跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 08:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王浩諭
研究生(外文):Hao-yu Wang
論文名稱:大黃素抑制人類三陰性乳癌中間層纖維母細胞誘導之上皮細胞轉變成間質細胞之研究
論文名稱(外文):Emodin inhibits epithelial-mesenchymal transition induced by stromal fibroblasts from the interface zone of triple negative breast carcinomas
指導教授:魏宗德
指導教授(外文):Tzong-Der Way
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生物科技學系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:104
中文關鍵詞:中間層纖維母細胞BT-20EMT三陰性乳癌大黃素
外文關鍵詞:INFsBT-20EMTTNBCemodin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當一乳癌患者被鑑定為缺乏ER (estrogen receptor) 、 PR (progesterone receptor)及HER2蛋白時,即稱為三陰性乳癌(triple-negative breast carcinomas)。三陰性乳癌具有相當高機會復發、復發時間較早、一旦復發後治療工作相當困難等特性。
在本研究中,我們將三陰性乳癌病人的檢體組織區分為tumor burden zones、distal normal zones及介於兩區域中間的interface zones,並且自這三區中分離出纖維母細胞,分別命名為cancer-associated fibroblasts (CAFs)、normal zone fibroblasts (NFs)及interface zone fibroblasts (INFs) ,我們發現INFs相較於NFs和CAFs具有較快的生長速度。我們接著透過體外共同培養模式,研究不同部位的纖維母細胞與三陰性乳癌細胞株的分子訊息交互作用,我們發現, INFs最能有效地誘發乳癌細胞株從上皮細胞形態轉變成間質細胞形態,並且,INFs也能誘導乳癌細胞株vimentin的表現量增加及促進癌細胞移行的能力。這個發現闡明了INFs相較於NFs及CAFs,具有特別的生化調控意義,這項研究說明了INFs是一個具有複雜分子交互作用的區域,因此這些分子誘發了細胞內多條訊號傳遞路徑表現的結果使得癌症更加地惡化。
然而,我們的研究發現大黃素(emodin)抑制INFs所誘發的上皮細胞轉變成間質細胞的過程,大黃素抑制INFs誘發乳癌上皮細胞株形態的改變,增加E-cadherin的表現量及降低vimentin的表現量。此外,在細胞傷口癒合分析上發現,大黃素可抑制由INFs誘發乳癌細胞株的移行能力。


“Triple negative breast cancer” (TNBC) is defined as breast cancer which lacks expression of the estrogen receptor (ER), progesterone receptor (PR), and HER2 proteins. TNBC is associated with a higher risk of distant recurrence, earlier time to recurrence, and worse prognosis after recurrence.
Fibroblasts were extracted from tissue in tumor burden zones, distal normal zones and interface zones between tumor and normal tissue of TNBC, and the corresponding fibroblasts were designated as cancer-associated fibroblasts (CAFs), normal zone fibroblasts (NFs) and interface zone fibroblasts (INFs). We found that INFs grow faster and expressed higher levels of vimentin than NFs and CAFs .The crosstalk between three types of fibroblasts and breast cancer cells was evaluated using an in vitro direct co-culture model. Compared with CAFs and NFs, INFs grown with breast cancer cells were significantly effective in inducing an epithelial-mesenchymal transition (EMT) in cancer cells, as indicated by induction of vimentin. Additionally, INFs promoted breast cell migration to a larger extent compared with NFs and CAFs. Taken together, these findings indicated that INFs isolated from the TNBC interface zone exhibits more robust biological modulatory activity than NFs and CAFs isolated from normal and tumor zones of the same tumor tissue, suggesting that the interface zone of the tumor represents a dynamic region vital to tumor progression.
Moreover, our results found that emodin inhibited epithelial-mesenchymal transition induced by INFs. Emodin would reverse INFs-induced morphological changes, up-regulated the expression of E-cadherin and down-regulated the expression of vimentin. Moreover, wound-healing and in vitro invasion assay showed that emodin could inhibit INFs-induced migration and invasion of TNBC cells.







第一章 緒論………………………………………………………………1
第一節、惡性腫瘤…………………………………………………………1
1.2.1、細胞轉形及起始階段(Transformation and initiation)…………..5
1.2.2、腫瘤生長階段(Neoplastic growth)……………………………..6
1.2.3、血管增生階段(Angiogenesis)………………………………….8
1.2.4、癌細胞侵犯階段(Invasion)…………………………………….9
1.2.4.1、細胞的延展作用(Extension of directed protrusion)…………11
1.2.4.2、細胞的錨定作用(anchoring of protrusions to the substrate or the ECM)……………………………………...11
1.2.4.3、actomyosin filament的鏈結階段……………………………11
1.2.4.4、最終階段……………………………………………………..12
第二節、乳癌(Human breast cancer cell carcinoma)……………………14
第三節、臨床上乳癌類型(breast cancer subtype)及治療方式
(breast cancer treatment)之介紹…………………………………………19
第四節、腫瘤微環境(tumor microenvironment)………………………23
1.4.1、內皮細胞(Endothelial cells)……………………………….24
1.4.2、基質組織(Stromal tissue)………………………………….25
1.4.2.1、基質細胞(Stromal cells)………………………………25
1.4.2.2、肌上皮細胞(Myoepithelial cells)…………………….27
1.4.2.3、癌症相關巨噬細胞(Tumor associated macrophages)…27
1.4.2.4、嗜中性白血球(neutrophils)……………………………28
1.4.2.5、脂肪細胞(adipocyte)…………………………………..28
1.4.3、細胞外基質(Extracellular matrix)……………………………29
第五節、癌症相關纖維母細胞(Cancer-associated fibroblasts;CAFs)…31
1.5.5.1、SDF-1……………………………………………………33
1.5.5.2、VEGF-A(VEGF)………………………………………...34
1.5.5.3、HGF……………………………………………………...34
1.5.5.4、TGF-β…………………………………………………….34
1.5.5.5、MMPs……………………………………………………..35
1.5.5.6、SDC-1……………………………………………………..36
第六節、上皮細胞轉換成間質細胞(epithelial-mesenchymal transition)…38第七節、大黃素(emodin)…………………………………………………41
第八節、研究動機…………………………………………………………43
第九節、實驗設計…………………………………………………………45
第二章、材料與方法………………………………………………………46
2.1 實驗材料………………………………………………………………46
2.2 儀器設備………………………………………………………………48
實驗方法……………………………………………………………………50
2.3 細胞培養………………………………………………………………50
2.4 細胞的活化……………………………………………………………51
2.5 檢體細胞初代培養……………………………………………………52
2.6 細胞增生速率分析(cell proliferation assay)…………………………53
2.7 纖維母細胞指定時間點指定細胞培養液的收集(conditional medium collection)…………………………………………………………………54
2.8 細胞形態觀察(morphology observation)……………………………55
2.9 西方墨點法分析(Western blot)………………………………………55
2.9.1 蛋白質的萃取(protein extraction)…………………………………56
2.9.2蛋白質濃度測定(protein quantification) ……………………………56
2.9.3蛋白質之電泳分析(protein electrophoresis) …………………………57
2.9.4 轉漬與影像呈現(protein transferring and fujifilming) ……………58
2.10 免疫螢光染色分析(Immunofluorescence Assay)…………………59
2.11細胞刮痕癒合能力分析(Cell wound healing Assay)………………61
2.12 蘇木紫與伊紅染色法(H&E staining)……………………………62
2.13 大黃素抑制細胞轉形成間質細胞之形態實驗……………………62
2.14 大黃素抑制細胞轉形成間質細胞之西方轉漬法實驗……………63
第三章、結果………………………………………………………………65
3.1 探討自臨床檢體組織分離之纖維母細胞之特性研究………………68
3.2 探討來自不同區域的三陰性乳癌纖維母細胞是否能促進三陰性乳癌細胞株發生上皮細胞與間質細胞轉換……………………………………72
3.2.1 探討在共培養模式下,來自於不同區域的三陰性乳癌纖維母細胞是否能促進三陰性乳癌細胞株轉形成間質細胞並且vimentin表現量上升………75
3.2.2 探討在共培養的模式下,來自不同區域的三陰性乳癌纖維母細胞是否能促進三陰性乳癌細胞爬行能力…………………………………77
3.3.探討大黃素(emodin)是否能夠抑制由INFs及CAFs所誘發的三陰性乳癌轉形成間質細胞形態…………………………………………………82
第四章、討論(Discussion)………………………………………………83
第五章、結論(Conclusion)………………………………………………87
第六章、參考文獻(Reference)…………………………………………89


1.圖一、行政院衛生署-台灣地區民國99年及100年國人十大死亡原因統計圖
2.圖二、行政院衛生署-台灣地區民國99年及100年主要癌症死亡人數占率
3.圖六、行政院衛生署-台灣地區民國99年v.s民國100年主要癌症死亡人數占率
4.表一、行政院衛生署-台灣地區民國100年國人十大死亡原因標準化死亡率統計圖
5.表二、行政院衛生署-全國女性主要癌症死亡原因
6.Gao, M.Q. et al. Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition-like state in breast cancer cells in vitro. JCS. 123(Pt 20), 3507-3514 (2010).
7.Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432 (7015), 332-337 (2004).
8.Liotta, L.A. & Kohn, E.C. The microenvironment of the tumour-host interface. Nature, 411(6835), 375–379 (2001).
9.Radisky, D.C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMTand genomic instability. Nature 436(7047), 123–127 (2005).
10. Maggie, C.U. et al. Basal-Like Breast Cancer Defined by Five Biomarkers Has Superior Prognostic Value than Triple-Negative Phenotype . Clin Cancer Res 14(5), 1368-1376 (2008).
11. Yang, X.R. et al. Differences in Risk Factors for Breast Cancer Molecular Subtypes in a Population-Based Study. Cancer Epidemiol Biomarkers Prev 16(3), 439-443 (2007).
12. Gianni, L. & Hudis, C.A. Triple-Negative Breast Cancer: An Unmet Medical Need. The Oncologist 16(suppl 1), 1–11 (2011).
13. Orimo, A. et al. Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell 121(3), 335–348 (2005).
14. Lebret, T. et al. Percutaneous Core Biopsy for Renal Masses: Indications, Accuracy and Results. J Urol 178(4 Pt 1) , 1184-1188 (2007).
15. Adams, E.F. et al. Effercts of human breast fibroblasts on growth and 17 beta-estradiol dehydrogenase activity of MCF-7 cells in culture. Breast Cancer Res. Treat. 11(2), 165-172. (1988).
16. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer cell. Cell 100(1), 57-70 (2000).
17. Silvera, D., Formenti, S.C. & Schneider, R.J. Translational control in cancer. Nat. Rev. Cancer 10(4), 254-266 (2010).
18. Sachdeva, M. et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. PNAS 106(9),3207 (2009).
19. Warburg, O. On the origin of cancer cells. Sci. 123(3191), 309-314 (1956)
20. Kim, J. & Dang, C.V. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 66(18), 8927 (2006).
21. Jones, R.G. & Thompson, C.B. Tumor suppressors and cell metabolism:a recipe for cancer growth. Genes Dev. 23(5), 537 (2009).
22. Massague, J. & Gomis, R.R. The logic of TGF-β signaling. FEBS Lett. 580(12), 2811-2820 (2006).
23. Kretzschmar, M. et al. A mechanism of repression of TGF beta/Smad signaling by oncogenic Ras. Genes Dev. 13(7), 804-816 (1999).
24. Yangjin, K., Magdalena, A.S. & Hans, G.O. The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol 106(2), 353-379 (2011).
25. Folkman, J. Therapeutic implications. N Engl J Med 285(21), 1182-1186 (1971).
26. Green, C.E. et al. Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization. PLoS One 4(8), e6713 (2009).
27. Mitchison, T.J. & Cramer, L.P. Actin-based cell motility and cell locomotion. Cell 84(3), 371-379 (1996).
28. Sheetz, M.P., Felsenfeld, D., Galbraith, C.G. & Choquet, D. Cell migration as a five-step cycle. Biochem Soc Symp 65, 233-243 (1999).
29. Butcher, D.T., Alliston, T. & Weaver, V.M. A tense situation: forming tumor progression. Nat Rev Cancer 9(2), 108-122. (2009).
30. Pollard, T.D., Blanchoin, L. & Mullins, R.D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu.Rev.Biophys Biomol.Struct. 29(1), 545-576 (2000).
31. Mohla, S. & Witz, I.P. The 5th international conference on tumor microenvironment:progression, therapy and prevention. Cancer Microviron. 3(1), 1-5 (2009).
32. Witz, I.P. & Levy, N.O. The tumor microenvironment in the post.PAGET era. Cancer Lett 242(1), 1-10 (2006).
33. Witz, I.P. The tumor microenvironment: the making of a paradigm. Cancer Microenviron. supply(1), 9-17 (2009).
34. Villanueva, J. Herlyn, M. Melanoma and the tumor microenvironment. Curr Oncol Rep 10(5), 439-446 (2008).
35. Augsten, M., Hagglof, C., Pena, C. & Ostman, A. A digest on the role of the tumor microenvironment in gastroin teztinal cancers. Cancer Microenviron. 3(1), 167-176 (2010).
36. Klein, G., Vellenga, E., Fraaije, M.W., Kamps, W.A. & Debont, E.S. The possible role of matrix metalloproteinase(MMP-2) and MMP-9 in cancer , e.g. acute leukemia. Crit Rev Oncol Hematol 50(2), 87-100 (2004).
37. Mbeunkui, F. & Johann, D.J. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63(4), 571-582 (2009).
38. Kalluri, R. & Weinberg, R.A. The basics of epithelial-mesenchymal transition. J Clin Invest. 120(5), 1786 (2009).
39. Cheng, W.F. et al. Connective tissue growth factor linked to the E7 tumor antigen generates potent antitumor immune responses mediated by an antiapoptotic mechanism. Gene Ther 15(13), 1007-1016 (2008).
40. Chen, C.A. et al. Metronomic chemotherapy enhances antitumor effects of cancer vaccine by depleting regulatory T lymphocytes and inhibiting tumor angiogenesis. Mol Ther 18(6), 1233-1243 (2010).
41. Aboussekhra, A. Role of cancer-associated fibroblasts in breast cancer development and prognosis. Int J Dev Biol 55(7-9), 841-849 (2011).
42. Chung, J.G. & Hsu, S.C. Anticancer potential of emodin. Jour biomed. 1-9 (2012).
43. Folkman, J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1), 4-6 (1990).
44. Chu, C.Y. et al. Connect tissue growth factor (CTGF) and cancer progression. J Biomed Sci 15(6), 675-685 (2008).
45. Aikawa, T., Gunn, J., Spong, S.M., Klaus, S.J. & Korc, M. Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther 5(5), 1108-1116 (2006).
46. Rasanen, K. & Vaheri, A. Activation of fibroblasts in cancer stroma. Exp. Cell Res 316(17), 2713-2722 (2010).
47. Franco, O.E., Shaw, A.K., Strand, D.W. & Hayward, S.W. Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21(1), 33-39 (2010).
48. Wallace, J.A., Li, F., Leone, G. & Ostrowski, M.C. Pten in the breast tumor microenvironment: modeling tumor-stroma coevolution. Cancer Res 71(4), 1203-1207 (2011).
49. Trimboli, A.J. et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461(7267), 1084-1091 (2009).
50. Akhurst, R.J. & Derynck, R. TGF-β signaling in cancer- a double-edged sword. Trends Cell Biol 11(11), S44-S51 (2001).
51. Bierie, B. & Moses, H.L. Transforming growth factor beta(TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 21(1), 49-59 (2010).
52. Ho, J., Chen, H. & Lebrun, J.J. Novel dominant negative Smad antagonists to TGF-beta signaling. Cell Signal 19(7), 1565-1574 (2007).
53. English, J.M. & Cobb M.H. Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 23(1), 40-45 (2002).
54. Laping, N.J. et al. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity:SB-431542. Mol Pharmacol 62(1), 58-64 (2002).
55. Parvani, J.G., Taylor, M.A. & Schiemann, W.P. Noncanonical TGF-beta signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia 16(2), 127-146 (2011).
56. Taylor, M.A., Parvani, J.G. & Schiemann, W.P. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 15(2), 169-190 (2010).
57. Asiedu, M.K., Ingle, J.N., Behrens, M.D., Radisky, D.C. & Knutson, K.L. TGF(beta)/TNF(alpha)-Mediated epithelial-mesenchymal transition generates breast cancer stem cells with a Claudin-low phenotype. Cancer Res 71(13), 4707-4719 (2011).
58. Alphonso, A. & Alahari, S.K. Stromal cells and integrins: conforming to the needs of the tumor microenvironment. Neoplasia 11(12), 1264-1271 (2009).
59. White, D.E. & Muller, W.J. Multifaceted roles of integrins in breast cancer metastasis. J Mammary Gland Biol Neoplasia 12(2-3), 135-142 (2007).
60. Chang, C.J., Ashendel, C.L., Geahlen, R.L., McLaughlin, J.L. & Waters, D.J. Oncogene signal transduction inhibitors from medicinal plants. In Vivo 10(2), 185-190 (1996).
61. Jayasuriya, H., Koonchanok, N.M., Geahlen, R.L., McLaughlin, J.L. & Chang, C.J. Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J Nat Prod 55(5), 696-698 (1992).
62. Zhang, L., Chang, C.J., Bacus, S.S. & Hung, M.C. Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin. Cancer Res 55(17), 3890-3896 (1995).
63. Srinivas, G. et al. Emodin induces apoptosis of human cervical cancer cells through poly(ADP-ribose) polymerase cleavage and activation of caspase-9. Eur J Pharmacol 473(2-3), 117-125 (2003).
64. Lee, H.Z. Effects and mechanisms of emodin on cell death in human lung squamous cell carcinoma. Br J Pharmacol 134(1), 11-20 (2001).
65. Lee, H.Z. Protein kinase C involvement in aloe-emodin and emodin-induced apoptosis in lung carcinoma cell. Br J Pharmacol 134(5), 1093-1103 (2001).
66. Huang, Q., Shen, H.M. & Ong, C.N. Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-kappa B. Bio chem Pharmacol 68(2), 361-371 (2004).
67. Wang, J.B. et al.Hepatotoxicity or hepatoprotection? Pattern recognition for the paradoxical effect of the Chinese herb Rheum palmatum L. in the treating rat liver injury. PLoS One 6(9), e24498 (2011).
68. Teng, Z.H. et al. Cellular absorption of anthraquinones emodin and chrysophanol in human intestinal Caco-2 cells. Biosci Biotechnol Biochem 71(7), 1636-1643 (2007).
69. Kim, M.S. et al. Emodin suppresses hyaluronic acid-induced MMP-9 secretion and invasion of glioma cells. Int J Oncol 27(3), 839-846 (2005).
70. Kuo, Y.C., Meng, H.C. & Tsai, W.J. Regulation of cell proliferation, inflammatory cytokine production and calcium mobilization in primary human T lymphocytes by emodin from Polygonum hypoleucum. Ohwi Inflamm Res 50(2), 73-82 (2001).
71. National Toxicology Program. NTP toxicology and carcinogenesis studies of EMODIN( CAS No. 518-82-1): feed studies in F344/N rats and B6C3F1 mice. Natl Toxicol Program Tech Rep Ser 493, 1-278 (2001).
72. Chen, Y.C. et al. Emodin induces apoptosis in human promyeloleukemic HL-60 cells accompanied by activation of caspase 3 cascade but independent of reactive oxygen species production. Biochem Pharmacol 64(12), 1713-1724 (2002).
73. Albini, A. et al. Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res 65(23), 10637-10641 (2005).
74. Benelli, R. et al. Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J 16(2), 267-269 (2002).
75. Scapini, P. et al. CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172(8), 5034-5040 (2004).
76. Calle, E.E. & Thun, M.J. Obesity and cancer. Oncogene 23(38), 6365-6378 (2004).
77. Wellen, K.E. & Hotamisligil, G.S. Inflammation, stress and diabetes. J Clin Invest 115(5), 1111-1119 (2005).
78. Hotamisligil, G.S. et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95(5), 2409-2415 (1995).
79. Mohamed-Ali, V. et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 82(12), 4196-4200 (1997).
80.Wunderlich, F.T. et al. Hepatic NF-kappa B essential modulator deficiency prevents obesity-induced insulin resistance but synergizes with high-fat feeding in tumorigenesis. Proc Natl Acad Sci USA 105(4), 1297-1302 (2008).
81.Bromberg, J.F. et al. Stat3 as an oncogene. Cell 98(3), 295-303 (1999).
82.Khandekar, M.J., Cohen, P. & Spiegelman, B.M. Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11(12), 886-895 (2011).
83.Allinen, M. et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer cell 6(1), 17-32 (2004).
84.Bauer, M. et al. Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast. Oncogene 29(12), 1732-1740 (2010).
85.Beacham, D.A. & Cukienman, E. Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 15(5), 329-341 (2005).
86.De-wever, O., Demetter, P., Mareel, M. & Bracke, M. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123(10), 2229-2238 (2008).
87.Hawsawi, N.M. et al. Breast carcinoma-associated fibroblasts and their counterparts display neoplastic-specific changes. Cancer Res 68(8), 2717-2725 (2008).
88.Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat Rev Cancer 6(5), 392-401 (2006).
89.Kojima, Y. et al. Autocrine TGF-beta and stromal cell-derived factor-1(SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 107(46), 1089-1096 (2010).
90.Polyak, K. & Kalluri, R. The role of the microenvironment in Mammary Gland Development and Cancer. Cold Spring Harb Perspect Biol 2(11), a003244 (2010).
91.Sadlonova, A. et al. Identification of molecular distinctions between normal breast-associated fibroblasts and breast cancer-associated fibroblasts. Cancer Microenviron 2(1), 9-21 (2009).
92.Sappino, A.P., Skalli, O., Jackson, B., Schurch, W. & Gabbiani, G. Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer 41(5), 707-712 (1988).
93.Tarin, D. Fine structure of murine mammary tumours: the relationship between epithelium and connective tissue in neoplasms induced by various agents Br J Cancer 23(2), 417-425 (1969).
94.Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R.A. Myofibroblasts and mechano-regulation of connective tissue remodeling. Nat Rev Mol Cell Biol 3(5), 349-363 (2002).
95.Thiery J.P. et al. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rew Cell Bio 7(2), 131-142 (2006).
96.Oda, T. et al. Cell proliferation, apoptosis, angiogenesis and growth rate of incidentally found renal cell carcinoma. Int J Vrol 10(1), 13-18 (2003).
97.Casey, T. et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat 114(1), 47-62 (2009).
98.Ma, X.J., Dahiya, S., Richardson, E., Erlander, M. & Sgroi, D.C. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11(1), R7 (2009).
99.Rozenchan, P.B. et al. Reciprocal changes in gene expression profiles of cocultured breast epithelial cells and primary fibroblasts. Int J Cancer 125(12), 2767-2777 (2009).
100.Su, G., Blaine, S.A., Qiao, D. & Friedl, A. Shedding of syndecan-1 by stromal fibroblasts stimulates human breast cancer cell proliferation via FGF-2 activation. J Biol Chem 282(20), 14906-14915 (2007).
101.Camps, J.L. et al. Fibroblasts-mediated acceleration of human epithelial tumor growth in vivo. Proc Natl Acad Sci USA 87(1), 75-79 (1990).
102.Noel, A. et al. Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts. Br J Cancer 68(5), 909-915 (1993).
103.Huang, M., Li, Y., Zhang, H. & Nan, F. Breast cancer stromal fibroblasts promote the generation of CD44+CD24- cells through SDF-1/CXCR4 interaction. J Exp Clin Cancer Res 29, 80 (2010).
104.Bachelder, R.E., Wendt, M.A. & Mercurio, A.M. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62(24), 7203-7206 (2002).
105.Pinto, M.P. et al. Vascular endothelial growth factor secreted by activated stroma enhances angiogenesis and hormone-independent growth of estrogen receptor-positive breast cancer. Cancer Res 70(7), 2655-2664 (2010).
106.Matsumoto, K. & Nakamura, T. Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer 119(3), 477-483 (2006).
107.Tyan, S.W. et al. Breast cancer cells induce cancer-asociated fibroblasts to secrete hepatocyte growth factor to enhance breast tumorigenesis. PLoS One 6(1), e15313 (2011).
108.Kuperwasser, C. et al. Reconstruction of functionally normal and malignant human breast tissue in mice. Proc Natl Acad Sci USA 101(14), 4966-4971 (2004).
109.Wu, M. et al. Dissecting gentic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice. Proc Natl Acad Sci USA 106(17), 7022-7027 (2009).
110.Kessenbrock, K., Plaks, V., Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1), 52-67 (2010).
111.Stuelten, C.H. et al. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 118(Pt 10), 2143-2153 (2005).
112.Nabeshima, K., Inoue, T., Shimao, Y. & Sameshima, T. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int 52(4), 255-264 (2002).
113.Wang, T.N., Albo, D. & Tuszynski, G.P. Fibroblasts promote breast cancer cell invasion by upregulating tumor matrix metalloproteinase-9 production. Surgery 132(2), 220-225 (2002).
114.Hu, M. et al. Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc Natl Acad Sci USA 106(9), 3372-3377 (2009).
115.Lynch C.C. & Matrisian L.M. Matrix metalloproteinases in tumor-host cell communication. Differentiation 70(9-10), 561-573 (2002).
116.Basset, P. et al. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348(6303), 699-704 (1990).
117.Masson, R. et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 140(6), 1535-1541 (1998).
118.Friedl, A. Proteoglycans: master modulators of paracrine fibroblast-carcinoma cell interactions. Semin Cell Dev Biol 21(1), 66-71 (2009).
119.Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68, 729-777 (1999).
120.Maeda, T., Desouk, Y.J. & Friedl, A. Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25(9), 1408-1412 (2006).
121.Teicher, B.A. & Fricker, S.P. CXCL12(SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16(11), 2927-2931 (2010).
122.Soll, D.R. The use of computers in understanding how animal cells crawl. Int Rev Cytol 163, 43-104 (1995).
123.Small, J.V., Stradal, T., Vignal, E. & Rottner, K. The lamellipodium: where motility begins. Trends Cell Biol 12(3), 112-120 (2002).
124.Cotran, R.S., Kumar, V. & Robbins, S.L. Pathological Basis of Cancer. WB Saunders Company, Philadelphia.
125.Polyak, K. Breast cancer: origins and evolution. J Clin Invest 117(11), 3155-3163 (2007).
126.Onitilo, A.A., Engel, M., Greenlee, R.T. & Mukesh, B.N. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinic-pathologic features and survival. Clin Med Res 7(1-2), 4-13 (2009).
127.Giuliano, A.E. et al. Preoperative breast MRI in the surgical treatment of ductal carcinoma in situ. Breast J 18(2), 151-156 (2012).
128.Esterva, F.J. & Hortobagyi, G.N. Can early response assessment guide neoadjuvant chemotherapy in early-stage breast cancer? J Natl Cancer Inst 100(8), 521-523 (2008).
129.Oakman, C., Santarpia, L. & Di-Leo, A. Breast cancer assessment tools and optimizing adjuvant therapy. Nat Rev Clin Oncol 7(12), 725-732 (2010).
130.Haffty, B.G. et al. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24(36), 5652-5657 (2006).
131.Lee, H.Z. et al. Photodynamic activity of aloe-emodin induces resensitivation of lung cancer cells to anoikis. Eur J Pharmacol 648(1-3), 50-58 (2010).


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top