Sidenstein, P., & Obst, U. (2004). Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water Research, 38(5), 1197-1206.
Escobar, I. C., Hong, S., & Randall, A. A. (2000). Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membranes. Journal of Membrane Science, 175(1), 1-17.
Escobar, I. C., & Randall, A. A. (2001). Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC): complementary measurements. Water Research, 35(18), 4444-4454.
Gallego, V., Garcia, M. T., & Ventosa, A. (2005). Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. International Journal of Systematic and Evolutionary Microbiology, 55(1), 281.
Geldreich, E. E., Nash, H. D., Reasoner, D. J., & Taylor, R. H. (1972). The necessity of controlling bacterial populations in potable waters: community water supply. Journal American Water Works Association, 64(9), 596-602.
Gich, F., Garcia-Gil, J., & Overmann, J. (2001). Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes. Archives of microbiology, 177(1), 1-10.
Goel, S., Hozalski, R. M., & Bouwer, E. J. (1995). Biodegradation of NOM: effect of NOM source and ozone dose: Natural organic matter. Journal- American Water Works Association, 87(1), 90-105.
Hambsch, B., & Werner, P. (1993). Control of bacterial regrowth in drinking-water treatment plants and distribution system. WATER SUPPLY-OXFORD-, 11, 299-299.
Hollibaugh, J. T., Bano, N., & Ducklow, H. W. (2002). Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 68(3), 1478.
Hu, J. Y., Wang, Z. S., Ng, W. J., & Ong, S. L. (1999). The effect of water treatment processes on the biological stability of potable water. Water Research, 33(11), 2587-2592.
Huck, P. M. (1990). Measurement of biodegradable organic matter and bacterial growth potential in drinking water. Journal American Water Works Association, 82(7), 78-86.
Owen, D. M., Amy, G. L., & Chowdhury, Z. K. (1993). Characterization of natural organic matter and its relationship to treatability. AWWAR.
Thompson, D., Sterne, L., Bell, J., Parker, W., & Lye, A. (1996). Pilot scale investigation of sustainable BTEX removal with a compost biofilter.
Trulzsch, B., Krohn, K., Wonerow, P., & Paschke, R. (1999). DGGE is more sensitive for the detection of somatic point mutations than direct sequencing. Biotechniques, 27(2), 266.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top