跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/14 12:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王智弘
研究生(外文):Chih-Hung Wang
論文名稱:以結合不同分類法與類神經網路為基礎在吉他和弦即時辨識器之比較
論文名稱(外文):Guitar chord real-time recognition system based on different classifiers and Neural Network
指導教授:陳國在陳國在引用關係
口試委員:柯文俊周俊宏張淑華
口試日期:2011-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:140
中文關鍵詞:類神經網路貝氏分類法Knn分類法吉他和弦和弦辨識
外文關鍵詞:Neural NetworksNa&iumlve Bayes ClassifierK-th nearest neighbor classifierguitar chordchord recognition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
音樂是人們生活中不可或缺的文化元素,隨著科技進步,樂音辨識伴隨著不少實用的價值,諸如:卡拉ok音準評分機、電子調音器、自動翻譜機…等都是樂音辨識的應用。

本研究著重在樂音辨識中的和弦辨識一環,本論文採用木吉他和弦,以類神經演算法為核心,並搭配其餘兩種演算法,與個人電腦結合,讓使用者可以透過使用者介面,搭配視訊麥克風,即可進行吉他和弦即時辨識。論文首先建立好吉他和弦的資料庫,接著分析三種不同辨識分類法的辨識程度,並做比較與討論。

實驗分成兩種架構進行,第一種架構利用建立好的25000筆吉他和弦資料庫,共96種不同和弦,比對三種辨識分類法的辨識程度。實驗結果發現,類神經演算法在吉他和弦資料庫的平均辨識度可達99.26%,為三種分類器中辨識度最高者;貝氏分類法平均辨識度則可達94.59%,Knn分類法平均辨識度為75.46%。

第二種架構為分別測試吉他和弦即時進行下所辨識的程度,採用四種不同的和弦進行,並使用四種不同音色的樂器(兩種真實木吉他,兩種虛擬音源)進行辨識度比較。實驗結果發現,類神經演算法在四種樂器的平均辨識度可達80.58%,為三種分類器中辨識度最高者;貝氏分類法平均辨識度則可達68.86%,Knn分類法平均辨識度為54.01%。


In the culture for human life, music is necessary and elementary. Following the progress in science and technology, musical recognition, such as karaoke pitch-scoring machine, automatic tuning machine of music and electronic tuner, etc., did present a lot of practical values.
In this study, it is to concentrate on the chord recognition, which is a part of the music-recognition technology. Thus, this study tries to use acoustic guitar chords to make in-real-time recognition by users when using user interface to match with microphone through the combination of three different recognition-classification algorithms with personal computer. Accordingly, this study at first sets up the database for the guitar chord, and further analyses the recognition percentage for three different recognition-classification algorithms as used and then makes comparison and discussion.
Regarding to the experiment, two prototypes are used to perform. Between them, the first prototype uses the database of the guitar set up beforehand, which overall have ninety six items, to perform recognition percentage by using the above three different recognition -classification algorithms. The results as obtained for experiment find the averaged recognition percentages by 99.26, 94.59 and 75.46 of the guitar-chord database by using, respectively, neural network-, Naïve- Bayes classification- and Knn-algorithms are reached.
As regards to the second prototype, it, respectively, makes in real time recognition percentage of guitar chord in progress by using four different chords created, respectively, by four musical instruments of different acoustic characteristics, which include two actual acoustic guitars and two virtual sound sources, and then compare the results as obtained for recognition percentages. From the result as obtained from the experiment, it can find the associated averaged recognition percentages by 80.58, 68.86 and 54.01 to the four musical instruments by, respectively, using neural network-, Naïve-Bayes classification- and Knn-algorithms are reached.


目錄
=====================================================
致謝‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧I
摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧II
Abstract‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧III
目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧IV
圖目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧VI
表目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧XI

第一章 緒論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
1.1前言‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
1.2文獻回顧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
1.3研究動機‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧4
1.4論文章節概要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧5


第二章 聲音訊號處理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧7
2.1聲音訊號的特性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧7
2.2基本聲音訊號特徵‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧9
2.3高通濾波器‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧11
2.4離散傅立葉轉換(DFT)與快速傅立葉轉換(FFT)‧‧‧‧12
2.5漢明窗(Hamming Window)‧‧‧‧‧‧‧‧‧‧‧‧‧15

第三章 和弦特徵參數擷取 ‧‧‧‧‧‧‧‧‧‧‧‧‧19
3.1簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧19
3.2音樂與和弦‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧20
3.3和弦特徵值擷取‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26

第四章 分類與辨識‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧35
4.1資料分類法簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧35
4.2K-th nearest neighbor classifier‧‧‧‧‧‧‧‧36
4.3Naïve Bayes Classifier‧‧‧‧‧‧‧‧‧‧‧‧‧39
4.4Neural Network‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧41

第五章 實驗設備與架構‧‧‧‧‧‧‧‧‧‧‧‧‧‧57
5.1實驗設備‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧57
5.2實驗系統‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧59
5.3實驗架構‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧59
5.4實驗測試流程‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧61

第六章 實驗結果討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧65
6.1訓練/預測 資料筆數統整‧‧‧‧‧‧‧‧‧‧‧‧‧65
6.2實驗結果與討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧67

第七章 結論與未來展望‧‧‧‧‧‧‧‧‧‧‧‧‧‧134
7.1辨識率數據總結討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧134
7.2結論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧136
7.3未來展望‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧137

參考文獻‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧138

[1] Yushi Aono, Haruhiro Katayose and Seiji Inokuchi ,” A Real-time Session Composer with Acoustic Polyphonic Instruments” , In Proceedings of the International Computer Music Conference(ICMC), 1998, pp. 236-239.

[2] Judith C. Brown, ” Calculation of a constant Q spectral transform”, J. Acoustical Society of America , 89(1) , January 1991

[3] S.Hamid Nawab, Salma Abu Ayyash,and Robert Wotiz ,” Identification of Musical Chords Using Constant-Q Spectra”, In Proceedings 2001 IEEE International Conference on Acoustics,Speech,andSignal Processing(ICASSP’01), 2001

[4] Borching Su andShyh-Kang Jeng ,” Multi-Timbre Chord Classification Using Wavelet Transform and Self-Organized Map Neural Networks” , In Proceedings 2001 IEEE International Conference on Acoustics,Speech,andSignal Processing(ICASSP’01), 2001

[5] Yukio Fukayama , ” A detection algorithm for single tones and chords applying wavelet packets and the extended Kalman filter” ,The 47th IEEE International Midwest Symposium on Circuits and Systems, 2004.

[6] T. Fujishima, “Realtime Chord Recognition of Musical Sound:a System Using Common Lisp Music” , In Proceedings of the International Computer Music Conference(ICMC) , 1999 , pp. 464-467

[7] Alexander Sheh and Daniel P.W. Ellis , “Chord Segmentation and Recognition using EM-Trained Hidden Markov Models” , In Proceedings of the International Symposium on Music Information Retrieval(ISMIR) , 2003, pp. 185-191

[8] Emilia Gomez and Perfecto Herrera , ” Automatic extraction of tonal metadata from polyphonic”,In Proceedings of the Audio Engineering Society,London,2004



[9] Bee Suan Ong,Emilia Gomez,Sebastian Streich, “Automatic Extraction of Musical Structure Using Pitch Class Distribution Features” , LSAS, 2006,pp. 53-65

[10] Jyh-Shing Roger Jang, "Audio Signal Processing and Recognition,"(in Chinese) available at the links for on-line courses at the author''s homepage at http://www.cs.nthu.edu.tw/~jang

[11] James W. Cooley, and John W. Tukey, ”An algorithm for the machine calculation of complex Fourier series” , American Mathematical Society, 1965.

[12] 王小川, 語音訊號處理 ,全華科技圖書股份有限公司,2009.

[13] Ian McLoughlin, Applied Speech and Audio Processing, Cambridge University Press,NY,2009

[14] Giordano Cabral, Jean-Pierre Briot ,Francois Pachet, ” Impact of Distance in Pitch Class Profile Computation”.

[15] Kyogu Lee, “Automatic Chord Recognition from Audio Using Enhanced Pitch Class Profile”, In Proceedings of the International Computer Music Conference(ICMC) ,2006

[16] Jyh-Shing Roger Jang, "Data Clustering and Pattern Recognition,"available at the links for on-line courses at the author''s homepage at http://mirlab.org.jang.

[17] Dorian Pyle, Data Preparation for Data Mining , Morgan Kaufman,California,
1999

[18] Chin-Teng Lin and C.S. George Lee , Neural Fuzzy System:A Neural-Fuzzy Synergism to Intelligent Systems , Prentice Hall , NJ,1996

[19] Toshio Fukuda and Takanori Shibata , “Theory and applications of Neural Network for Industrial Control System” , IEEE Transaction on Industrial Electronics, 39(6), 1992,pp. 472-489

[20] 羅華強, 類神經網路-Matlab的應用 , 高立圖書有限公司 ,2005
[21] Martin T. Hagan and Mohammad B. Menhaj, “Training feedforward networks with the Marquardt algorithm” IEEE Transactions on Neural Network, 1994. pp.989-993


[22] Bogdan M. Wilamowski,Fellow,IEEE and Hao Yu, “Improved Computation for Levenberg-Marquardt Training” , IEEE Transactions on Neural Network,2010,pp.930-937


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top