跳到主要內容

臺灣博碩士論文加值系統

(44.192.114.32) 您好!臺灣時間:2022/07/01 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊于萱
研究生(外文):Yu-Hsuan Yang
論文名稱:培養條件對樟芝菌絲體抗氧化及抗腫瘤能力之影響
論文名稱(外文):Effect of culture conditions on antioxidant and antitumor activity from Antrodia cinnamomea mycelia
指導教授:楊芳鏘楊芳鏘引用關係盧錫祺盧錫祺引用關係
指導教授(外文):Fan-Chiang YangHsi-Chi Lu
口試委員:楊芳鏘盧錫祺顏宏偉林松池王敏盈
口試委員(外文):Fan-Chiang YangHsi-Chi LuHong-Wei YenSung-Chyr LinMin-Ying Wang
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:98
中文關鍵詞:樟芝抗氧化力抗腫瘤固態培養
外文關鍵詞:Antrodia cinnamomeaantioxidant activityanti-tumorsolid state fermentation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1677
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:1
樟芝(Antrodia cinnamomea)為台灣特有的藥用菇類,已知主要的有效成分為多醣體、固醇類及三萜類,其生理活性成分及功能仍是目前研究重點。本研究主要以天然穀物做為基質進行固態發酵以及添加不同水萃液之液態發酵,分析其生理活性成分,且將所獲得之菌絲體經由甲醇萃取後,探討抗氧化及抗腫瘤能力分析。結果發現液態培養中添加薏仁水萃液具有較佳的抗氧化與抗腫瘤能力,在抗氧化力(共軛雙烯法)方面EC50 為1.13 mg/ml;在抗腫瘤能力方面,濃度400 ppm時,對MCF-7與HepG2腫瘤細胞其細胞存活率可降至41.89%與38.3%。固態培養中以燕麥為基質具有較佳的抗氧化及抗腫瘤能力,且對不同腫瘤細胞有著不同的毒殺效果,在抗氧化力(共軛雙烯法)方面EC50 為0.57 mg/ml;捕捉DPPH能力EC50 為1.07 mg/ml;還原力EC50 為0.31 mg/ml。在抗腫瘤能力方面,濃度150 ppm時,MCF-7腫瘤細胞其細胞存活率降至28.72%,但HepG2腫瘤細胞其細胞存活率尚有75.90%。而樟芝經由固態發酵後,可產生較多之二次代謝產物,在相同濃度下固態發酵之菌絲體甲醇萃取物抗腫瘤及抗氧化能力均比液態高。研究結果希望可供日後樟芝相關治療藥物或保健食品之開發與應用的參考。
Antrodia cinnamomea is an endemic medical mushroom in Taiwan. It is well known that the major effective components in this medical fungus are polysaccharides, steroids and triterpenoids. The bioactive and efficacy of A. cinnamomea are still the main focus in many researches. In this research different kinds of natural grains were used as a substrate for solid state fermentation and different water extracts were added in liquid fermentation to study their effects on the formation of bioactive components. Moreover, antioxidant properties and anti-tumor activities of mycelia were also investigated.
The results showed that when liquid fermentation media contained barley water extract, mycelia product has better antioxidant and anti-tumor capacities. The antioxidant activity (conjugated diene method) of EC50 value was 1.13 mg/ml. About the anti-tumor activity, the cell viabilities of MCF-7 and HepG2 cancer cells were 41.89% and 38.3% respectively at the extract concentration of 400 ppm. Concerning solid state fermentation, when oats were used as a substrate, the mycelia product had stronger antioxidant properties and different extract revealed various levels of inhibitory activity to cancer cell lines. The levels of EC50 for the antioxidant activity (conjugated diene method), the DPPH radicals scavenging ability and reducing power were estimated to be around 0.57 mg/ml, 1.07 mg/ml and 0.31 mg/ml, respectively. About the anti-tumor activity, the resulted showed that the cell viability of MCF-7 cancer cell was 28.72%, but the treatment for HepG2 was less effective and the cell viability reached to 75.90%. In general solid state fermentation of A. cinnamomea could produce more of the secondary metabolities and their methanolic extracts showed stronger antioxidant and anti-tumor activities than extracts obtained from liquid fermentation at the same concentration. The results are expected to be used for the development of new functional food in the future.

目錄
中文摘要 I
Abstract II
目錄 IV
圖目錄 X
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 文獻回顧 3
2-1 樟芝的介紹 3
2-1-1 樟芝的分類 3
2-1-2 樟芝的命名 3
2-1-3 樟芝生理活性成分 6
2-1-3-1 多醣體(polysaccharides) 6
2-1-3-2 三萜類(triterpenoids) 7
2-1-4 樟芝生理活性成分研究及應用 8
2-1-4-1 抗氧化功效 9
2-1-4-2 毒殺腫瘤細胞能力 10
2-1-4-3 提升免疫力 11
2-1-4-4 保肝功能 11
2-1-4-5 降血脂功能 11
2-1-4-6 抗發炎反應 12
2-2 自由基與活性氧對生物體之影響 13
2-2-1 自由基 13
2-2-2 活性氧 14
2-2-3 脂質自氧化作用 14
2-2-4 抗氧化劑之作用機制 17
2-2-4-1 自由基終止劑 17
2-2-4-2 還原劑、清除劑 17
2-2-4-3 金屬螯合劑 18
2-2-4-4 單重態氧抑制劑 18
2-3 固態發酵 18
2-3-1固態發酵與液態發酵之差異 19
2-3-2 固態發酵之優缺點 19
2-3-3 固態發酵之應用 21
2-3-3-1 固態發酵應用於工業方面 21
2-3-3-2 固態發酵應用於農業方面 21
2-3-3-3 固態發酵應用於食品方面 22
第三章 實驗材料與分法 23
3-1 實驗菌株及細胞 23
3-1-1 樟芝菌株 23
3-1-2 動物細胞株 23
3-2 實驗藥品 24
3-3 實驗儀器與設備 25
3-4 分析方法 27
3-4-1菌體濃度 27
3-4-2 澱粉分析方法 27
3-4-3 總多酚類化合物含量測定 28
3-4-4 多醣濃度測定 28
3-4-5 胞內粗三萜含量測定 29
3-4-6 抗氧化性質之測定 29
3-4-6-1 抗氧化能力之測定 29
3-4-6-2 捕捉DPPH自由基能力測定 30
3-4-6-3 還原力測定 30
3-4-7細胞增生與毒性測試 31
3-5 實驗方法 33
3-5-1 實驗架構 33
3-5-2 樟芝菌種培養與保存 34
3-5-2-1菌種斜面試管保存 34
3-5-2-2 培養皿平面培養與接菌活化 34
3-5-2-3 種菌的製備 34
3-5-3 三角瓶液態培養試驗 35
3-5-3-1 水萃液製備 35
3-5-4樟芝胞內多醣萃取 35
3-5-5 三角瓶固態培養試驗 36
3-5-6 樟芝菌絲體甲醇萃取物之製備 36
3-5-7細胞培養與繼代 37
3-5-8 抑制腫瘤細胞生長試驗 38
第四章 結果與討論 39
4-1 樟芝三角瓶液態培養試驗 39
4-1-1 不同水萃液對樟芝液態發酵菌絲體生長曲線之影響 39
4-1-2 不同水萃液對樟芝液態發酵菌絲體生理活性成分含量影響 42
4-1-2-1 不同水萃液對樟芝液態發酵菌絲體總酚含量影響 42
4-1-2-2 不同水萃液對樟芝液態發酵菌絲體胞內多醣含量影響 43
4-1-2-3 不同水萃液對樟芝液態發酵菌絲體粗三萜含量影響 44
4-1-3 不同水萃液對液態發酵菌絲體甲醇萃取物抗氧化活性測定 47
4-1-3-1 菌絲體甲醇萃取物之抗氧化力 47
4-1-3-2菌絲體甲醇萃取物捕捉DPPH之能力 49
4-1-3-3菌絲體甲醇萃取物之還原力 51
4-1-4 菌絲體甲醇萃取物抗氧化活性之EC50 52
4-2 樟芝三角瓶固態培養試驗 54
4-2-1 探討不同基質對樟芝固態發酵菌絲體生理活性成分含量影響 54
4-2-1-1 不同基質對樟芝固態發酵菌絲體總酚含量影響 54
4-2-1-2不同基質對樟芝固態發酵其發酵物粗三萜含量影響 55
4-2-2 未發酵基質與發酵基質甲醇萃取物抗氧化活性比較 57
4-2-2-1未發酵基質與發酵基質甲醇萃取物捕捉DPPH之能力 57
4-2-2-2未發酵基質與發酵基質甲醇萃取物之還原力 58
4-2-3 不同基質對樟芝固態發酵甲醇萃取物抗氧化活性測定 59
4-2-3-1 固態發酵甲醇萃取物之抗氧化力 59
4-2-3-2固態發酵甲醇萃取物捕捉DPPH之能力 60
4-2-3-3固態發酵甲醇萃取物之還原力 61
4-2-4 固態發酵甲醇萃取物抗氧化活性之EC50 62
4-3 樟芝甲醇萃取物對正常細胞毒性測試 64
4-3-1 液態發酵甲醇萃取物對正常細胞毒性測試 64
4-3-2 固態發酵甲醇萃取物對正常細胞毒性測試 65
4-4 樟芝甲醇萃取物對腫瘤細胞存活率之影響 66
4-4-1 液態發酵甲醇萃取物對腫瘤細胞存活率之影響 67
4-4-2固態發酵甲醇萃取物對腫瘤細胞存活率之影響 70
第五章 結論與未來展望 74
5-1 結論 74
5-2 未來展望 76
參考文獻 77


圖目錄
圖2-1 野生樟芝子實體 4
圖2-2 樟芝木屑培養 4
圖2-3 樟芝固態平板培養 5
圖2-4 樟芝固態培養 5
圖2-5 樟芝液態培養之菌絲球 5
圖2-6 脂質自氧化反應途徑及產物 16
圖3-1 實驗架構 33
圖4-1 不同水萃液對樟芝液態發酵菌絲體生長曲線之影響 41
圖4-2 不同水萃液對樟芝液態發酵菌絲體總酚含量之影響 43
圖4-3 不同水萃液對樟芝液態發酵菌絲體胞內多醣含量之影響 44
圖4-4 不同水萃液對樟芝液態發酵菌絲體粗三萜含量之影響 45
圖4-5 不同水萃液對樟芝液態發酵菌絲體甲醇萃取物之抗氧化力 48
圖4-6 不同水萃液對樟芝液態發酵菌絲體甲醇萃取物捕捉DPPH能力 50
圖4-7 不同水萃液對樟芝液態發酵菌絲體甲醇萃取物之還原力 52
圖4-8 不同基質對樟芝固態發酵菌絲體總酚含量之影響 55
圖4-9 不同基質對樟芝固態發酵菌絲體粗三萜含量之影響 56
圖4-10 未發酵基質與發酵基質甲醇萃取物捕捉DPPH之能力 58
圖4-11 未發酵基質發酵基質甲醇萃取物之還原力 59
圖4-12 不同基質對樟芝固態發酵菌絲體甲醇萃取物之抗氧化力 60
圖4-13 不同基質對樟芝固態發酵菌絲體甲醇萃取物捕捉DPPH能力 61
圖4-14 不同基質對樟芝固態發酵菌絲體甲醇萃取物還原力 62
圖4-15 液態發酵菌絲體甲醇萃取物對正常細胞(3T3)存活率之影響 65
圖4-16 固態發酵菌絲體甲醇萃取物對正常細胞(3T3)存活率之影響 66
圖4-17 液態發酵菌絲體甲醇萃取物對MCF-7腫瘤細胞存活率之影響 69
圖4-18 液態發酵菌絲體甲醇萃取物對HepG2腫瘤細胞存活率之影響 69
圖4-19 固態發酵菌絲體甲醇萃取物對MCF-7腫瘤細胞存活率之影響 73
圖4-20 固態發酵菌絲體甲醇萃取物對HepG2腫瘤細胞存活率之影響 73




表目錄
表3-1 實驗藥品清單 24
表3-2 實驗儀器清單 25
表3-3 3T3、HepG2細胞培養基組成 37
表3-4 MCF-7細胞培養基組成 37
表4-1 不同水萃液對液態發酵菌絲體乾重、胞內多醣、總酚及粗三萜含量之影響 46
表4-2 不同水萃液對樟芝液態發酵菌絲體甲醇萃取物抗氧化活性之EC50 53
表4-3 不同基質對樟芝固態發酵菌絲體甲醇萃取物抗氧化活性之EC50 63







參考文獻
于守洋、崔洪斌(2003)。 保健食品全集。 台北市: 九州圖書文物有限公司。 93–104。
水野卓、川合正允,賴慶亮譯。(1997)。 菇類的化學,生化學。 台北市: 國立編譯館。409。
王柏森(2007)。 樟芝(Antrodia cinnamomea)固態發酵培養產物之成分分析與抗氧化活性之研究。國立屏東科技大學生物科技研究所碩士論文。
王雅欣(2008a)。 樟芝抗發炎活性成分及其研究。 國立中興大學農藝學系所碩士論文。
王喬嬋(2008b)。 樟芝菌絲與濾液多醣體之免疫調控與抗發炎作用。國立陽明大學臨床醫學研究所碩士論文。
吳德鵬(1995)。 樟芝微量成分的研究。 國立台灣師範大學化學研究所碩士論文。
宋祖瑩(2003)。 樟芝深層培養液抗氧化及抗腫瘤特性之研究。 國立中興大學食品科學系博士論文。
李宛蓁(2003)。 樟菌絲體培養與生理活性成分生成之研究。 私立東海大學化學工程研究所碩士論文。
俆福建、李佐虎、陳洪樟(2002)。 固態發酵工程研究進展。 生物工程進展。 22:44–48。
林馨怡(2008)。 樟芝液態培養應用於抗老化化妝品之研究。 私立東海大學化學工程研究所碩士論文。
拱玉郎(1997)。 天然抗氧化劑發展近況。 食品工業。 29(3):29–37。
洪美戀(2005)。 不同樟芝菌種發酵液在肝癌細胞之毒殺性比較。 國立臺灣海洋大學食品科學系碩士論文。
范真綺(2004)。 樟芝固態栽培與液態發酵菌絲體之成分及其生物活性之研究。 南台科技大學化學工程系碩士論文。
楊盛行、陳盟靜(2000)。 高溫放線菌對堆肥化過程的影響。 中華生質能源學會會誌。 19:115–127。
陳心慧(2004)。 牛樟芝不同極性區分保肝機能性之研究。 中山醫學大學營養科學研究所碩士論文。
陳書豪(2006)。 探討樟芝的溫度變化對液態發酵與固態發酵生產三萜類與多醣體之影響。 國立中央大學化學工程與材料工程研究所碩士論文。
陳先進(2007)。 探討牛樟芝萃取之麥角烷結構三萜類對神經膠原瘤細胞生長抑制之作用機轉。 國立陽明大學解剖暨細胞生物學研究所碩士論文。
肖崇厚、陳蘊如(1989)。 中藥化學。 上海 : 科學技術出版社。 323–360。
黃鈴娟(2000)。 芝與姬松茸之抗氧化性質及多醣組成。 國立中興大學食品科學研究所碩士論文。
湯惋茹(2004)。 Aspergillus carneus M34 固態生產聚木糖酶之最適化條件及特性分析。國立中興大學食品科學系碩士論文。
詹順峰、黃景軍、陳國樹、楊盛行(1998)。 高溫放線菌之纖維素酶活性及對稻草堆肥品質之影響。 中華農學會報。 185:58-71。
盧祉彤(2004)。 牛樟芝菌絲體對腫瘤細胞的影響。 南台科技大學生物科技系碩士論文。
顏世榮(2006)。 樟芝降三酸甘油脂之功能研究。 臺北醫學大學醫學檢驗生物技術學研究所碩士論文。
謝曉惠(2004)。 中草藥發酵產物對抑制腫瘤細胞之功能性評估。 南台科技大學生物科技研究所碩士論文
謝如婷(2009)。 微量元素對牛樟芝發酵物生理活性與抗氧化活性影響之探討。 南台科技大學生物科技研究所碩士論文。
羅國仁、余文立( 2004)。 固態醱酵製程的開發與應用。 食品工業。 36(10):2-9。
續光清(1992)。 食品化學。 台灣: 徐氏基金會出版。
Ao ZH, Xu ZH, Lub ZM, Xu HY, Zhang XM, Dou WF. (2009), Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases, Journal of Ethnopharmacology, 121 (2), pp. 194-212.
Bando N, Hayashi H, Wakamatsu S, Inakuma T, Miyoshi M, Nagao A, Yamauchi R, Terao J. (2004), Participation of singlet oxygen in ultraviolet-a-induced lipid peroxidation in mouse skin and its inhibition by dietary β-carotene: an ex vivo study, Free Radical Biology and Medicine, 37, pp. 1854-1863.
Blood CH, Zetter BR. (1990), Tumor interactions with the vasculature: angiogenesis and tumor metastasis, Biochimica et Biophysica Acta.,1032, pp. 89-118.
Bonorden WR, Pariza MW. (1994), Antioxidant nutrients and protection from free radicals, In: Kostsonis FN, Mackey M, Hjelle J, Eds. Nutrition: Toxicol, Raven press: New York, pp. 19-48.
Botella C, Ory I, Webb C, Blandino A. (2005), Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochemical Engineering Journal, 26, pp. 100-106.
Brand-Williams W, Cuvelier ME, Berset C. (1995), Use of a free radical method to evalute antioxidant activiy. Lebensm-Wiss. U. Technol., 28, pp. 25-30.
Cha WS, Ding JL, Choi D. (2009), Comparative Evaluation of Antioxidant,Nitrite Scavenging, and Antitumor Effects of Antrodia camphorata Extract, Biotechnology and Bioprocess Engineering, 14, pp. 232-237.
Chang TT, Chou WN. (1995), Antrodia cinnamomea sp. Nov. on Cinnamomum Kanehirai in Taiwan, Mycological Research, 99(6), pp. 756-758.
Chang TT, Chou WN. (2004), Antrodia cinnamomea reconsidered and A. salmonea sp. Nov. on Cunninghamia konishii in Taiwan, Botanical Bulletin of Academia Sinica, 45, pp. 347-352.
Chaplin MF, Kennedy JF. (1994), Carbohydrate analysis-a practical approach, Oxford University Press Inc.
Chen YJ, Cheng PC, Lin CN, Liao HF, Chen YY, Chen CC, Lee KM. (2008), Polysaccharides from Antrodia camphorata mycelia extracts possess immunomodulatory activity and inhibits infection of Schistosoma mansoni, International Immunopharmacology, 8(3), pp. 458-467.
Cherng, IH, Chiang HC. (1995), Three new triterpenoids form Antrodia cinnamomea, Journal of Natural Products, 58, pp. 365-371.
Cherng IH, Wu DP, Chiang HC. (1996), Triterpenoids form Antrodia cinnamomea, Phytochemistry, 41, pp. 263-267.
Fennema OR. (1996), Lipids in “Food Chemistry”. Marcel Dekker Inc. 3, , pp. 211-213.
Frankel EN. (1984), Lipid oxidation: mechanisms, products and biological significance, Journal of American Chemical Society, 61, pp. 1908-1916.
Giese J. (1996), Antioxidants : tools for preventing lipid oxidation, Food Technology (Chicago), 50(11), pp. 73-74, 76, 78, 80-81.
Greuter W, Mcneill J, Barrie FR, Burdet HM, Demoulin V, Filgueiras TS, Nicolson DH, Silva PC, Skog JE, Trehane P, Turland NJ, Hawksworth DL. (2000), International code of botanical nomenclature(St Louis Code), Regnum Vegetable 138, Konigstein: Koelts Scientific Books.
Halliwell B. (1994), Free radicals and antioxidants: A personal view, Nutrition Reviews, 52(8), pp. 253-265.
Halliwell B, Gutteridge JM. (1984), Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem J., 219(1), pp. 1-14.
Halliwell B, Murcia MA, Chirico S, Aruoma OI. (1995), Free radicals and antioxidants in food and in vivo: what they do and how they work, Critical Reviews Food Science Nutr., 35(1-2), pp. 7-20.
Hsiao G, Shen MY, Lin KH, Lan MH, Wu LY, Chou DS, Lin CH, Su CH, Sheu JR. (2003), Antioxidative and hepatoprotective effects of Antrodia camphorata extract, Journal of Agricultural and Food Chemistry, 51(11), pp. 3302-3308.
Huang LC, Huang SJ, Chen CC, Mau JL. (1999), Antioxidant properties of Antrodia camphorate, In Proceedings of the Third International Conference on Mushroom Biology and Mushroom Products, Biology &Mushroom Products, pp. 275-283.
Huang LC. (2000), Antioxidant properties and polysaccharide composition analysis of Antrodia camphorata and Agaricus blazei, National Chung-Hsing University. Taichung : s.n., Master’s Thesis.
Huang SJ, Mau JL. (2007), Antioxidant properties ofmethanolic extracts from Antrodia camphorata with various doses of gamma-irradiation, Food Chemistry, 105, pp. 1702-1710.
Hseu YC, Chang WH, Chen CS, Liao JW, Huang CJ, Lu FJ, Chia YC, Hsu HK, Wu JJ, Yang HL. (2008a), Antioxidant activities of Toona sinensis leaves extracts using different antioxidant models, Food and Chemical Toxicology, 46, pp. 105-114.
Hseu YC, Chen SC, Chen HC, Liao JW, Yang HL. (2008b), Antrodia camphorata inhibits proliferation of human breast cancer cells in vitro and in vivo. Food and Chemical Toxicology
Kellogg EW, Fridovich I. (1975), Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system, Journal of Biological Chemistry, 250, pp. 8812-8817.
Kochhar SP, Rossell JB. (1990), Detection , estimation and evaluation of antioxidants in food systems, Food Antioxidant, pp. 19-64.
Kunamneni A, Permaul K, Singh S. (2005), Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus , Journal of Bioscience Bioengineering, 2, pp. 168-171.
Kuo MC, Chang CY, Cheng TL, Wu MJ. (2008), Immunomodulatory effect of Antrodia camphorata mycelia and culture filtrate, Journal of Ethnopharmacology, 120(2), pp. 196-203.
Labuza TP. (1971), Kinetics of lipid oxidation in foods, CRC Critical Reviews in Food Science and Technology, 2(3), pp. 355-405.
Li SL, Huang ZN, Hsieh HH, Yu WC, Tzeng WY, Lee GY, Chen YP, Chang CY, Chuu JJ. (2009), The augmented anti-tumor effects of Antrodia camphorata co-fermented with chinese medicinal herb in in human hepatoma cells, Am J Chin Med., 37(4), pp. 771-783.
Lingnert H, Vallentin K, Eriksson CE. (1979), Measurement of antioxidant effect in model system, Journal of Food Processing and Preservation, 3, pp. 87-103.
Liu DZ, Liang HJ, Chen CH, Su CH, Lee TH, Huang CT, Hou WC, Lin SY, Zhong WB, Lin PJ, Hung LF, Liang YC. (2007), Comparative anti-inflammatory characterization of wild fruiting body, liquid-state fermentation,and solid-state culture of Taiwanofungus camphoratus in microglia and themechanism, Journal of Ethnopharmacology, 113, pp. 45-53.
Matter LB, Luchese RH. (1998), Cultural conditions for pigment production by Monascus purpureus in rice, Revista de Microbiologic., 29, pp. 69-75.
Mau JL, Huang PN, Huang SJ, Chen CC. (2004), Antioxidant properties of methanol extracts from two kinds of Antrodia camphorata mycelia, Food Chemistry, 86, pp. 25-31.
Maxwell SR. (1995), Prospects for the use of antioxidant therapies, Drugs, 49(3), pp. 345-361.

McCawley LJ, Matrisian LM. (2000), Matrix metalloproteinases: multifunction contributor to tumor progression, Molecular Mdeicine Today, 6, pp. 149-156.
Nakamura N, Hirakawa A, Gao JJ, Kakuda H, Shiro M, Komatsu Y, Sheu CC, Hattori M. (2004), Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line, Journal of Natural Products, 67(1), pp. 46-48.
Oyaize M. (1986), Antioxidative activity of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography, Nippon Shokuhin Kogyo Gakkaishi, 35, pp. 771-775.
Sato K, Sudo S. (1999), Small-Scale Solid – State Fermentations, Journal of Industrial Microbiology and Biotechnology, 2, pp. 61-63.
Singleton VL, Rossi JA Jr. (1965), Colorimetry of total phenolics with phosphomolybic-phosphotungstic acid reagents, Amer. J. Enol. Viticult., 16, pp. 144-158.
Song TY, Yen GC. (2002), Antioxidant properties of Antrodia camphorata in submerged culture, Journal of Agricultural and Food Chemistry, 50, pp. 3322-3327.
Tang YJ, Zhong JJ. (2002), Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid, Enzyme and Microbial Technology, 31, pp. 20-28.
Tengerdy RP. (1998), Solid substrate fermentation for enzyme production, In-Advances in Biotechnology, ed. A. Pandey. Educational Publishers & Distributors, New Delhi., pp. 13-16.
Thomas MJ. (1995), The role of free radicals and antioxidants: how do we know that they are working?, Crit. Rev. Food Sci. Nutr., 35, pp. 21-39.
Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. (2004), Role of oxygen radicals in DNA damage and cancer incidence, Molecular and Cellular Biochemistry, 266(1-2), pp. 37-56.
Velera HR, Gomes J, Lakshmi S, Gururaja R, Suryanarayan S, Kumar D. (2005), Lovastatin production by solid state fermentation using Aspergillus flavipes, Enzyme Microbial Technology, 37, pp. 521-526.
Viniegra-González G, Favela-Torres E, Aguilar CN, Romero-Gómez SJ, Díaz-Godínez G, Augur C. (2003), Advantages of fungal enzyme production in solid state over liquid fermentation systems, Biochemical Engineering Journal, 13, pp. 157-167.
Virupakshi S, Babu KG, Gaikward SR, Naik GR. (2005), Production of a xylanolytic enzyme by a thermoalkaliphilic Bacillus sp. JB-99 in solid state fermentation, Process Biochemistry, 40, pp. 431-435.
Wang L, Mo H, Shi H. (1999), Production of lovastatin with solid state fermentation of Monascus rubber, Zhongguo Kangshengsu Zazhi ., 24, pp. 96-98.
Wu SH, Leif R, Chang TT. (1997), Antrodia camphorata (“niu-chang-chih”), new combination of a medicinal fungus in Taiwan, Botanical Bulletin Academia Sinica, 38, pp. 273-275.
Wu SH, Yu ZH, Dai YC, Chen CT, Su CH, Chen LC, Hsu WC, Hwang GY. (2004), Taiwanofungus, a polypore new genus, Fungal Science, 19, pp. 109-116.
Yamaguchi T, Takamuta H, Matoba J. (1998), HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl, Bioscience Biotechnology and Biochemistry, 62, pp. 1201-1204.
Yang SS. (1988), Protein enrichment of sweet potato residue with amylolytic yeasts by solid state fermentation, Biotechnology Bioengineering, 32, pp. 886-890.
Yang SS, Yuan SS. (1990), Oxytetracyline production with sweet potatoresidue by solid state fermentation, World Journal of Microbiology and Biotechnology, 6, pp. 236-244.
Yang SW, Shen YC, Chen CH. (1996), Steroids and triterpenoids of Antrodia cinnamomea-A fungus parasitic on Cinnamomum Micranthum, Phytochemistry, 41, pp. 1389-1392.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top