|
1.圖一、行政院衛生署-台灣地區民國99年及100年國人十大死亡原因統計圖 2.圖二、行政院衛生署-台灣地區民國99年及100年主要癌症死亡人數占率 3.圖六、行政院衛生署-台灣地區民國99年v.s民國100年主要癌症死亡人數占率 4.表一、行政院衛生署-台灣地區民國100年國人十大死亡原因標準化死亡率統計圖 5.表二、行政院衛生署-全國女性主要癌症死亡原因 6.Gao, M.Q. et al. Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition-like state in breast cancer cells in vitro. JCS. 123(Pt 20), 3507-3514 (2010). 7.Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432 (7015), 332-337 (2004). 8.Liotta, L.A. & Kohn, E.C. The microenvironment of the tumour-host interface. Nature, 411(6835), 375–379 (2001). 9.Radisky, D.C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMTand genomic instability. Nature 436(7047), 123–127 (2005). 10. Maggie, C.U. et al. Basal-Like Breast Cancer Defined by Five Biomarkers Has Superior Prognostic Value than Triple-Negative Phenotype . Clin Cancer Res 14(5), 1368-1376 (2008). 11. Yang, X.R. et al. Differences in Risk Factors for Breast Cancer Molecular Subtypes in a Population-Based Study. Cancer Epidemiol Biomarkers Prev 16(3), 439-443 (2007). 12. Gianni, L. & Hudis, C.A. Triple-Negative Breast Cancer: An Unmet Medical Need. The Oncologist 16(suppl 1), 1–11 (2011). 13. Orimo, A. et al. Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell 121(3), 335–348 (2005). 14. Lebret, T. et al. Percutaneous Core Biopsy for Renal Masses: Indications, Accuracy and Results. J Urol 178(4 Pt 1) , 1184-1188 (2007). 15. Adams, E.F. et al. Effercts of human breast fibroblasts on growth and 17 beta-estradiol dehydrogenase activity of MCF-7 cells in culture. Breast Cancer Res. Treat. 11(2), 165-172. (1988). 16. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer cell. Cell 100(1), 57-70 (2000). 17. Silvera, D., Formenti, S.C. & Schneider, R.J. Translational control in cancer. Nat. Rev. Cancer 10(4), 254-266 (2010). 18. Sachdeva, M. et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. PNAS 106(9),3207 (2009). 19. Warburg, O. On the origin of cancer cells. Sci. 123(3191), 309-314 (1956) 20. Kim, J. & Dang, C.V. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 66(18), 8927 (2006). 21. Jones, R.G. & Thompson, C.B. Tumor suppressors and cell metabolism:a recipe for cancer growth. Genes Dev. 23(5), 537 (2009). 22. Massague, J. & Gomis, R.R. The logic of TGF-β signaling. FEBS Lett. 580(12), 2811-2820 (2006). 23. Kretzschmar, M. et al. A mechanism of repression of TGF beta/Smad signaling by oncogenic Ras. Genes Dev. 13(7), 804-816 (1999). 24. Yangjin, K., Magdalena, A.S. & Hans, G.O. The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol 106(2), 353-379 (2011). 25. Folkman, J. Therapeutic implications. N Engl J Med 285(21), 1182-1186 (1971). 26. Green, C.E. et al. Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization. PLoS One 4(8), e6713 (2009). 27. Mitchison, T.J. & Cramer, L.P. Actin-based cell motility and cell locomotion. Cell 84(3), 371-379 (1996). 28. Sheetz, M.P., Felsenfeld, D., Galbraith, C.G. & Choquet, D. Cell migration as a five-step cycle. Biochem Soc Symp 65, 233-243 (1999). 29. Butcher, D.T., Alliston, T. & Weaver, V.M. A tense situation: forming tumor progression. Nat Rev Cancer 9(2), 108-122. (2009). 30. Pollard, T.D., Blanchoin, L. & Mullins, R.D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu.Rev.Biophys Biomol.Struct. 29(1), 545-576 (2000). 31. Mohla, S. & Witz, I.P. The 5th international conference on tumor microenvironment:progression, therapy and prevention. Cancer Microviron. 3(1), 1-5 (2009). 32. Witz, I.P. & Levy, N.O. The tumor microenvironment in the post.PAGET era. Cancer Lett 242(1), 1-10 (2006). 33. Witz, I.P. The tumor microenvironment: the making of a paradigm. Cancer Microenviron. supply(1), 9-17 (2009). 34. Villanueva, J. Herlyn, M. Melanoma and the tumor microenvironment. Curr Oncol Rep 10(5), 439-446 (2008). 35. Augsten, M., Hagglof, C., Pena, C. & Ostman, A. A digest on the role of the tumor microenvironment in gastroin teztinal cancers. Cancer Microenviron. 3(1), 167-176 (2010). 36. Klein, G., Vellenga, E., Fraaije, M.W., Kamps, W.A. & Debont, E.S. The possible role of matrix metalloproteinase(MMP-2) and MMP-9 in cancer , e.g. acute leukemia. Crit Rev Oncol Hematol 50(2), 87-100 (2004). 37. Mbeunkui, F. & Johann, D.J. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63(4), 571-582 (2009). 38. Kalluri, R. & Weinberg, R.A. The basics of epithelial-mesenchymal transition. J Clin Invest. 120(5), 1786 (2009). 39. Cheng, W.F. et al. Connective tissue growth factor linked to the E7 tumor antigen generates potent antitumor immune responses mediated by an antiapoptotic mechanism. Gene Ther 15(13), 1007-1016 (2008). 40. Chen, C.A. et al. Metronomic chemotherapy enhances antitumor effects of cancer vaccine by depleting regulatory T lymphocytes and inhibiting tumor angiogenesis. Mol Ther 18(6), 1233-1243 (2010). 41. Aboussekhra, A. Role of cancer-associated fibroblasts in breast cancer development and prognosis. Int J Dev Biol 55(7-9), 841-849 (2011). 42. Chung, J.G. & Hsu, S.C. Anticancer potential of emodin. Jour biomed. 1-9 (2012). 43. Folkman, J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1), 4-6 (1990). 44. Chu, C.Y. et al. Connect tissue growth factor (CTGF) and cancer progression. J Biomed Sci 15(6), 675-685 (2008). 45. Aikawa, T., Gunn, J., Spong, S.M., Klaus, S.J. & Korc, M. Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther 5(5), 1108-1116 (2006). 46. Rasanen, K. & Vaheri, A. Activation of fibroblasts in cancer stroma. Exp. Cell Res 316(17), 2713-2722 (2010). 47. Franco, O.E., Shaw, A.K., Strand, D.W. & Hayward, S.W. Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21(1), 33-39 (2010). 48. Wallace, J.A., Li, F., Leone, G. & Ostrowski, M.C. Pten in the breast tumor microenvironment: modeling tumor-stroma coevolution. Cancer Res 71(4), 1203-1207 (2011). 49. Trimboli, A.J. et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461(7267), 1084-1091 (2009). 50. Akhurst, R.J. & Derynck, R. TGF-β signaling in cancer- a double-edged sword. Trends Cell Biol 11(11), S44-S51 (2001). 51. Bierie, B. & Moses, H.L. Transforming growth factor beta(TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 21(1), 49-59 (2010). 52. Ho, J., Chen, H. & Lebrun, J.J. Novel dominant negative Smad antagonists to TGF-beta signaling. Cell Signal 19(7), 1565-1574 (2007). 53. English, J.M. & Cobb M.H. Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 23(1), 40-45 (2002). 54. Laping, N.J. et al. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity:SB-431542. Mol Pharmacol 62(1), 58-64 (2002). 55. Parvani, J.G., Taylor, M.A. & Schiemann, W.P. Noncanonical TGF-beta signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia 16(2), 127-146 (2011). 56. Taylor, M.A., Parvani, J.G. & Schiemann, W.P. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 15(2), 169-190 (2010). 57. Asiedu, M.K., Ingle, J.N., Behrens, M.D., Radisky, D.C. & Knutson, K.L. TGF(beta)/TNF(alpha)-Mediated epithelial-mesenchymal transition generates breast cancer stem cells with a Claudin-low phenotype. Cancer Res 71(13), 4707-4719 (2011). 58. Alphonso, A. & Alahari, S.K. Stromal cells and integrins: conforming to the needs of the tumor microenvironment. Neoplasia 11(12), 1264-1271 (2009). 59. White, D.E. & Muller, W.J. Multifaceted roles of integrins in breast cancer metastasis. J Mammary Gland Biol Neoplasia 12(2-3), 135-142 (2007). 60. Chang, C.J., Ashendel, C.L., Geahlen, R.L., McLaughlin, J.L. & Waters, D.J. Oncogene signal transduction inhibitors from medicinal plants. In Vivo 10(2), 185-190 (1996). 61. Jayasuriya, H., Koonchanok, N.M., Geahlen, R.L., McLaughlin, J.L. & Chang, C.J. Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J Nat Prod 55(5), 696-698 (1992). 62. Zhang, L., Chang, C.J., Bacus, S.S. & Hung, M.C. Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin. Cancer Res 55(17), 3890-3896 (1995). 63. Srinivas, G. et al. Emodin induces apoptosis of human cervical cancer cells through poly(ADP-ribose) polymerase cleavage and activation of caspase-9. Eur J Pharmacol 473(2-3), 117-125 (2003). 64. Lee, H.Z. Effects and mechanisms of emodin on cell death in human lung squamous cell carcinoma. Br J Pharmacol 134(1), 11-20 (2001). 65. Lee, H.Z. Protein kinase C involvement in aloe-emodin and emodin-induced apoptosis in lung carcinoma cell. Br J Pharmacol 134(5), 1093-1103 (2001). 66. Huang, Q., Shen, H.M. & Ong, C.N. Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-kappa B. Bio chem Pharmacol 68(2), 361-371 (2004). 67. Wang, J.B. et al.Hepatotoxicity or hepatoprotection? Pattern recognition for the paradoxical effect of the Chinese herb Rheum palmatum L. in the treating rat liver injury. PLoS One 6(9), e24498 (2011). 68. Teng, Z.H. et al. Cellular absorption of anthraquinones emodin and chrysophanol in human intestinal Caco-2 cells. Biosci Biotechnol Biochem 71(7), 1636-1643 (2007). 69. Kim, M.S. et al. Emodin suppresses hyaluronic acid-induced MMP-9 secretion and invasion of glioma cells. Int J Oncol 27(3), 839-846 (2005). 70. Kuo, Y.C., Meng, H.C. & Tsai, W.J. Regulation of cell proliferation, inflammatory cytokine production and calcium mobilization in primary human T lymphocytes by emodin from Polygonum hypoleucum. Ohwi Inflamm Res 50(2), 73-82 (2001). 71. National Toxicology Program. NTP toxicology and carcinogenesis studies of EMODIN( CAS No. 518-82-1): feed studies in F344/N rats and B6C3F1 mice. Natl Toxicol Program Tech Rep Ser 493, 1-278 (2001). 72. Chen, Y.C. et al. Emodin induces apoptosis in human promyeloleukemic HL-60 cells accompanied by activation of caspase 3 cascade but independent of reactive oxygen species production. Biochem Pharmacol 64(12), 1713-1724 (2002). 73. Albini, A. et al. Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res 65(23), 10637-10641 (2005). 74. Benelli, R. et al. Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J 16(2), 267-269 (2002). 75. Scapini, P. et al. CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172(8), 5034-5040 (2004). 76. Calle, E.E. & Thun, M.J. Obesity and cancer. Oncogene 23(38), 6365-6378 (2004). 77. Wellen, K.E. & Hotamisligil, G.S. Inflammation, stress and diabetes. J Clin Invest 115(5), 1111-1119 (2005). 78. Hotamisligil, G.S. et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95(5), 2409-2415 (1995). 79. Mohamed-Ali, V. et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 82(12), 4196-4200 (1997). 80.Wunderlich, F.T. et al. Hepatic NF-kappa B essential modulator deficiency prevents obesity-induced insulin resistance but synergizes with high-fat feeding in tumorigenesis. Proc Natl Acad Sci USA 105(4), 1297-1302 (2008). 81.Bromberg, J.F. et al. Stat3 as an oncogene. Cell 98(3), 295-303 (1999). 82.Khandekar, M.J., Cohen, P. & Spiegelman, B.M. Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11(12), 886-895 (2011). 83.Allinen, M. et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer cell 6(1), 17-32 (2004). 84.Bauer, M. et al. Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast. Oncogene 29(12), 1732-1740 (2010). 85.Beacham, D.A. & Cukienman, E. Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 15(5), 329-341 (2005). 86.De-wever, O., Demetter, P., Mareel, M. & Bracke, M. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123(10), 2229-2238 (2008). 87.Hawsawi, N.M. et al. Breast carcinoma-associated fibroblasts and their counterparts display neoplastic-specific changes. Cancer Res 68(8), 2717-2725 (2008). 88.Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat Rev Cancer 6(5), 392-401 (2006). 89.Kojima, Y. et al. Autocrine TGF-beta and stromal cell-derived factor-1(SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 107(46), 1089-1096 (2010). 90.Polyak, K. & Kalluri, R. The role of the microenvironment in Mammary Gland Development and Cancer. Cold Spring Harb Perspect Biol 2(11), a003244 (2010). 91.Sadlonova, A. et al. Identification of molecular distinctions between normal breast-associated fibroblasts and breast cancer-associated fibroblasts. Cancer Microenviron 2(1), 9-21 (2009). 92.Sappino, A.P., Skalli, O., Jackson, B., Schurch, W. & Gabbiani, G. Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer 41(5), 707-712 (1988). 93.Tarin, D. Fine structure of murine mammary tumours: the relationship between epithelium and connective tissue in neoplasms induced by various agents Br J Cancer 23(2), 417-425 (1969). 94.Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R.A. Myofibroblasts and mechano-regulation of connective tissue remodeling. Nat Rev Mol Cell Biol 3(5), 349-363 (2002). 95.Thiery J.P. et al. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rew Cell Bio 7(2), 131-142 (2006). 96.Oda, T. et al. Cell proliferation, apoptosis, angiogenesis and growth rate of incidentally found renal cell carcinoma. Int J Vrol 10(1), 13-18 (2003). 97.Casey, T. et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat 114(1), 47-62 (2009). 98.Ma, X.J., Dahiya, S., Richardson, E., Erlander, M. & Sgroi, D.C. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11(1), R7 (2009). 99.Rozenchan, P.B. et al. Reciprocal changes in gene expression profiles of cocultured breast epithelial cells and primary fibroblasts. Int J Cancer 125(12), 2767-2777 (2009). 100.Su, G., Blaine, S.A., Qiao, D. & Friedl, A. Shedding of syndecan-1 by stromal fibroblasts stimulates human breast cancer cell proliferation via FGF-2 activation. J Biol Chem 282(20), 14906-14915 (2007). 101.Camps, J.L. et al. Fibroblasts-mediated acceleration of human epithelial tumor growth in vivo. Proc Natl Acad Sci USA 87(1), 75-79 (1990). 102.Noel, A. et al. Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts. Br J Cancer 68(5), 909-915 (1993). 103.Huang, M., Li, Y., Zhang, H. & Nan, F. Breast cancer stromal fibroblasts promote the generation of CD44+CD24- cells through SDF-1/CXCR4 interaction. J Exp Clin Cancer Res 29, 80 (2010). 104.Bachelder, R.E., Wendt, M.A. & Mercurio, A.M. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62(24), 7203-7206 (2002). 105.Pinto, M.P. et al. Vascular endothelial growth factor secreted by activated stroma enhances angiogenesis and hormone-independent growth of estrogen receptor-positive breast cancer. Cancer Res 70(7), 2655-2664 (2010). 106.Matsumoto, K. & Nakamura, T. Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer 119(3), 477-483 (2006). 107.Tyan, S.W. et al. Breast cancer cells induce cancer-asociated fibroblasts to secrete hepatocyte growth factor to enhance breast tumorigenesis. PLoS One 6(1), e15313 (2011). 108.Kuperwasser, C. et al. Reconstruction of functionally normal and malignant human breast tissue in mice. Proc Natl Acad Sci USA 101(14), 4966-4971 (2004). 109.Wu, M. et al. Dissecting gentic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice. Proc Natl Acad Sci USA 106(17), 7022-7027 (2009). 110.Kessenbrock, K., Plaks, V., Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1), 52-67 (2010). 111.Stuelten, C.H. et al. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 118(Pt 10), 2143-2153 (2005). 112.Nabeshima, K., Inoue, T., Shimao, Y. & Sameshima, T. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int 52(4), 255-264 (2002). 113.Wang, T.N., Albo, D. & Tuszynski, G.P. Fibroblasts promote breast cancer cell invasion by upregulating tumor matrix metalloproteinase-9 production. Surgery 132(2), 220-225 (2002). 114.Hu, M. et al. Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc Natl Acad Sci USA 106(9), 3372-3377 (2009). 115.Lynch C.C. & Matrisian L.M. Matrix metalloproteinases in tumor-host cell communication. Differentiation 70(9-10), 561-573 (2002). 116.Basset, P. et al. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348(6303), 699-704 (1990). 117.Masson, R. et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 140(6), 1535-1541 (1998). 118.Friedl, A. Proteoglycans: master modulators of paracrine fibroblast-carcinoma cell interactions. Semin Cell Dev Biol 21(1), 66-71 (2009). 119.Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68, 729-777 (1999). 120.Maeda, T., Desouk, Y.J. & Friedl, A. Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25(9), 1408-1412 (2006). 121.Teicher, B.A. & Fricker, S.P. CXCL12(SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16(11), 2927-2931 (2010). 122.Soll, D.R. The use of computers in understanding how animal cells crawl. Int Rev Cytol 163, 43-104 (1995). 123.Small, J.V., Stradal, T., Vignal, E. & Rottner, K. The lamellipodium: where motility begins. Trends Cell Biol 12(3), 112-120 (2002). 124.Cotran, R.S., Kumar, V. & Robbins, S.L. Pathological Basis of Cancer. WB Saunders Company, Philadelphia. 125.Polyak, K. Breast cancer: origins and evolution. J Clin Invest 117(11), 3155-3163 (2007). 126.Onitilo, A.A., Engel, M., Greenlee, R.T. & Mukesh, B.N. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinic-pathologic features and survival. Clin Med Res 7(1-2), 4-13 (2009). 127.Giuliano, A.E. et al. Preoperative breast MRI in the surgical treatment of ductal carcinoma in situ. Breast J 18(2), 151-156 (2012). 128.Esterva, F.J. & Hortobagyi, G.N. Can early response assessment guide neoadjuvant chemotherapy in early-stage breast cancer? J Natl Cancer Inst 100(8), 521-523 (2008). 129.Oakman, C., Santarpia, L. & Di-Leo, A. Breast cancer assessment tools and optimizing adjuvant therapy. Nat Rev Clin Oncol 7(12), 725-732 (2010). 130.Haffty, B.G. et al. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24(36), 5652-5657 (2006). 131.Lee, H.Z. et al. Photodynamic activity of aloe-emodin induces resensitivation of lung cancer cells to anoikis. Eur J Pharmacol 648(1-3), 50-58 (2010).
|