跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 03:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Hadi Susanto
研究生(外文):Hadi Susanto
論文名稱:Shelf Space Optimization Considering Product Price, Display Orientation, Cost Factor, and Economic Order Quantity
論文名稱(外文):Shelf Space Optimization Considering Product Price, Display Orientation, Cost Factor, and Economic Order Quantity
指導教授:喻奉天喻奉天引用關係
指導教授(外文):Vincent F. Yu
口試委員:喻奉天
口試日期:2011-05-18
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:82
外文關鍵詞:Shelf-space allocationpricing and revenue managementinventory managementparticle swarm optimization.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
Shelf space is an important resource for automotive retailers since a great quantity of products competes with the limited shelf space for display. Retailer cannot only increase their profit directly without considering product prices, display facing areas, display orientations, shelf-space locations, and cost by proper shelf space management. This research develops a model that considers several aforementioned factors, and captures three dimensional product packaging characteristics. Unlike existing shelf-space allocation models, this research sets out to deepen the cost factor including purchasing cost, ordering cost, holding cost, and display cost. Further, we also take into account how to determine the economic order quantity based on specific range orders to a supplier. This research proposes to extend the limited stream of research by systematically addressing the shelf-space allocation problem and exploring alternative solution technique such as meta-heuristic approaches, more specifically, the particle swarm optimization (PSO) method to solve the problem.
Abstract i
Acknowledgments ii
Table of Contents iii
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
1.1. Problem Background 1
1.2. Thesis Objectives 3
1.3. Limitation 3
1.4. Organization of Thesis 4
Chapter 2 Literature Review 6
2.1. Shelf Space Management 6
2.1.1. Shelf Space Allocation Models 8
2.2. Inventory Concept 10
2.2.1. Economic Order Quantity 12
2.2.2. Quantity Discount Model 13
2.3. Optimization Methods 14
2.3.1. Particle Swarm Optimization 17
2.4. State of The Art (SOTA) 19
Chapter 3 Model Development 23
3.1. Conceptual Model 23
3.2. Optimization Model 25
3.2.1. Profit Optimization Model 32
3.3. Solution Methodology 36
Chapter 4 Case Study 41
4.1. Company Background 41
4.2. Optimization Case 41
4.3. Solve Optimization Problem 44
4.4. Evaluation of Model Solution 47
4.4.1. Consistency Evaluation 47
4.4.2. Evaluation of the Solution Model Parameters 48
4.5. Model Verification 54
4.6. Discussion 57
Chapter 5 Conclusions and Future Directions 59
5.1. Conclusions 59
5.2. Contribution of Thesis 60
5.3. Future Direction 60
REFERENCES 62
APPENDIX A MATHEMATICAL MODEL DEVELOPMENT 65
APPENDIX B COMPUTER PROGRAM 68
Abraham, A., Guo, H., & Liu, H. (2006). Swarm Intelligence: Foundations, Perspectives and Applications. Swarm Intelligent Systems, 3-25.
Anderson, E. E., & Amato, H. N. (1973). A Mathematical Model for Simultaneously Determining the Optimal Brand-Collection and Display-Area Allocation. Operations Research, 13-21.
Ankur, M., Debanjan, D., Mehta, C. P., Shalivahan, & Bhattacharya, B. B. (2011). PSO vs GA vs VFSA: A Comparison of Performance, Accuracy, and Resolution with Respect to Inversion of SP data. Japan Geoscience Union Meeting 2001.
Bai, R. (2005). An Investigation of Novel Approaches for Optimising Retail Shelf Space Allocation. The University of Nottingham, Nottingham.
Beielstein, T., Parsopoulos, K. e., & Vrahatis, M. N. (2002). Tuning PSO Parameters Through Sensitivity Analysis. Technical Report of the Collaborative Research Center 531 Computational Intelligence CI.
Carlisle, A., & Dozier, G. (2001). An Off-The-shelf PSO. Proceeding of the Particle Swarm Optimization Workshop, 1-6.
Chen, M.-C., & Lin, C.-P. (2007). A data mining approach to product assortment and shelf space allocation. Expert System with Application, 32, 976-986.
Chen, Y.-L., Chen, J.-M., & Tung, C.-W. (2006). A data mining approach for retail knowledge discovery with consideration of the effect of shelf-space adjacency on sales. Decision Support Systems, 42, 1503-1520.
Corstjens, M., & Doyle, P. (1981). A Model for Optimizing Retail Space Allocations. Management Science, 27.
Dreze, X., Hoch, S. J., & Purk, M. E. (1994). Shelf Management and Space Elasticity. Journal of Retailing, 70, 301-326.
Eberhart, R. C., & Shi, Y. (1998a). Comparison between Genetic Algorithms and Particle Swarm Optimization. Evolutionary Programming Conference 1998.
Eberhart, R. C., & Shi, Y. (1998b). A Modified Particle Swarm Optimizer. IEEE International Conference on Evolutionary Computation, 69-71.
Eberhart, R. C., & Shi, Y. (2001). Tracking and optimizing dynamic systems with particle swarms. Proceedings of the 2001 IEEE Congress on Evolutionary Computation, Piscataway, 94-100.
Eberhart, R. C., & Shi, Y. (2002). Comparing inertia weights and constriction factors in particle swarm optimization. Proceedings of IEEE International Congress on Evolutionary Computation, 84-88.
Fadillah, R. D. (2011). Car Sales May Reach 800,000 units in 2011: The Jakarta Post.
Hillier, F. S., & Lieberman, G. J. (2010). Introduction to Operations Research (Ninth Edition ed.). North America: Mc Graw Hill.
Hwang, H., Choi, B., & Lee, G. (2009). A genetic algorithm approach to an integrated problem of shelf design and item allocation. Computers & Industrial Engineering, 56, 809-820.
Hwang, H., Choi, B., & Lee, M.-J. (2005). A model for shelf space allocation and inventory control considering location and inventory level effects on demand. international journal of production economics, 97, 185-195.
Kaekamnerdpong, B., & Bentley, P. J. (2005). Perceptive Particle Swarm Optimisation: An Investigation. IEEE Swarm Intelligence symposium.
Konstantinos e. Parsopoulos, & Vrahatis, M. N. (2010). Particle Swarm Optimization and Intelligence: Advances and Applications
Marco, Stutzle, T., Birattari, M., & Dorigo, M. (2006). A Comparison of Particle Swarm Optimization Algorithms Based on Run-Length Distributions. Proc. 5th Int. Workshop, Ant Colony Optimization Swarm Intell (ANTS'06), 4150, 1-12.
Montgomery, D. C. (2005). Design and Analysis of Experiments: Wiley.
Muckstadt, J. A., & Sapra, A. (2009). Principle of Inventory Management
Murray, C. C., Talukdar, D., & Gosavi, A. (2010). Joint Optimization of Product Price, Display Orientation and Shelf-Space Allocation in Retail Category Management. Journal of Retailing, 86, 125-136.
Nafari, M., & Shahrabi, J. (2010). A temporal data mining approach for shelf-space allocation with consideration of product price. Expert System with Application, 4066-4072.
Oberkampf, W. L., Trucano, T. G., & Hirsch, C. (2002). Verification, Validation, and Predictive Capability in Computational Engineering and Physics. Computational Science and Engineering Applications.
Urban, T. L. (1998). An Inventory-Theoretic Approach to Product Assortment and Shelf-Space Allocation. Journal of Retailing, 74, 15-35.
Yang, M.-H., & Chen, W.-C. (1999). A Study on shelf space allocation and management. International journal of production economics, 60-61, 309-317.
Yang, M. H. (2001). An efficient algorithm to allocate shelf space. European Journal of Operational Research, 131(1), 107-118.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文