跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 14:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張心如
研究生(外文):Hsin-Ju Chang
論文名稱:區域經濟中的迴歸樹模型
論文名稱(外文):Models of Regression Tree for Regional Economic
指導教授:史玉山史玉山引用關係
指導教授(外文):Yu-Shan Shih
口試委員:林培生陳君厚
口試委員(外文):Pei-Sheng LinChun-Houh Chen
口試日期:2011/06/01
學位類別:碩士
校院名稱:國立中正大學
系所名稱:數理統計研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:51
中文關鍵詞:迴歸樹區域經濟俱樂部收斂不偏
外文關鍵詞:regression treeregional economicconvergence clubunbiased
相關次數:
  • 被引用被引用:0
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
許多研究學者發現當利用徹底搜尋法的準則來建構迴歸樹時,會因為解釋變數的切割點數量不同,對於切割變數的選取存在偏差。我們於本論文中發現,
在非空間性或空間性的區域經濟資料下,透過建構迴歸樹模型的方法來劃分俱樂部收斂
(Convergence club) 區域時,切割變數的選取偏差現象依然存在。我們利用
殘差分析的準則來建構迴歸樹模型,經由模擬實驗發現,此方法在變數選取上較不會產生選取偏差,同時也具有較高的檢定力。

In past decades, many researchers have found that the ex-
haustive search method has selection bias toward variables with
more split points. In this essay, we discover that the such bias still
exists when the regression tree is applied to divide the economic
convergence clubs using some spatial or non-spatial regional data.
A new selection method is proposed by applying residual analysis
principle. We demonstrate that our selection method is relatively
unbiased and is more powerful than the commonly used one.
1. 導論

2. 模型介紹

3. 研究方法

3.1 ESM (Exhaustive Search Method)

3.2 RAM (Residual Analysis Method)

4. 模擬分析

4.1 選取偏差

4.2 檢定力

5. 實際資料分析

6. 結論

參考文獻
Anselin, L. (1988), Spatial Econometrics: Methods and Models, Kluwer Aca-
demic Pulishers, Dordrecht.

Anselin, L., Bera, A. K., Florax, R., and Yoon, M. J. (1996), "Simple diagnostic
tests for spatial dependence", Regional Science and Urban Economics, 26,
77-104.

Barro, R. J. (1991), "Economic growth in a cross section of countries", The
Quarterly Journal of Economics, 106, 407-443.

Barro, R. J. and Sala-I-Martin, X. (1991), "Convergence across states and
regions", Brookings Papers on Economic Activity, 22, 107-182.

Baumol, W. (1986), "Productivity growth, convergence, and welfare: What
the long-run data show", American Economic Review, 76, 1072-1085.

Bivand, R., Pebesma, E., and Gomez-Rubio, V. (2008), Applied spatial data
analysis with R, Springer.

Bivand R. et al. (2011), "spdep: Spatial dependence: weighting schemes,
statistics and models", URL: http://CRAN.R-project.org/package=
spdep, R package version 0.5-29.

Breiman, L., Friedman, J. H., Olshen, R.A., and Stone, C. J. (1984), Classi -
cation and Regression Trees, Wadsworth Publishing Co Inc.

Galor, O. (2005), "From stagnation to growth: Uni ed growth theory", in
Philippe Aghion and Steven Durlauf (eds.), Handbook of Economic Growth,
volume 1 of Handbook of Economic Growth, chapter 4, 171-293, Elsevier.

Loh, W.-Y. (2002), "Regression trees with unbiased variable selection and
interaction detection", Statistica Sinica, 12, 361-386.

Postiglione, P., Benedetti, R., and Lafratta, G. (2010), "A regression tree algo-
rithm for the identi cation of convergence clubs", Computational Statistics
& Data Analysis, 54, 2776-2785.

R Development Core Team (2011), "R: A language and environment for statisti-
cal computing", URL: http://www.R-project.org/, ISBN 3-900051-07-0.

Solow, R. M. (1956), "A contribution to the theory of economic growth",
Quarterly Journal of Economics, 70, 65-94.

Swan, T. W. (1956), "Economic growth and capital accumulation", Economic
Record, 32, 334-361.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文