跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/28 09:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐千曄
研究生(外文):Chien-Yeh Hsu
論文名稱:雙壓並聯蒸發冷凝式冰水主機之性能測試及模擬
論文名稱(外文):Performance Test and Simulation of Evaporative Cooling Chiller with Parallel Compressors
指導教授:簡良翰簡良翰引用關係
口試委員:王啟川楊安石
口試日期:2011-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:125
中文關鍵詞:直接蒸發冷卻熱質傳熱傳增強並聯壓縮機
外文關鍵詞:Direct Evaporative coolingHeat and Mass TransferHeat transfer enhancementparallel compressors
相關次數:
  • 被引用被引用:4
  • 點閱點閱:393
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以濕盤管的熱質傳模式為基礎,建立蒸發式冷凝器的分析方法,並與壓縮機及蒸發器性能關係式結合建立整體冰水機能力數值輔助計算程式,輔以測試數據比對驗證,以探討各項設計參數對冰水主機性能之影響。性能實測以一10冷凍噸之雙壓縮機並聯蒸發式冷凝式冰水機原型機進行,其主要構件由雙台渦卷式壓縮機組、硬焊板式蒸發器、及蒸發式冷凝器所組成,工作流體為冷媒R22,其中冷凝器採用外徑為9.52mm的內螺紋銅管所組成。模擬分析中分別針對熱、質傳係數進行比較計算,選出適合之經驗公式;本研究測試數據及模擬結果比對誤差約在± 8%以內。各項參數模擬結果顯示:使用冷凝內螺紋管可提升整體系統COP約6.7%。增減風量對於系統效能之影響程度隨環境與負載變化而改變,而在固定送風機與冷凝器橫截面積條件下,增加管排會使系統風阻增加造成風量下降,並且降低冷媒流速,影響增加熱傳面積對整體COP的改善效益,在外氣濕球溫度24℃時熱傳面積由8.9增加至14.8m2使COP由4.7增加至4.87。適當減少管數的配置可使COP落差不超過1%而達到減少管排成本之效果。性能測試結果顯示本雙渦卷並聯壓縮之冰水機於外氣濕球溫度24℃時,全載系統SCOP(製冷能力/總耗電)可達4.12,半載系統SCOP為4.27;冷卻動力佔半載總系統耗電約27.4%,其中循環水幫浦即佔17.8%,根據蒸發冷卻式系統的需求特性選配較適當之幫浦與風機來改善冷卻動力,是提高半載時的SCOP是一大關鍵。

In this study, a numerical calculation program of chiller performance has been established. It includes an analytical heat and mass transfer model of the evaporative condenser, correlations of evaporator performance and compressor performance. The program was verified by test data, and used to study the effects of various design parameters on chiller performance. The prototype of the performance test is a 10RT dual parallel compressor evaporative condenser chiller. The main components of the prototype are: two scroll type compressors, a brazed plate evaporator, and an evaporative condenser. The working fluid is refrigerant R-22, and micro-fin tubes with outside diameter of 9.52mm are used in the condenser. Empirical correlations of heat and mass transfer coefficient are determined by comparing the tests results with the calculation of several correlations. In this study, the discrepancy between the test data and simulation results are less than ± 8%. The predictions of the present model show that the use of internal micro-fins improves the overall system COP by about 6.7%. The system performance is affected by the air flow rate, and the ambient temperature conditions. For a fixed cross-sectional area of condenser using the same type of blower, the air flow rate decreases with the increase of the number of tube rows because the system impedance increases. The refrigerant flow rate also decreases as the total cross-sectional area increases with increasing number of tubes per pass. Therefore, the improvement of overall COP due to the increment of heat transfer area is not as significant as expected. When the outside air wet bulb temperature is 24 ℃ and the heat transfer area increases from 8.9 to 14.8m2, the COP will increase from 4.7 to 4.87. By reducing the number of tubes, a cost reduced design results in a reduction of COP by less than 1%. Performance test results of the chiller having parallel dual-compressors at the outside air wet bulb of 24 ℃ show that the full-load SCOP (cooling capacity / total power) is 4.12, and the half-load SCOP is about 4.27. At half-load, the cooling power takes approximately 27.4% of the total system power consumption, in which 17.8% comes from the circulating water pump. For improving the half-load SCOP of the chiller, it is important to choose a proper circulating water pump and a blower which matches the characteristic impedance of the condenser.

摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 章節架構 2
第二章 文獻回顧 4
2.1 蒸發式冷卻技術之理論模型 4
2.1.1 蒸發熱質傳現象研究 4
2.1.2 蒸發冷凝系統理論模擬 8
2.1.2.1 較早期學者的研究 8
2.1.2.2 Webb等人的系統模擬模型 12
2.1.2.3 Finlay等人的系統模擬模型 13
2.1.2.4 Peterson等人的研究 15
2.1.2.5 Hasan等人的研究 17
2.1.2.6 Heyns等人的研究 19
2.1.2.7 Ettouney等人的研究 19
2.2 鰭片增強管冷凝熱傳研究 20
2.2.1 Schlager等人的實驗研究 20
2.2.2 Wang等人的研究及其模型 21
2.2.3 Han and Lee的研究及其模型 22
2.3 文獻討論 25
第三章 實驗系統與方法 28
3.1 蒸發冷凝式冰水主機實測架構 28
3.1.1 原型機簡介 28
3.1.2 原型機設備規格及架構 28
3.1.2.1 蒸發冷凝器 30
3.1.2.2 壓縮機 33
3.1.2.3 蒸發器 33
3.1.2.4 膨脹閥 34
3.1.3 量測設備 35
3.1.3.1 溫度量測 36
3.1.3.2 濕度量測 37
3.1.3.3 壓力量測 37
3.1.3.4 空氣壓差量測 37
3.1.3.5 循環水幫浦壓差量測 37
3.1.3.6 風速量測 37
3.1.3.7 流量量測 38
3.1.3.8 耗電功率量測 38
3.1.3.9 量測儀器規格 39
3.2 測試方法 41
3.3 實驗數據理論分析 42
3.4 實驗誤差分析 43
第四章 系統模擬 44
4.1 系統模擬之理論模型 44
4.1.1 管內側單相、冷凝熱傳係數 45
4.1.2 管外側水薄膜熱傳模式 47
4.1.3 液氣界面熱傳及質傳模式 47
4.1.4 蒸發冷凝過程分析模式 48
4.1.5 渦卷式壓縮機特性模式 54
4.1.6 板式蒸發器 56
4.1.7 微分方程數值方法 57
4.2 計算流程 58
4.2.1 蒸發式冷凝器數值計算流程 58
4.2.1.1 冷媒側條件 58
4.2.1.2 冷卻動力條件 58
4.2.1.3 尺寸規格條件 59
4.2.1.4 外氣條件 59
4.2.1.5 冷凝器計算流程 60
4.2.2 冰水機性能數值計算流程 63
第五章 結果與討論 66
5.1 原型機實驗檢測 66
5.1.1 性能測試結果分析 66
5.1.1.1 自行測試結果 66
5.1.1.2 性能標準測試結果 73
5.1.2 空氣側風速量測結果 74
5.1.3 空氣側壓損量測結果 75
5.1.4 循環冷卻水幫浦量測結果 79
5.2 模擬結果討論 81
5.2.1 參數輸入 81
5.2.2 經驗關係式比對 82
5.2.3 Lewis factor, Lef的影響討論 86
5.2.4 計算與量測結果比對 88
5.2.5 使用內螺紋管的影響 94
5.2.6 改變風量及水流量對於整體性能之影響 96
5.2.7 調整尺寸的影響 100
5.2.7.1 減少管數 101
5.2.7.2 增加管數 101
5.2.7.3 調整後之結果討論 101
第六章 結論與未來展望 106
6.1 結論 106
6.2 未來展望 107
參考文獻 108
附錄 111
A. 倫基-庫達方法 111
B. 包圍二分法 114
C. 5(4)RK法階數及微分項表 116
D. RK5(4)方法常數表 117
E. 台灣大電力研究試驗中心標準量測結果表 118
F. Emerson(Copeland) ZR57KS-TF5壓縮機特性表 119
G. Zalewski[30]的管陣灑水空氣側壓損計算 120
符號說明 121



[1]Hu, S.C., "Power consumption of semiconductor fabs in Taiwan.," Energy, 28, 2003, pp.895-907.
[2]Finlay, I.C. & Harris, D., ”Evaporative cooling of tube banks.,” Int. J. of Refrigeration, Vol.7, 1984, pp.214-224.
[3]Kloppers, J.C. & Kröger, D.G. “The Lewis factor and its influence on the performance prediction of wet-cooling towers.,” Int. J. of Thermal Sciences, Vol. 44, 2005, pp.879–884
[4]Lewis, W.K., “The evaporation of a liquid into a gas.,” ASME Transactions, Vol.44, 1922, pp.325-332.
[5]Bourillot, C., ”On the hypothesis of calculating the water flowrate evaporated in a wet cooling tower.,” EPRI Report CS-3144-SR, August 1983.
[6]Webb, R.L., ”A Critical Review of Cooling Tower Design Methods.,” Heat Transfer Equipment Design, Shah, R.K., Subbarao, E.C. and Mashelkar, R.A., eds., Hemisphere Pub. Corp., Washingion, DC, 1988, pp.547-558.
[7]Parker, R.O., Treybal, R.E., “Heat, mass transfer characteristics of evaporative coolers.,”, AIChE Chemical Engineering Progress Symposium Series 57, Vol.32, 1961, pp.138–149.
[8]Mizushina, T., Ito, R., Miyasita, H., “Experimental study of an evaporative cooler.,” International Chemical Engineering, Vol.7 (4), 1967, pp.727–732.
[9]Niitsu, Y., Naito, K., Anzai, T., “Studies on characteristics and design procedure of evaporative coolers.,” Journal of SHASE, Vol.43, 1969, Japan.
[10]Webb, R.L. ,Villacres A., “Algorithm for Performance Simulation of Cooling Towers, Evaporative condensers and Fluid Coolers.,” ASHRAE Trans., Vol.90, Part 2, 1984.
[11]Webb, R.L., ”A Unified Theatment the Thermal Analysis of Cooling Towers Evaporative Condenser. And Fluid Coolers.,” ASHRAE Trans., Vol. 90, Part 2, 1984.
[12]王啟川,「熱交換器設計」,五南圖書出版公司,2001。
[13]Peterson, D., Glasser, D., Williams, D., Ramsden, R., "Predicting the Performance of an Evaporative Condenser," ASME J. Heat Transfer., Vol.110, 1988, pp.748-753
[14]Hasan, A., Sirén, K., “Theoretical and computational analysis of closed wet cooling towers and its applications in cooling of buildings.,” Energy and Buildings, Vol.34 (5), 2002, pp.477–486.
[15]Hasan, A., Sirén, K., “Performance investigation of plain and finned tube evaporatively cooled heat exchangers.,” Applied Thermal Engineering, Vol.23, 2003, pp.325–340
[16]Heyns, J.A., Kröger, D.G., “Experimental investigation into the thermal-flow performance characteristics of an evaporative cooler.,” Applied Thermal Engineering, Vol.30, 2010, pp.492–498
[17]Ettouney, H.M., El-Dessouky, H.T., Bouhamra, W., Al-Azmi, B., “Performance of evaporative condensers.,” Heat Transfer Engineering, Vol.22, 2001, pp.41–55.
[18]Schlager, L.M., Pate, M.B., Bergles, A.E., “Heat transfer and pressure drop during evaporation and condensation of R22 in horizontal micro-fin tubes.,” Int. J. Refrig., Vol.12, January,1989., pp.6-14
[19]Wang, H.S., Honda, H., “Modified theoretical models of film condensation in horizontal microfin tubes.,” Int. J. Heat Mass Transfer., 45, 2002, pp.1513–1523
[20]Wang, H.S., Honda, H., “Condensation of refrigerants in horizontal microfin tubes: Comparison of prediction methods for heat transfer.,” Int. J. Refrig., Vol.26, 2003, pp.452–460.
[21]Han, D., Lee, K.J., “Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes.,” Int. J. Heat Mass Transfer, Vol.48, 2005, pp.3804-3816.
[22]林立偉, “水對冷媒R22在板式熱交換器內之性能測試分析,”國立中央大學機械工程研究所碩士論文, 2004。
[23]郭士賢, “板式熱交換器性性能測試與熱流分析,”私立淡江大學機械工程研究所碩士論文, 1993。
[24]Holman, J.P., Experimental Methods For Engineers six edition, 1994, chaper 3.
[25]ASHRAE Handbook, Fundamentals (SI), “Psychrometrics,” American Society of Heating and, Refrigerating and Air-conditioning Engineer, Ch.6, 2005.
[26]Chen, Y., Halm, N.P., Braun, J.E., Groll, E.A., “Mathematical modeling of scroll compressors — part II: overall scroll compressor modeling.,” Int. J. of Refrigeration, Vol.25, 2002, pp.751–764.
[27]Product Selection Software, Emerson Electric Co., 2009.
[28]Matlab, The MathWorks, Inc., 1994-2011.
[29]Dormand , J.R., Prince, P.J., “A family of embedded Runge-Kutta formulae.,” Journal of Computational and Applied Mathematics, Vol.6, no.1, 1980, pp.19–26.
[30]Zalewski, W., Niezgoda-Zelasko, Litwin, B.M., “Optimization of evaporative fluid coolers.,” Int. J. Refrigeration, Vol.23, 2000, pp.553–565.
[31]Saujnders, E.A.D., “Heat exchangers-selection, design & construction, “ Longman Scientific & Technical, 1988.
[32]ARI Standard 550/590, “Performance rating of water-chilling packages using the vapor compression cycle,” Air-conditioning & refrigeration institute, 2003.
[33]ASHRAE Handbook, Fundamentals (SI), “Two Phase Flow,” American Society of Heating and, Refrigerating and Air-conditioning Engineer, Ch.4, 2005, pp.4.8-4.13.
[34]Padilla, M., Revellin, R., Bonjour, J., “Prediction and simulation of two-phase pressure drop in return bends,” Int. J. Refrigeration, Vol.32, 2009, pp.1776-1783.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top