跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/05 10:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宏傑
研究生(外文):Hong-Jie Lin
論文名稱:莫三比克吳郭魚Progranulin家族基因之表現及其在基因轉殖斑馬魚調控肌肉生成和先天免疫基因之功能研究
論文名稱(外文):Tilapia (Oreochromis mossambicus) Progranulin family genes expression and functional study on the regulation of myogenesis and innate immunity genes in transgenic zebrafish
指導教授:龔紘毅
指導教授(外文):Hong-Yi Gong
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:91
中文關鍵詞:progranulin肌肉先天免疫吳郭魚
外文關鍵詞:pgrnmuscleinnate immunitytilapia
相關次數:
  • 被引用被引用:3
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Progranulin (PGRN)是一種具有多功能的生長因子,具有促進細胞增生,參與癌症形成、抗細胞凋亡、神經細胞存亡,抑制發炎,組織修復與發育等功能。在哺乳類的基因體裡只存在1個pgrn基因,其編譯7個具有12個cysteins保守結構granulin (GRN)之PGRN。PGRN會被嗜中性球所產生的絲氨酸蛋白質酶裂解為GRN胜肽而誘導促發炎反應的細胞激素IL-8表現。相較於哺乳類只有單一個PGRN基因,在魚類基因體中具有不只一個pgrn基因。在吳郭魚 (Oreochromis mossambicus)先前的研究中從肝臟發現到1個具有2個GRN單元 (GRN-A及GRN-B)的pgrn基因能與IGF-1同時被生長激素所誘導而表現。本研究利用基因體南方墨點雜交分析偵測到吳郭魚的基因體中具有6個pgrn基因。本研究從吳郭魚genome選殖到pgrn-1基因,表現pgrn-1轉錄本及編碼先前發現的PGRN-1。另外本實驗還從吳郭魚中找到1個利用79個核苷酸的intron 1之選擇性剪接產物,造成氨基酸轉譯序列提前終止,而產生在C端較短的只具有41個氨基酸的GRN胜肽將之命名為GRN-41。此GRN-41胜肽在N端的30個氨基酸是與GRN-A相同,而其餘11個氨基酸產生變異。除此之外,本研究也選殖到一個新的pgrn-2基因其轉錄本編碼的PGRN-2具有與PGRN-1差異4個氨基酸而產生一個新的GRN-C胜肽 (與GRN-A變異2個氨基酸),pgrn-2會在所有的組織表現。本研究利用肌肉專一性啟動子結合雙向表現TetOff載體系統建立表現GRN-41、GRN-A、GRN-C及PGRN-1、PGRN-2之基因轉殖斑馬魚,藉此以探討吳郭魚不同的PGRN及GRN胜肽的功能。從肌肉表現GRN-41及GRN-C斑馬魚中,發現到其具有能明顯誘導IL-8、IL-1β、IL-8R1與c3b等免疫相關基因的表現,並且同時也向上調控MyoD與myogenin等肌肉生長調節因子的表現。由此五個具有表現吳郭魚PGRN或GRN的基因轉殖斑馬魚品系中發現,在表現小單元吳郭魚GRN的品系相較於表現全長型PGRN,在先天免疫機制與肌肉發育有較好的反應機制。本研究提供魚類GRN在活化先天免疫及肌肉生長調節因子基因的新發現,在未來希望在養殖產業應用上,GRN能提供作為一個抗病能力或是肌肉發育促進能力上的新角色。
Progranulin (PGRN) is a multi-functional growth factor in regulating cell proliferation, tumorgenesis, anti-apoptosis, neuron survival, anti-inflammation, would healing and development. Only one progranulin (pgrn) gene encoding PGRN composed of 7 granulin (GRN) units with 12 conserved cysteines exists in mammalian genome. Progranulin undergoes proteolysis by neutrophil serine protease into small GRN peptides to induce proinflammatory cytokine IL-8. In contrast to mammals, teleosts have more than one pgrn genes in genome. We previously identified one tilapia pgrn gene with two GRN units (GRN-A and GRN-B) was co-induced with IGF1 by growth hormone in the liver of tilapia (Oreochromis mossambicus). In this study, six progranulin genes were identified in tilapia genome by genomic Southern hybridization. I found PGRN-1 gene expresses both PGRN-1 transcript encoding PGRN-1 and a novel alternative splicing pgrn transcript in all tested tissues of tilapia. The alternative splicing pgrn transcript use 79-nucleotide intron 1 as exon sequence resulting in in-frame stop codon to generate a C-terminal truncated secreted form GRN with 41-amino acid named as GRN-41. GRN-41 shares identical N-terminal 30 a. a. with GRN-A and a variant 11-a.a. C-terminal. In addition, I also isolated a new progranulin pgrn-2 gene and transcript encoding PGRN-2 with 4 amino acid variations compared with PGRN-1 to produce a new GRN-C (2 a. a. different from GRN-A) and GRN-B peptides was also expressed in all tissues of adult tilapia. In this study, I established GRN-41, GRN-A, GRN-C and PGRN-2, PGRN-1 transgenic zebrafish lines by muscle-specific promoter and bi-directional TetOff regulatory system to study functions of variant tilapia PGRN and GRN peptides. Muscle-specific overexpression of the novel tilapia GRN-41 and GRN-C peptides in zebrafish not only can induce IL-8, IL-1β, IL-8R1 and c3b etc. innate immune related genes but also upregulat MyoD and myogenin. In the five PGRN or GRN transgenic zebrafish, I found that expression of small tilapia GRN peptide has better response in innate immunity or myogenesis than tilapia PGRN. This study indicates immune response and myogenic regulatory factors genes can be activated by specific GRN peptides from teleost and suggestst GRN can serve a new role in disease-resistant and/or growth promotion in Aquaculture.
謝誌 i
中文摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 xi
壹、 前言 1
貳、 實驗材料與方法 11
一、 實驗動物 11
二、 實驗材料 12
三、 實驗方法 16
1. 吳郭魚progranulin基因選殖 16
2. 基因轉殖質體構築 19
3. 建立基因轉殖斑馬魚 22
4. 吳郭魚不同組織progranulin基因表現 27
5. 吳郭魚基因體progranulin基因數量分析 27
6. 表現吳郭魚PGRN-1、PGRN-2、GRN-41、GRN-A、GRN-C基因轉殖斑馬即時定量聚合酶鏈鎖反應分析 32
7. LPS腹腔注射誘導吳郭魚三種pgrn-1、pgrn-2、Grn-41基因表現與兩類Genomic Pgrn的表現模式 33
參、 實驗結果 35
一、 吳郭魚progranulin基因之選殖 35
二、 建立表現PGRN-1、PGRN-2、GRN-41、GRN-A、GRN-C基因轉殖斑馬魚 36
三、 吳郭魚基因體之progranulin基因選殖 36
四、 吳郭魚progranulin基因在不同組織之表現模式 37
五、 吳郭魚progranulin基因在幼魚時期表現模式 38
六、 LPS誘導下吳郭魚progranulin基因之表現模式 38
七、 吳郭魚基因體progranulin基因數量 39
八、 表現吳郭魚PGRN-1、PGRN-2、GRN-41、GRN-A、GRN-C基因轉殖斑馬魚影響肌肉相關基因表現模式 39
九、 表現吳郭魚PGRN-1、PGRN-2、GRN-41、GRN-A、GRN-C基因轉殖斑馬影響先天免疫相關基因表現模式 40
肆、 討論 42
伍、 引用文獻 46
圖 56
表 86
附錄 90


Baba, T., Hoff, H.B., 3rd, Nemoto, H., Lee, H., Orth, J., Arai, Y., and Gerton, G.L. (1993). Acrogranin, an acrosomal cysteine-rich glycoprotein, is the precursor of the growth-modulating peptides, granulins, and epithelins, and is expressed in somatic as well as male germ cells. Mol Reprod Dev 34, 233-243.

Bateman, A., Belcourt, D., Bennett, H., Lazure, C., and Solomon, S. (1990). Granulins, a novel class of peptide from leukocytes. Biochem Biophys Res Commun 173, 1161-1168.

Bateman, A., and Bennett, H.P. (1998). Granulins: the structure and function of an emerging family of growth factors. J Endocrinol 158, 145-151.

Belcourt, D.R., Lazure, C., and Bennett, H.P. (1993). Isolation and primary structure of the three major forms of granulin-like peptides from hematopoietic tissues of a teleost fish (Cyprinus carpio). J Biol Chem 268, 9230-9237.

Bhandari, V., Palfree, R.G., and Bateman, A. (1992). Isolation and sequence of the granulin precursor cDNA from human bone marrow reveals tandem cysteine-rich granulin domains. Proc Natl Acad Sci U S A 89, 1715-1719.

Cadieux, B., Chitramuthu, B.P., Baranowski, D., and Bennett, H.P. (2005). The zebrafish progranulin gene family and antisense transcripts. BMC Genomics 6, 156.

Chen, H.J., Huang, D.J., Hou, W.C., Liu, J.S., and Lin, Y.H. (2006). Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. J Plant Physiol 163, 863-876.

Chen, M.H., Li, Y.H., Chang, Y., Hu, S.Y., Gong, H.Y., Lin, G.H., Chen, T.T., and Wu, J.L. (2007). Co-induction of hepatic IGF-I and progranulin mRNA by growth hormone in tilapia, Oreochromis mossambiccus. Gen Comp Endocrinol 150, 212-218.

Dambacher, J., Beigel, F., Zitzmann, K., De Toni, E.N., Göke, B., Diepolder, H.M., Auernhammer, C.J., and Brand, S. (2009). The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut 58, 1207-1217.

Del Rio-Tsonis, K., Tsonis, P.A., Zarkadis, I.K., Tsagas, A.G., and Lambris, J.D. (1998). Expression of the third component of complement, C3, in regenerating limb blastema cells of urodeles. J Immunol 161, 6819-6824.

Dinarello, C.A. (1998). Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int Rev Immunol 16, 457-499.

Eichinger, L., Pachebat, J.A., Glockner, G., Rajandream, M.A., Sucgang, R., Berriman, M., Song, J., Olsen, R., Szafranski, K., Xu, Q., et al. (2005). The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43-57.

Ellis, A.E. (2001). Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25, 827-839.

Goetz, F.W., Planas, J.V., and MacKenzie, S. (2004). Tumor necrosis factors. Dev Comp Immunol 28, 487-497.

Hanington, P.C., Barreda, D.R., and Belosevic, M. (2006). A novel hematopoietic granulin induces proliferation of goldfish (Carassius auratus L.) macrophages. J Biol Chem 281, 9963-9970.

Hasty, P., Bradley, A., Morris, J.H., Edmondson, D.G., Venuti, J.M., Olson, E.N., and Klein, W.H. (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364, 501-506.

He, Z., Ong, C.H.P., Halper, J., and Bateman, A. (2003). Progranulin is a mediator of the wound response. Nat Med 9, 225-229.

Holland, M.C., and Lambris, J.D. (2002). The complement system in teleosts. Fish Shellfish Immunol 12, 399-420.

Hsieh, J.-C., Pan, C.-Y., and Chen, J.-Y. (2010). Tilapia hepcidin (TH)2-3 as a transgene in transgenic fish enhances resistance to Vibrio vulnificus infection and causes variations in immune-related genes after infection by different bacterial species. Fish Shellfish Immunol 29, 430-439.

Jones, T.A., Zou, J.-Y., Cowan, S.W., and Kjeldgaard, M. (1991). Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr Sect A 47, 110-119.

Kassar-Duchossoy, L., Gayraud-Morel, B., Gomes, D., Rocancourt, D., Buckingham, M., Shinin, V., and Tajbakhsh, S. (2004). Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431, 466-471.

Kawai, T., and Akira, S. (2005). Pathogen recognition with Toll-like receptors. Curr Opin Immunol 17, 338-344.

Kawakami, K. (2005). Transposon tools and methods in zebrafish. Dev Dyn 234, 244-254.

Kawakami, K., Imanaka, K., Itoh, M., and Taira, M. (2004a). Excision of the Tol2 transposable element of the medaka fish Oryzias latipes in Xenopus laevis and Xenopus tropicalis. Gene 338, 93-98.

Kawakami, K., Koga, A., Hori, H., and Shima, A. (1998). Excision of the tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene 225, 17-22.

Kawakami, K., and Noda, T. (2004b). Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics 166, 895-899.

Kawakami, K., and Shima, A. (1999). Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene 240, 239-244.

Kawakami, K., Shima, A., and Kawakami, N. (2000). Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97, 11403-11408.

Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., and Mishina, M. (2004c). A Transposon-Mediated Gene Trap Approach Identifies Developmentally Regulated Genes in Zebrafish. Dev Cell 7, 133-144.

Koch, A.E., Polverini, P.J., Kunkel, S.L., Harlow, L.A., DiPietro, L.A., Elner, V.M., Elner, S.G., and Strieter, R.M. (1992). Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258, 1798-1801.
Koga, A., Suzuki, M., Inagaki, H., Bessho, Y., and Hori, H. (1996). Transposable element in fish. Nature 383, 30.

Leonard, W.J., and Spolski, R. (2005). Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation. Nat Rev Immunol 5, 688-698.

Magor, B.G., and Magor, K.E. (2001). Evolution of effectors and receptors of innate immunity. DEV COMP IMMUNOL 25, 651-682.

Medzhitov, R. (2007). Recognition of microorganisms and activation of the immune response. Nature 449, 819-826.

Moore, K.W., de Waal Malefyt, R., Coffman, R.L., and O'Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19, 683-765.

Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esuml, E., Li, S., Nonaka, I., and Nabeshima, Y.-i. (1993). Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364, 532-535.
Nam, B.H., Park, E.M., Kim, Y.O., Kong, H.J., Kim, W.J., Kang, J.H., Ji, Y.J., Lee, S.J., and Choi, T.J. (2009). Identification of two differentially expressed forms of progranulin mRNA in the teleost fish Paralichthys olivaceus. Fish Shellfish Immunol 26, 177-182.

Oehlers, S.H.B., Flores, M.V., Hall, C.J., O'Toole, R., Swift, S., Crosier, K.E., and Crosier, P.S. (2010). Expression of zebrafish cxcl8 (interleukin-8) and its receptors during development and in response to immune stimulation. Dev Comp Immunol 34, 352-359.

Parnell, P.G., Wunderlich, J., Carter, B., and Halper, J. (1992). Transforming growth factor e: amino acid analysis and partial amino acid sequence. Growth Factors 7, 65-72.

Patapoutian, A., Yoon, J.K., Miner, J.H., Wang, S., Stark, K., and Wold, B. (1995). Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development 121, 3347-3358.

Perera, L.P. (2000). Interleukin 15: its role in inflammation and immunity. Arch Immunol Ther Exp (Warsz) 48, 457-464.

Plowman, G.D., Green, J.M., Neubauer, M.G., Buckley, S.D., McDonald, V.L., Todaro, G.J., and Shoyab, M. (1992). The epithelin precursor encodes two proteins with opposing activities on epithelial cell growth. J Biol Chem 267, 13073-13078.

Rudnicki, M.A., Schnegelsberg, P.N.J., Stead, R.H., Braun, T., Arnold, H.-H., and Jaenisch, R. (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75, 1351-1359.


Sato, Y., Kasai, T., Nakagawa, S., Tanabe, K., Watanabe, T., Kawakami, K., and Takahashi, Y. (2007). Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305, 616-624.

Saurabh, S., and Sahoo, P.K. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39, 223-239.

Shoyab, M., McDonald, V.L., Byles, C., Todaro, G.J., and Plowman, G.D. (1990). Epithelins 1 and 2: isolation and characterization of two cysteine-rich growth-modulating proteins. Proc Natl Acad Sci U S A 87, 7912-7916.

Sonnenberg, G.F., Nair, M.G., Kirn, T.J., Zaph, C., Fouser, L.A., and Artis, D. (2010). Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J Exp Med 207, 1293-1305.

Sullivan, C., Charette, J., Catchen, J., Lage, C.R., Giasson, G., Postlethwait, J.H., Millard, P.J., and Kim, C.H. (2009). The Gene History of Zebrafish tlr4a and tlr4b Is Predictive of Their Divergent Functions. J Immunol 183, 5896-5908.

Tajbakhsh, S., Rocancourt, D., and Buckingham, M. (1996). Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384, 266-270.

Tolkatchev, D., Malik, S., Vinogradova, A., Wang, P., Chen, Z., Xu, P., Bennett, H.P., Bateman, A., and Ni, F. (2008). Structure dissection of human progranulin identifies well-folded granulin/epithelin modules with unique functional activities. Protein Sci 17, 711-724.

Venuti, J.M., Morris, J.H., Vivian, J.L., Olson, E.N., and Klein, W.H. (1995). Myogenin is required for late but not early aspects of myogenesis during mouse development. J Cell Biol 128, 563-576.

Williams, B.A., and Ordahl, C.P. (1994). Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 120, 785-796.

Xu, S.-Q., Tang, D., Chamberlain, S., Pronk, G., Masiarz, F.R., Kaur, S., Prisco, M., Zanocco-Marani, T., and Baserga, R. (1998). The Granulin/Epithelin Precursor Abrogates the Requirement for the Insulin-like Growth Factor 1 Receptor for Growth in Vitro. J Biol Chem 273, 20078-20083.

Zhou, J., Gao, G., Crabb, J.W., and Serrero, G. (1993). Purification of an autocrine growth factor homologous with mouse epithelin precursor from a highly tumorigenic cell line. J Biol Chem 268, 10863-10869.

Zhu, J., Nathan, C., Jin, W., Sim, D., Ashcroft, G.S., Wahl, S.M., Lacomis, L., Erdjument-Bromage, H., Tempst, P., Wright, C.D., et al. (2002). Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 111, 867-878.
Zhu, Z., and Boone Miller, J. (1997). MRF4 can substitute for myogenin during early stages of myogenesis. Dev Dyn 209, 233-241.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊