跳到主要內容

臺灣博碩士論文加值系統

(44.192.114.32) 您好!臺灣時間:2022/07/07 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊馥華
研究生(外文):Fu-Hua Yang
論文名稱:腦磁活動與自發運動反應時間差異之關係
論文名稱(外文):Neuromagnetic correlates of behavioral variability in voluntary visuomotor tasks
指導教授:林發暄
口試委員:蔡尚岳林益如
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:31
中文關鍵詞:反應時間行為變異度α振盪視覺運動腦磁波
外文關鍵詞:reaction timebehavioral variabilityalpha powervisuomotor taskmagnetoencephalography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Intra-individual variability in behaviors can be an important indicator of central nervous system integrity. This study aims at understanding the origins of the behavioral reaction time (RT) variability across trials using magnetoencephalography (MEG) in a two-choice reaction time visuomotor task. We classify trials into the fast-response (FR) and the slow-response (SR) groups according to the RTs and we study the oscillatory activity and evoked responses. We found that the pre-stimulus alpha band (8-14 Hz) oscillatory power (0.4 s before the visual stimulus onset) around right posterior sensors was significantly higher in the SR group than in the FR group (p<0.001). The visual and motor evoked responses have significantly smaller amplitude in the SR group than in the FR group. With respect to the onset of the visual stimulus, the peak timing difference between FR and SR groups was only 0~8 ms in the visual cortex and 85 ms in the motor cortex. These results suggest that the posterior alpha power may modulate the brain activity in visual and motor cortices to cause inter-trial RT variability. Such a modulation can be observed after 150 ms from the visual stimulus onset by MEG.

摘要 ........................................................................................ ii
ABSTRACT ............................................................................. iii
CONTENTS ............................................................................ iv
List of Figures and Table ....................................................... vi
CHAPTER 1 INTRODUCTION..................................................... 1
1.1 Background and Problem Statement ................................. 2
1.2 Literature Review ...............................................................3
1.3 Objectives of Study ........................................................... 5
CHAPTER 2 METHOD ............................................................... 7
2.1 Materials ............................................................................8
2.1.1 Experiment Paradigm ..................................................... 8
2.1.2 Stimuli ............................................................................ 8
2.1.3 Participants .................................................................... 9
2.1.4 Data Acquisition ............................................................. 9
2.2 Data Analysis ................................................................... 10
2.2.1 Preprocessing ............................................................... 10
2.2.2 Classification of Trials ................................................... 10
2.2.3 Analysis of Oscillatory Response .................................... 11
2.2.4 Analysis of Evoked Response ......................................... 12
CHAPTER 3 RESULT ................................................................. 14
3.1 Behavioral Responses ........................................................ 15
3.2 Oscillatory Power .............................................................. 16
3.3 Latencies of Evoked Response ........................................... 18
3.4 Magnitudes of Evoked Response ........................................ 23
CHAPTER 4 DISCUSSION ........................................................... 24
4.1 Alpha Oscillations .............................................................. 25
4.2 Latencies of Evoked Response ............................................ 25
4.3 Magnitudes of Evoked Response ........................................ 27
REFERENCES ............................................................................. 29

1. Hultsch, D.F. and S.W.S. MacDonald, Intraindividual variability in performance as a theoretical window onto cognitive aging. New frontiers in cognitive aging, ed. R.A. Dixon, L. Backman, and L.-G. Nilsson. 2004, Oxford: Oxford University Press.
2. MacDonald, S.W., L. Nyberg, and L. Backman, Intra-individual variability in behavior: links to brain structure, neurotransmission and neuronal activity. Trends Neurosci, 2006. 29(8): p. 474-80.
3. Walhovd, K.B. and A.M. Fjell, White matter volume predicts reaction time instability. Neuropsychologia, 2007. 45(10): p. 2277-84.
4. Burton, C.L., et al., Intraindividual variability in physical and emotional functioning: comparison of adults with traumatic brain injuries and healthy adults. Clin Neuropsychol, 2002. 16(3): p. 264-79.
5. Li, S.C., et al., Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span. Psychol Sci, 2004. 15(3): p. 155-63.
6. Stuss, D.T., et al., Staying on the job: the frontal lobes control individual performance variability. Brain, 2003. 126(Pt 11): p. 2363-80.
7. Wiesenfeld, K. and F. Moss, Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature, 1995. 373(6509): p. 33-6.
8. Welford, A.T. and J.M.T. Brebner, Reaction times. 1980.
9. Whelan, R., Effective analysis of reaction time data. The Psychological Record, 2008. 58(3): p. 475-482.
10. Welford, A.T., Reaction time, speed of performance, and age. Ann N Y Acad Sci, 1988. 515: p. 1-17.
11. Gerson, A.D., L.C. Parra, and P. Sajda, Cortical origins of response time variability during rapid discrimination of visual objects. Neuroimage, 2005. 28(2): p. 342-53.
12. Schall, J.D., Neural correlates of decision processes: neural and mental chronometry. Curr Opin Neurobiol, 2003. 13(2): p. 182-6.
13. Cook, E.P. and J.H. Maunsell, Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat Neurosci, 2002. 5(10): p. 985-94.
14. Hanes, D.P. and J.D. Schall, Neural control of voluntary movement initiation. Science, 1996. 274(5286): p. 427-30.
15. Thompson, K.G., et al., Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol, 1996. 76(6): p. 4040-55.
16. Churchland, M.M., et al., Neural variability in premotor cortex provides a signature of motor preparation. J Neurosci, 2006. 26(14): p. 3697-712.
17. Niemi, P., Naatanen, Risto, Foreperiod and simple reaction time. Psychol. Bull., 1981. 89(1): p. 133-162.
18. Castellanos, F.X., et al., Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol Psychiatry, 2005. 57(11): p. 1416-23.
19. Weissman, D.H., et al., The neural bases of momentary lapses in attention. Nat Neurosci, 2006. 9(7): p. 971-8.
20. Fox, M.D., et al., Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 2007. 56(1): p. 171-84.
21. Roitman, J.D. and M.N. Shadlen, Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J Neurosci, 2002. 22(21): p. 9475-89.
22. MacDonald, S.W., et al., Increased response-time variability is associated with reduced inferior parietal activation during episodic recognition in aging. J Cogn Neurosci, 2008. 20(5): p. 779-86.
23. Ratcliff, R., Methods for dealing with reaction time outliers. Psychol Bull, 1993. 114(3): p. 510-32.
24. Hamalainen, M.S. and R.J. Ilmoniemi, Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput, 1994. 32(1): p. 35-42.
25. Fuchs, M., et al., An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng, 1998. 45(8): p. 980-97.
26. Available from: http://www.nmr.mgh.harvard.edu/martinos/flashHome.php.
27. Yamagishi, N., et al., Attentional changes in pre-stimulus oscillatory activity within early visual cortex are predictive of human visual performance. Brain Res, 2008. 1197: p. 115-22.
28. Foxe, J.J., G.V. Simpson, and S.P. Ahlfors, Parieto-occipital ~10 Hz activity reflects anticipatory state of visual attention mechanisms. Neuroreport, 1998. 9: p. 3929-3933.
29. Jensen, O. and A. Mazaheri, Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci, 2010. 4: p. 186.
30. van Dijk, H., et al., Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci, 2008. 28(8): p. 1816-23.
31. Haegens, S., B.F. Handel, and O. Jensen, Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task. J Neurosci, 2011. 31(14): p. 5197-204.
32. Molins, A., et al., Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation. Neuroimage, 2008. 42(3): p. 1069-77.
33. Rockland, K.L.S., J.H. Kaas, and P. A., Extrastriate cortex in primates. 1997.
34. Ress, D., B.T. Backus, and D.J. Heeger, Activity in primary visual cortex predicts performance in a visual detection task. Nat Neurosci, 2000. 3(9): p. 940-5.
35. Romei, V., et al., Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex, 2008. 18(9): p. 2010-8.
36. Sauseng, P., et al., Spontaneous locally restricted EEG alpha activity determines cortical excitability in the motor cortex. Neuropsychologia, 2009. 47(1): p. 284-8.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top