|
1Chen, J., Zhang, W., Tan, L., Wang, Y. & He, G. Optimization of metabolic pathways for bioconversion of lignocellulose to ethanol through genetic engineering. Biotechnol Adv 27, 593-598, 2Swings, J. & De Ley, J. The biology of Zymomonas. Bacteriol Rev 41, 1-46 (1977). 3Doelle, M. B., Millichip, R. J. & Doelle, H. W. Production of Ethanol from Corn Using Inoculum Cascading of Zymomonas-Mobilis. Process Biochem 24, 137-140 (1989). 4Demain, A. L. & Solomon, N. A. Biology of industrial microorganisms. (Benjamin/Cummings Pub. Co., Advanced Book Program, 1985). 5Buchholz, S. E., Dooley, M. M. & Eveleigh, D. E. Zymomonas - an Alcoholic Enigma. Trends in Biotechnology 5, 199-204 (1987). 6Swings, J., Kersters, K. & Deley, J. Numerical-Analysis of Electrophoretic Protein Patterns of Zymomonas Strains. Journal of General Microbiology 93, 266-271 (1976). 7Skotnicki, M. L., Lee, K. J., Tribe, D. E. & Rogers, P. L. Comparison of Ethanol-Production by Different Zymomonas Strains. Appl Environ Microb 41, 889-893 (1981). 8Altintas, M. M., Eddy, C. K., Zhang, M., McMillan, J. D. & Kompala, D. S. Kinetic modeling to optimize pentose fermentation in Zymomonas mobilis. Biotechnol Bioeng 94, 273-295, doi:10.1002/bit.20843 (2006). 9Dien, B. S., Cotta, M. A. & Jeffries, T. W. Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63, 258-266, doi:10.1007/s00253-003-1444-y (2003). 10Hamelinck, C. N., van Hooijdonk, G. & Faaij, A. P. C. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg 28, 384-410, doi:DOI 10.1016/j.biombioe.2004.09.002 (2005). 11Beguin, P. & Lemaire, M. The cellulosome: An exocellular, multiprotein complex specialized in cellulose degradation. Crit Rev Biochem Mol 31, 201-236 (1996). 12Bok, J. D., Yernool, D. A. & Eveleigh, D. E. Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64, 4774-4781 (1998). 13Lynd, L. R. & Zhang, Y. Quantitative determination of cellulase concentration as distinct from cell concentration in studies of microbial cellulose utilization: analytical framework and methodological approach. Biotechnol Bioeng 77, 467-475, doi:10.1002/bit.10142 [pii] (2002). 14Beguin, P., Millet, J. & Aubert, J. P. Cellulose degradation by Clostridium thermocellum: from manure to molecular biology. FEMS Microbiol Lett 79, 523-528 (1992). 15西澤俊ㄧ. 纖維素總論. 南山堂出版社, 24-25 (1981). 16Mandels, M., Andreotti, R. & Roche, C. Measurement of Saccharifying Cellulase. Biotechnology and Bioengineering, 21-33 (1976). 17Mandels, M., Andreotti, R. & Roche, C. Measurement of saccharifying cellulase. Biotechnol Bioeng Symp, 21-33 (1976). 18Bhat, M. K. & Bhat, S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15, 583-620, doi:S0734975097000062 [pii] (1997). 19Saloheimo, M. et al. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269, 4202-4211, doi:3095 [pii] (2002). 20Goyal, A. K. & Eveleigh, D. E. Cloning, sequencing and analysis of the ggh-A gene encoding a 1,4-beta-D-glucan glucohydrolase from Microbispora bispora. Gene 172, 93-98, doi:0378-1119(96)00076-5 [pii] (1996). 21Bisaria, V. S. & Ghose, T. K. Biodegradation of Cellulosic Materials - Substrates, Microorganisms, Enzymes and Products. Enzyme Microb Tech 3, 90-104 (1981). 22Dien, B. S., Cotta, M. A. & Jeffries, T. W. Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biot 63, 258-266, doi:DOI 10.1007/s00253-003-1444-y (2003).
|