|
1. Hultsch, D.F. and S.W.S. MacDonald, Intraindividual variability in performance as a theoretical window onto cognitive aging. New frontiers in cognitive aging, ed. R.A. Dixon, L. Backman, and L.-G. Nilsson. 2004, Oxford: Oxford University Press. 2. MacDonald, S.W., L. Nyberg, and L. Backman, Intra-individual variability in behavior: links to brain structure, neurotransmission and neuronal activity. Trends Neurosci, 2006. 29(8): p. 474-80. 3. Walhovd, K.B. and A.M. Fjell, White matter volume predicts reaction time instability. Neuropsychologia, 2007. 45(10): p. 2277-84. 4. Burton, C.L., et al., Intraindividual variability in physical and emotional functioning: comparison of adults with traumatic brain injuries and healthy adults. Clin Neuropsychol, 2002. 16(3): p. 264-79. 5. Li, S.C., et al., Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span. Psychol Sci, 2004. 15(3): p. 155-63. 6. Stuss, D.T., et al., Staying on the job: the frontal lobes control individual performance variability. Brain, 2003. 126(Pt 11): p. 2363-80. 7. Wiesenfeld, K. and F. Moss, Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature, 1995. 373(6509): p. 33-6. 8. Welford, A.T. and J.M.T. Brebner, Reaction times. 1980. 9. Whelan, R., Effective analysis of reaction time data. The Psychological Record, 2008. 58(3): p. 475-482. 10. Welford, A.T., Reaction time, speed of performance, and age. Ann N Y Acad Sci, 1988. 515: p. 1-17. 11. Gerson, A.D., L.C. Parra, and P. Sajda, Cortical origins of response time variability during rapid discrimination of visual objects. Neuroimage, 2005. 28(2): p. 342-53. 12. Schall, J.D., Neural correlates of decision processes: neural and mental chronometry. Curr Opin Neurobiol, 2003. 13(2): p. 182-6. 13. Cook, E.P. and J.H. Maunsell, Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat Neurosci, 2002. 5(10): p. 985-94. 14. Hanes, D.P. and J.D. Schall, Neural control of voluntary movement initiation. Science, 1996. 274(5286): p. 427-30. 15. Thompson, K.G., et al., Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol, 1996. 76(6): p. 4040-55. 16. Churchland, M.M., et al., Neural variability in premotor cortex provides a signature of motor preparation. J Neurosci, 2006. 26(14): p. 3697-712. 17. Niemi, P., Naatanen, Risto, Foreperiod and simple reaction time. Psychol. Bull., 1981. 89(1): p. 133-162. 18. Castellanos, F.X., et al., Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol Psychiatry, 2005. 57(11): p. 1416-23. 19. Weissman, D.H., et al., The neural bases of momentary lapses in attention. Nat Neurosci, 2006. 9(7): p. 971-8. 20. Fox, M.D., et al., Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 2007. 56(1): p. 171-84. 21. Roitman, J.D. and M.N. Shadlen, Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J Neurosci, 2002. 22(21): p. 9475-89. 22. MacDonald, S.W., et al., Increased response-time variability is associated with reduced inferior parietal activation during episodic recognition in aging. J Cogn Neurosci, 2008. 20(5): p. 779-86. 23. Ratcliff, R., Methods for dealing with reaction time outliers. Psychol Bull, 1993. 114(3): p. 510-32. 24. Hamalainen, M.S. and R.J. Ilmoniemi, Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput, 1994. 32(1): p. 35-42. 25. Fuchs, M., et al., An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng, 1998. 45(8): p. 980-97. 26. Available from: http://www.nmr.mgh.harvard.edu/martinos/flashHome.php. 27. Yamagishi, N., et al., Attentional changes in pre-stimulus oscillatory activity within early visual cortex are predictive of human visual performance. Brain Res, 2008. 1197: p. 115-22. 28. Foxe, J.J., G.V. Simpson, and S.P. Ahlfors, Parieto-occipital ~10 Hz activity reflects anticipatory state of visual attention mechanisms. Neuroreport, 1998. 9: p. 3929-3933. 29. Jensen, O. and A. Mazaheri, Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci, 2010. 4: p. 186. 30. van Dijk, H., et al., Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci, 2008. 28(8): p. 1816-23. 31. Haegens, S., B.F. Handel, and O. Jensen, Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task. J Neurosci, 2011. 31(14): p. 5197-204. 32. Molins, A., et al., Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation. Neuroimage, 2008. 42(3): p. 1069-77. 33. Rockland, K.L.S., J.H. Kaas, and P. A., Extrastriate cortex in primates. 1997. 34. Ress, D., B.T. Backus, and D.J. Heeger, Activity in primary visual cortex predicts performance in a visual detection task. Nat Neurosci, 2000. 3(9): p. 940-5. 35. Romei, V., et al., Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex, 2008. 18(9): p. 2010-8. 36. Sauseng, P., et al., Spontaneous locally restricted EEG alpha activity determines cortical excitability in the motor cortex. Neuropsychologia, 2009. 47(1): p. 284-8.
|