跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/18 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃慈雲
研究生(外文):Ci-yun Huang
論文名稱:高濃度鈉鹽進流水對RO系統造成之阻塞
論文名稱(外文):RO Membrane Fouling by the Feed Water with High-sodium Salts
指導教授:許皓捷許皓捷引用關係陳宏達陳宏達引用關係
指導教授(外文):Hau-Jie ShiuHung-Ta Chen
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:環境生態研究所碩士班
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:64
中文關鍵詞:離子價數RO 薄膜濃度阻塞廢液處理廠總溶解固體物
外文關鍵詞:electrolyte concentrationtotal dissolved solidsfoulingwaste liquid treatment plantion valencereverse osmosis membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:730
  • 評分評分:
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討高濃度鈉鹽進流水對RO薄膜之影響。以廢液處理廠之RO系統前之含高鈉鹽的進流水為環境樣本,以水質分析檢測實際廢液基本特性,並以XRF分析其主要元素,另採用IC分析其陰陽離子組成。本研究以實驗廢液,以及分別以氯化鈉、硫酸鈉、磷酸鈉溶液調配模擬廢液作為進流水,固定8kgf/cm2壓力,進行Dead-end試驗。由SEM/EDS顯微分析分別觀察阻塞薄膜清洗前後膜面元素與結構的差異,並量測RO薄膜的流通量及阻塞薄膜於水清洗後之鹽類的去除率,且依據Gouy-Chapman提出的擴散雙層理論釐清鈉鹽對RO薄膜之影響並診斷RO薄膜損壞之原因。
RO系統水質分析進流水特性呈現高濃度,其中EC及TDS濃度為最高,表示此類水質是以溶解性無機鹽類組成。水質阻塞指標分析LSI>0及SDI>5,代表此類水質易造成RO薄膜嚴重結垢與阻塞的問題產生。實際廢液以XRF元素分析是以Cl、S與P為主要元素,陰陽離子分析進流水當中以Cl-、SO42-、PO43-及Na+離子濃度為最高,實際廢液明顯是以氯化鈉、硫酸鈉、磷酸鈉為主。
RO 薄膜在Dead-end 試驗中改變鈉鹽的濃度及價數,透過IC、SEM/EDS、流通量及去除率分析比較結果獲得,RO薄膜在硫酸鈉溶液試驗中,隨進流水濃度越高,阻塞時間越長,阻塞物結晶量越高,阻塞RO 薄膜經水清洗後,薄膜孔洞變大,流通量上升致使去除率降低。對RO薄膜損壞的嚴重程度順序為硫酸鈉>氯化鈉>磷酸鈉,然而硫酸鈉結晶有膨脹之現象,會使RO薄膜孔洞變大,因此RO 薄膜損壞之主要原因是硫酸鈉結晶在薄膜孔隙內膨脹,結晶體積變大,膜面纖維結構被撐大而受到損壞,亦使流通量上升而去除率下降。
The aim of this study is focus on the fouling of RO (Reverse Osmosis) membrane caused by actual high-sodium wastewater. Actual high-sodium wastewater before inlet into RO system in waste liquid treatment plant is used as environmental sample for this study. The elements of high-sodium salts sampled on RO membrane were analyzed by XRF (X-ray Fluorescence spectrometer) while cations and anions of actual wastewater were detected by IC (Ion Chromatography). The actual and synthesis wastewater (such as sodium chloride, sodium sulfate and sodium phosphate solution) were used for dead-end test which is operated under fixed 8kgf/cm2 pressure. The microstructure and microanalysis of membrane fouling before and after water cleaning were analyzed by SEM / EDS (Scanning Electron Microscopy / Energy Dispersive Spectrometer) analysis. Based on Gouy-Chapman theory of diffusion double layer, the effects of ion valence and electrolyte concentration on RO membrane operation parameters such as flux and removal rate of salts for RO memebrane after water cleaning were measured simultaneously. The diagnosis of the cause of RO membrane fauling would then be identified clearly by the methodology above.
Water quality analysis of actual wastewater before inlet into RO system showed high concentrations of EC (Electrical Conductivity) and TDS (Total Dissolved Solids) which means such actual wastewater is composed of soluble inorganic salts. The study shows that SDI (Silt Density Index) of actual wastewater is higher than 5, and LSI (Langelier Saturation Index) is higher than 0. Base on the indexes above, it is obviously that RO membrane would be easily blocked by actual wastewater. By using XRF analysis of the crystallization of soluble salts from actual wastewater, it shows Cl , S and P are the main elements. The anion and cation analysis for cleaning water of RO membrane fouling indicates that Cl- 、SO4 2-、PO4 3-and Na+ were the main ions in actual wastewater. It is clearly that actual wastewater sampled before inlet into RO system containing high amounts of sodium chloride, sodium sulfate and sodium phosphate.
In order to discuss the effects of different sodium salt on the fouling of RO membrane, electrolyte concentration and ion valence were used to be evaluated by conducting dead-end test. By using IC, SEM / EDS, flux analysis and comparison of removal rate simultaneously, RO membrane fouling by sodium sulfate solution showed that, as the electrolyte concentration increased, or as the longer the fouling caused, the higher amount of crystallization by concentration of wastewater containing soluble inorganic salts were observed. The pore of RO membrane would be enlarged after water cleaning of the soluble salts crystallization among RO membrane, and then the flux increased, but removal rate of salts decreased. Damage of RO membrane is mainly caused by sodium sulfate, instead of sodium chloride or sodium phosphate. Expansion caused by the crystallization of sodium sulfate among RO membrane is the main cause of RO membrane damage. Due to the sodium sulfate crystallization among RO membrane, expansion in the pore of RO membrane cause the flux increased and the removal rate of salts decreased .
摘 要 i
Abstract iii
誌 謝 v
目錄 vi
表目錄 viii
圖目錄 ix
壹、前言 1
貳、研究方法 3
一、研究材料 3
二、實驗藥品 3
三、分析項目 4
1、物質組成分析 4
2、水質分析 4
3、流通量分析 7
4、鹽類去除率分析 7
5、Dead-end試驗 8
叁、結果 9
一、RO系統進流水特性分析 9
二、空白RO薄膜之SEM/EDS顯微結構分析 10
三、實際廢液Dead-end試驗 10
四、氯化鈉溶液Dead-end試驗 12
五、硫酸鈉溶液Dead-end試驗 13
六、磷酸鈉溶液Dead-end試驗 14
七、不同TDS濃度的實際廢液、氯化鈉溶液、硫酸鈉溶液、磷酸鈉溶液及模擬廢之Dead-end試驗 15
肆、討論 19
一、探討鈉鹽對RO薄膜阻塞之影響 19
二、探討TDS濃度進流水對RO薄膜之影響 20
三、探討電解質濃度對RO薄膜之影響 21
四、探討離子價數越高對RO薄膜之影響 21
伍、結論 23
陸、參考文獻 25
ALLEGRE, C. (2006). "TREATMENT AND REUSE OF REACTIVE DYEING EFFLUENTS." JOURNAL OF MEMBRANE SCIENCE 269: 15-34.

AMANDINE MOSSET, V. B., MARC PETRY, MIGUEL ANGEL SANZ (2008). "THE SENSITIVITY OF SDI ANALYSIS: FROM RO FEED WATER TO RAW WATER." DESALINATION 222: 17-23.

APELBLAT, A. (2009). "THERMODYNAMIC PROPERTIES OF AQUEOUS ELECTROLYTE SOLUTIONS. VOLUMETRIC AND COMPRESSIBILITY STUDIES IN 0.1 MOL • KG-1, 0.5 MOL • KG-1, AND 1.0 MOL • KG-1 SODIUM CARBONATE AND SODIUM SULFATE SOLUTIONS AT TEMPERATURES FROM 278.15 K TO 323.15 K†." J. CHEM. ENG. DATA 54: 2550–2561.

BOERLAGE, S. Â. F. E. (1999). "BASO4 SOLUBILITY PREDICTION IN REVERSE OSMOSIS MEMBRANE SYSTEMS." JOURNAL OF MEMBRANE SCIENCE 159: 47-59.

BOERLAGE, S. F. E. (2002). "THE SCALING POTENTIAL OF BARIUM SULPHATE IN REVERSE OSMOSIS SYSTEMS." JOURNAL OF MEMBRANE SCIENCE 197: 251-268.

BRAGHETTA, A. (1997). "NANOFILTRATION OF NATURAL ORGANIC MATTER: PH AND IONIC STRENGTH EFFECTS " JOURNAL AMERICAN WATER WORKS ASSOCIATION 123: 628-641

CHE, Y. H. (2007). "THE OPTIMAL ALLOCATING PUMPING RATE OF A MULTI-WELL SYSTEM FOR A BRACKISH WATER DESALINATION PLANT." DESALINATION 221: 215-204.

CHENJU, L. (2007). "EVALUATION OF REVERSE OSMOSIS AND NANOFILTRATION FOR IN SITU PERSULFATE REMEDIATED GROUNDWATER
" DESALINATION 208: 238–259.

CHOI YH, K. J., KIM DI, ET AL. (2009). "EVALUATION OF VARIOUS PRETREATMENT FOR PARTICLE AND INORGANIC FOULING CONTROL ON PERFORMANCE OF SWRO " DESALINATION 247(1-3): 137-147.

DAN LI, H. W. (2010). "RECENT DEVELOPMENTS IN REVERSE OSMOSIS DESALINATION MEMBRANES." JOURNAL OF MATERIALS CHEMISTRY 20: 4551-4566.

DHODAPKAR, R. S. (2007). "EXPLOITATION RESULTS OF SEVEN RO PLANTS FOR RECOVERY AND REUSE OF TREATED EFFLUENTS IN TEXTILE INDUSTRIES." DESALINATION 217: 291-300.

GULER, E. (2010). "EFFECT OF TEMPERATURE ON SEAWATER DESALINATION-WATER QUALITY ANALYSES FOR DESALINATED SEAWATER FOR ITS USE AS DRINKING AND IRRIGATION WATER." ENVIRON GEOCHEM HEALTH 32: 335-339.

KHEDR, M. G. (1998). "A CASE STUDY OF RO PLANT FAILURE DUE TO MEMBRANE FOULING,ANALYSIS AND DIAGNOSIS." DESALINATION 120: 107-113.

KIM, S. L. (2002). "STUDY ON FEED PRETREATMENT FOR MEMBRANE FILTRATION OF SECONDARY EFFLUENT." SEPARATION AND PURIFICATION TECHNOLOGY 29: 171-179.

MATTHIAS, G. (2008). "PHYSICAL ASPECTS OF MEMBRANE SCALING." DESALINATION 224: 71-75.

MICHAL, U. (2009). "BRACKISH WATER REVERSE OSMOSIS (BWRO) OPERATION IN FEED FLOW REVERSAL MODE USING AN EX SITU SCALE OBSERVATION DETECTOR (EXSOD)." JOURNAL OF MEMBRANE SCIENCE 341: 60-66.

MOHAMEDOU, E. O., D. B. P. SUAREZ, ET AL. (2010). "NEW LIVES FOR OLD REVERSE OSMOSIS (RO) MEMBRANES." DESALINATION 253: 62-70.

MOHANAKRISHNA (2010). "BIO-ELECTROCHEMICAL TREATMENT OF DISTILLERY WASTEWATER IN MICROBIAL FUEL CELL FACILITATING DECOLORIZATION AND DESALINATION ALONG WITH POWER GENERATION " JOURNAL OF HAZARDOUS MATERIALS 177: 487-494.

NOROUZBAHARI, S. (2009). "CRUDE OIL DESALTER EFFLUENT TREATMENT BY A HYBRID UF/RO MEMBRANE SEPARATION PROCESS." DESALINATION 238: 174–182.

PEI XU, C. B., JORG E. DREWES (2010). "FOULING OF NANOFILTRATION AND REVERSE OSMOSIS MEMBRANES DURING MUNICIPAL WASTEWATER RECLAMATION: MEMBRANE AUTOPSY RESULTS FROM PILOT-SCALE INVESTIGATIONS." JOURNAL OF MEMBRANE SCIENCE 353: 111-121.

PONTIE, M., S. RAPENNE, ET AL. (2005). "TOOLS FOR MEMBRANE AUTOPSIES AND ANTIFOULING STRATEGIES IN SEAWATER FEEDS: A REVIEW." DESALINATION 181: 75-90.

ROEVER, E. W. F. D. (2007). "MICROSCOPY AS A TOOL FOR ANALYSIS OF MEMBRANE FAILURE AND FOULING." DESALINATION 207: 35-44.

SARKAR, S. (2008). "A NEW HYBRID ION EXCHANGE-NANOFILTRATION (HIX-NF) SEPARATION PROCESS FOR ENERGY-EFFICIENT DESALINATION: PROCESS CONCEPT AND LABORATORY EVALUATION." JOURNAL OF MEMBRANE SCIENCE 324: 76-84.

SINGH, R. (2009). "ANALYSIS OF HIGH RECOVERY BRACKISH WATER DESALINATION PROCESSES USING FUEL CELLS." SEPARATION SCIENCE AND TECHNOLOGY 44: 585–598.

TED DALTON, U. A., FERNANDO DEL VIGO PISANO,SILVIA GALLEGO (2004). "MEMBRANE AUTOPSY HELPS TO PROVIDE SOLUTIONS TO OPERATIONAL PROBLEMS." DESALINATION 167: 239-245.

YANG, H. L., C. HUANG, ET AL. (2010). "SEASONAL FOULING ON SEAWATER DESALINATION RO MEMBRANE." DESALINATION 250: 548-552.

台灣自來水公司 (2006). "薄膜前處理單元程序醉押化組合研究." 期末報告.

林宏儒 (2003). "奈米濾膜阻塞現象之研究." 國立成功大學環境工程學系碩士論文.

莊孟仁 (2009). "廢液處理廠RO系統薄膜阻塞及清洗特性之研究." 崑山科技大學/環境工程研究所碩士論文.

陳宏達 (2002). "溶出參數對夯實泥岩襯裡回脹及滲透行為之影響." 國立成功大學環境工程學系博士論文.

黃啟彰 (2010). "薄膜組合程序處理淨水場濾池反洗廢水之研究." 國立中央大學環 境 工 程 研 究 所碩 士 論 文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top