跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/18 11:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王德雄
研究生(外文):De-Xiong Wang
論文名稱:利用微流體系統製備包埋蝦紅素油心之褐藻膠微膠囊
論文名稱(外文):Microencapsulation of oil-core contain astaxanthin in alginate matrix by microfluidic system
指導教授:蔡碩文蔡碩文引用關係
口試委員:蔣育錚陳睿能
口試日期:2012-07-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:82
中文關鍵詞:微流體蝦紅素液滴微流體晶片
外文關鍵詞:microfluidicastaxanthindropletmicrofluidic chip
相關次數:
  • 被引用被引用:1
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
微膠囊技術泛指將目標物質包埋在粒徑從1 μm到幾百 μm之間的微小球體之技術,其功能主要在保護目標物質並維持其生物活性,可運用於具生物活性的物質及藥物,例如動植物色素、維生素、胜肽及酵素等等。可依包覆材質特性,在適當時機與位置釋出目標心材達控制或連續釋放效果。
本研究結合軟微影技術與流體力學原理設計微流體系統以製備微膠囊。使用SU-8光阻以微影製程依設計製作微結構模板,再利用polydimethylsiloxane(PDMS)材料翻模製作液滴微通道,搭配玻璃基板與連續動力供應系統完成新開發之微流體液滴平台。本研究製備液滴的十字形微流體通道寬0.8 mm度、深66 μm。動力系統使3%(w/v)褐藻酸溶液及含3%(w/w)醋酸鈣微粒葵花油溶液分別經旁側通道及中間通道注入主通道,在主通道內,外側流體(褐藻酸溶液)夾擠中間流體(葵花油)在線性流(laminar flow)模式及剪切效應(flow focusing)下形成水包油的液滴。液滴形成後懸浮於葵花油中的醋酸鈣微粒會擴散至外側水相褐藻酸溶液中並溶解釋放出鈣離子,誘導褐藻酸發生凝膠現象包覆液滴中心油相形成油心微膠囊。控制微流體系統中不同相流體的流速可以調整形成液滴的粒徑大小,當設定中央通道油相流體流速為0.02 ml/min,旁側通道水相流體流速為1 ml/min時,主通道中形成液滴的平均粒徑為41.98 μm,粒徑分佈最小值13.46μm、最大值61.08 μm;當中央通道流速不變,旁側通道流速降至0.6 ml/min,形成液滴的平均粒徑為193.77 μm,粒徑分佈最小值為61.07 μm,最大值為276.97 μm。可見當固定中央通道流速,旁側通道流速越快則形成之液滴粒徑越小。未來可利用提升旁側通道流體流速或縮小通道寬度,挑戰製備粒徑更小的奈米膠囊。使用含蝦紅素葵花油製備油心褐藻膠微膠囊,可製備成約含0.14%蝦紅素褐藻膠油心微膠囊。
新開發之微膠囊製備平台可搭配不同心材與壁材,量產高品質微膠囊,並運用於微膠囊研究及商業用途上。具能連續式量產、粒徑分佈穩定、粒徑可調整、加工方式溫和、能即時監控生產過程等優勢。未來可利用晶片複製技術平行並聯增加產能或更進一步整合於其他微流體系統中,進行動力學或生化反應之相關研究。


Microencapsulation is a technology to embed particle into a microsphere which size ranging from 1 μm to several hundred μm. It can be used to protect and maintain the biological activity of the target material and widely adopted to embed plant or animal pigments, vitamins, peptides and enzymes etc.. The core target can be controlled to release precisely at appropriate time and environment or continuously by delicate coating material design.
Soft lithography and the hydromechanics are integrated in this research to design a microfluidic system for preparing the microcapsules. Microstructure template was fabricated by SU-8 photoresist and lithography process. Polydimethylsiloxane (PDMS) was used for replicating the patterned microstructure and subsequently bonded with glass substrate. The packaged microchip was connected to a continuous fluidic supply system to accomplish a novel microencapsulating platform. The major component of this system is a cross shape microchannel with 0.8 mm width and 66 μm depth. 3% (w/v) alginiate solution and 3% (w/w) calcium acetate in sunflower oil was introduced into the main channel from both side channel and the center channel respectively. In the main channel, the outer fluid (alginate) squeeze the inner fluid (sunflower oil) formed serious oil-in-water droplets according to the laminar flow mode and flow focusing principle. While the droplets formed, the calcium acetate particles suspended in sunflower oil diffuse to the outer aqueous phase and ionized to release of calcium ions which induced gelation of alginate and encapsulated oil droplets. The size of droplets generated by this microfluidic system can be adjusted by carefully control of the flow rate.
When the inner oil phase is set as 0.02 ml/min and the outer water phase is set as 1 ml/min, the formed droplet size was ranged from 61.08 μm (maximum) to 13.46 μm (minimum) and presented an average diameter of 41.98 μm. When the rate of the inner oil phase was maintained constant and the outer water phase was reduced to 0.6 ml/min, the formed droplet was ranged from 276.97 μm (maximum) to 61.07 μm (minimum) and presented an average diameter of 193.77 μm. It can be concluded that the droplet size was reciprocal to the flow rate of outer channel when the flow rate of the inner channel is fixed. This result encourages the future challenge of preparing smaller particles in nano scale by the strategy of increasing the outer fluid flow rate or reducing the channel dimension. The oily core microcapsule with 0.14% astaxanthin was prepared by this developed platform.
Developed microencapsulation platform can be further adopted with various combination of core and wall material to produce high quality microcapsule for researches and commercial applications. The novel system shows advantages on the continuous production, stable particle size distribution, adjustable particle size, processing in mild condition, and is capable to real-time monitoring the production process. Further application can be toward on parallel connection of replicated microfluidic system for increasing productivity or be further integrated with other microfluidic components for dynamics and biochemical reaction study as lab on a chip.


目次
謝誌……………………………………………………………………….……i
中文摘要…………………………………………………………………….…ii
英文摘要……………………………………………………………………….iii
目次……………………………………………………………………….……iv
表目錄……………………………………………………………….…………viii
圖目錄………………………………………………………………….………ix
第1章 前言 1
1.1 緒論 1
1.2 褐藻膠 1
1.2.1 褐藻酸簡介 1
1.2.2 褐藻酸的化學性質 2
1.3 ,微膠囊 4
1.3.1 微膠囊簡介 4
1.3.2 微膠囊材料 4
1.4 蝦紅素 5
1.4.1 蝦紅素簡介 5
1.5 微膠囊製備方法 6
1.5.1.1 噴霧乾燥(spray drying) 7
1.5.1.2 擠壓法(extrusion) 7
1.5.1.3 流動床包覆(fluid bed coating) 8
1.5.1.4 噴霧冷卻(spray chilling and spray cooling) 9
1.5.1.5 旋轉盤法(spinning disk) 9
1.5.1.6 錯合凝聚法(complex coacervation) 9
1.5.1.7 微脂體法(liposome) 10
1.6 生物晶片 10
1.6.1 生物晶片簡介 10
1.6.2 微流體生物晶片簡介 11
1.6.3 微流體晶片產生液滴簡介 12
1.6.4 以褐藻膠包埋蝦紅素製備微膠囊策略 13
第2章 材料與方法 17
2.1 實驗設計與流程 17
2.2 實驗材料 18
2.2.1 實驗藥品 18
2.2.2 實驗設備 18
2.3 實驗方法 21
2.3.1 微流體晶片製作 21
2.3.1.1 光罩製作 21
2.3.1.2 軟微影技術 23
2.3.1.3 PDMS與基板黏著技術 24
2.3.2 油相中水相液滴形成(oil in water) 25
2.3.2.1 油相中純水水相液滴形成 25
2.3.2.2 油相中褐藻酸鈉溶液水相液滴形成 26
2.3.3 水相中核心油相液滴形成(water in oil) 26
2.3.3.1 水相中油滴生形機制 26
2.3.3.2 疏水性PDMS微流體晶片行親水性表面修飾 26
2.3.4 水相中核心油相液滴製備(primary product) 28
2.3.4.1 蠕動幫浦流速穩定策略 28
2.3.4.2 核心油相液滴製備 31
2.3.4.3 液滴粒徑分析 33
2.3.4.4 蝦紅素含量標準曲線 33
2.3.4.5 含蝦紅素核心油相液滴包埋率測定 34
2.3.5 含蝦紅素之油心微膠囊製備(second product) 34
2.3.5.1 含蝦紅素核心油相液滴製備 34
2.3.5.2 核心油相液滴冷凍乾燥 34
2.3.5.3 含蝦紅素油心微膠囊壁材強化 35
2.3.5.4 微膠囊蝦紅素含量測定 36
第3章 結果與討論 37
3.1 微流體晶片製作 37
3.1.1 光罩製作 37
3.1.2 軟微影技術 37
3.1.3 PDMS與基板黏著技術 37
3.2 油相中水相液滴形成 41
3.2.1 油相中純水水相液滴形成 41
3.2.2 油相中褐藻酸鈉溶液水相液滴形成 45
3.3 水相中核心油相液滴形成 47
3.3.1 水相中油滴生形機制 47
3.3.2 疏水性PDMS微流體晶片行親水性表面修飾 49
3.4 水相中核心油相液滴製備(primary product) 51
3.4.1 蠕動幫浦流速穩定策略 51
3.4.2 核心油相液滴製備 53
3.4.3 液滴粒徑分析 61
3.4.4 蝦紅素含量標準曲線製作 65
3.4.5 含蝦紅素核心油相液滴包埋率測定 67
3.5 含蝦紅素油心微膠囊製備(second product) 68
3.5.1 含蝦紅素核心油相液滴製備 68
3.5.2 核心油相液滴冷凍乾燥 70
3.5.3 含蝦紅素油心微膠囊壁材強化 73
3.5.4 微膠囊蝦紅素含量測試 76
第4章 結論與未來展望 77
第5章 參考文獻 78



1.Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Progress in Polymer Science, 2012. 37(1): p. 106-126.
2.Ren, P.-W., et al., Monodisperse alginate microcapsules with oil core generated from a microfluidic device. Journal of colloid and interface science, 2010. 343(1): p. 392-395.
3.Ju, H.K., S.Y. Kim, and Y.M. Lee, pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer, 2001. 42(16): p. 6851-6857.
4.Gombotz, W.R. and S. Wee, Protein release from alginate matrices. Advanced Drug Delivery Reviews, 1998. 31(3): p. 267-285.
5.George, M. and T.E. Abraham, Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan — a review. Journal of Controlled Release, 2006. 114(1): p. 1-14.
6.Leick, S., et al., Deformation of liquid-filled calcium alginate capsules in a spinning drop apparatus. Physical Chemistry Chemical Physics, 2010. 12(12): p. 2950-2958.
7.Simpson, N.E., et al., The role of the CaCl2–guluronic acid interaction on alginate encapsulated βTC3 cells. Biomaterials, 2004. 25(13): p. 2603-2610.
8.Dubey, R., T.C. Shami, and K.U.B. Rao, Microencapsulation technology and applications. Defence Science Journal, 2009. 59(1).
9.Champagne, C.P. and P. Fustier, Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 2007. 18(2): p. 184-190.
10.P.Venkatesan, R.Manavalan, and K.Valliappan, Microencapsulation: a vital technique in novel drug delivery system. Journal of Pharmaceutical Sciences and Research, 2009. 1(4): p. 9.
11.Chen, C.-S., et al., Properties of astaxanthin/Ca2+ complex formation in the deceleration of Cis/Trans isomerization. Organic letters, 2007. 9(16): p. 2985-2988.
12.Ohgami, K., et al., Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Investigative Ophthalmology & Visual Science, 2003. 44(6): p. 2694-2701.
13.Lorenz, R.T. and G.R. Cysewski, commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 2000. 18(4): p. 160-167.
14.Synnove, L.-J., Basic Carotenoid Chemistry, in Carotenoids in Health and Disease2004, CRC Press. p. 1-30.
15.Higuera-Ciapara, I., L. Felix-Valenzuela, and F. Goycoolea, Astaxanthin: a review of its chemistry and applications. Critical Reviews in Food Science & Nutrition, 2006. 46(2): p. 185-196.
16.Atalay, Y.T., et al., Microfluidic analytical systems for food analysis. Trends in Food Science & Technology, 2011. 22(7): p. 386-404.
17.Sebastien, G., Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science & Technology, 2004. 15(7–8): p. 330-347.
18.Patel, R.P., M.P. Patel, and A.M. Suthar, Spray drying technology: an overview. Indian Journal of Science and Technology, 2009. 2(10): p. 4.
19.Gharsallaoui, A., et al., Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 2007. 40(9): p. 1107-1121.
20.Patel R. P., P.M.P., and Suthar A. M. , Spray drying technology: an overview. Indian Journal of Science and Technology, 2009. 2(10): p. 44.
21.Yuliani, S., et al., Application of microencapsulated flavor to extrusion product. Food Reviews International, 2004. 20(2): p. 163-185.
22.Desai, K.G.H. and H. Jin Park, Recent developments in microencapsulation of food Ingredients. Drying Technology, 2005. 23(7): p. 1361-1394.
23.Barbosa-Canovas, G.V., et al., Encapsulation processes food powders, 2005, Springer US. p. 199-219.
24.Teunou, E. and D. Poncelet, Batch and continuous fluid bed coating – review and state of the art. Journal of Food Engineering, 2002. 53(4): p. 325-340.
25.Karlsson, S., et al., Measurement of the particle movement in the fountain region of a Wurster type bed. Powder Technology, 2006. 165(1): p. 22-29.
26.KuShaari, K., et al., Monte Carlo simulations to determine coating uniformity in a Wurster fluidized bed coating process. Powder Technology, 2006. 166(2): p. 81-90.
27.Zuidam, N.J. and E. Heinrich, Encapsulation of aroma encapsulation technologies for active food ingredients and food processing, N.J. Zuidam and V. Nedovic, Editors. 2010, Springer New York. p. 127-160.
28.Wilson, N., Shah, and N. P., Microencapsulation of vitamins. ASEAN Food Journal, 2007. 14 (1): p. 14.
29.Augustin, M.A. and L. Sanguansri, Encapsulation of bioactives food materials science, J.M. Aguilera and P.J. Lillford, Editors. 2008, Springer New York. p. 577-601.
30.Risch Sara, J., Encapsulation: Overview of Uses and Techniques, in Encapsulation and Controlled Release of Food Ingredients1995, American Chemical Society. p. 2-7.
31.Dubey Rama, S.T.C.a.B.R.K.U., Microencapsulation technology and applications. Defence Science Journal, 2009. 59(1): p. 82.
32.Beindorff, C.M. and N.J. Zuidam, Microencapsulation of fish oil encapsulation technologies for active food ingredients and Food Processing, N.J. Zuidam and V. Nedovic, Editors. 2010, Springer New York. p. 161-185.
33.Quintanilla-Carvajal, M., et al., Nanoencapsulation: a new trend in food engineering processing. Food Engineering Reviews, 2010. 2(1): p. 39-50.
34.Meesters, G.M.H., Encapsulation of Enzymes and peptides encapsulation technologies for active food ingredients and food Processing, N.J. Zuidam and V. Nedovic, Editors. 2010, Springer New York. p. 253-268.
35.Ichiki, T., et al., Plasma applications for biochip technology. Thin Solid Films, 2003. 435(1–2): p. 62-68.
36.Xu, J., et al., Research and applications of biochip technologies. Chinese Science Bulletin, 2000. 45(2): p. 101-108.
37.Berkowski, K.L., et al., Introduction to photolithography: preparation of microscale polymer silhouettes. Journal of Chemical Education, 2005. 82(9): p. 1365.
38.Xia, Y. and G.M. Whitesides, Soft lithography. Angewandte Chemie International Edition, 1998. 37(5): p. 550-575.
39.Yang, C.-G., Z.-R. Xu, and J.-H. Wang, Manipulation of droplets in microfluidic systems. TrAC Trends in Analytical Chemistry, 2010. 29(2): p. 141-157.
40.Skurtys, O. and J. Aguilera, Applications of microfluidic devices in food engineering. Food Biophysics, 2008. 3(1): p. 1-15.
41.Liu, H. and Y. Zhang, Droplet formation in microfluidic cross-junctions. Physics of Fluids, 2011. 23(8): p. 082101.
42.Tan, Y.-C., V. Cristini, and A.P. Lee, Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sensors and Actuators B: Chemical, 2006. 114(1): p. 350-356.
43.Zhang, H., et al., Microfluidic production of biopolymer microcapsules with controlled morphology. Journal of the American Chemical Society, 2006. 128(37): p. 12205-12210.
44.Pan, X., et al., Sequential microfluidic droplet processing for rapid DNA extraction. Electrophoresis, 2011. 32(23): p. 3399-3405.
45.Mazutis, L., et al., Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Analytical chemistry, 2009. 81(12): p. 4813-4821.
46.Brouzes, E., et al., Droplet microfluidic technology for single-cell high-throughput screening. Proceedings of the National Academy of Sciences, 2009. 106(34): p. 14195-14200.
47.Konry, T., et al., Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosensors and Bioelectronics, 2011. 26(5): p. 2707-2710.
48.Koster, S., et al., Drop-based microfluidic devices for encapsulation of single cells. Lab on a chip, 2008. 8(7): p. 1110-1115.
49.Joensson, H.N., et al., Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets. Angewandte Chemie, 2009. 121(14): p. 2556-2559.
50.Mazutis, L., et al., Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Lab on a chip, 2009. 9(20): p. 2902-2908.
51.Wu, N., et al., A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract. Lab on a chip, 2009. 9(23): p. 3391-3398.
52.Li, L. and R.F. Ismagilov, Protein crystallization using microfluidic technologies based on valves, droplets, and slipchip. Annual Review of Biophysics, 2010. 39(1): p. 139-158.
53.Lombardi, D. and P.S. Dittrich, Droplet microfluidics with magnetic beads: a new tool to investigate drug-protein interactions. Analytical & Bioanalytical Chemistry, 2011. 399(1): p. 347-352.
54.Wang, F. and M. Burns, Performance of nanoliter-sized droplet-based microfluidic PCR. Biomed Microdevices, 2009. 11(5): p. 1071-1080.
55.Xuefei LengThese authors contributed equally to this, w., et al., Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR. Lab on a Chip - Miniaturisation for Chemistry & Biology, 2010. 10(22): p. 2841-2843.
56.Pekin, D., et al., Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab on a Chip, 2011. 11(13): p. 2156-2166.
57.Hill, J.W., Clean laboratory glassware. Journal of Chemical Education, 1983. 60(4): p. 304.
58.Joye, C.D., et al., Microfabrication of fine electron beam tunnels using UV-LIGA and embedded polymer monofilaments for vacuum electron devices. Journal of Micromechanics and Microengineering, 2012. 22(1): p. 015010.
59.Chen, W., R.H.W. Lam, and J. Fu, Photolithographic surface micromachining of polydimethylsiloxane (PDMS). Lab on a Chip, 2012. 12(2): p. 391-395.
60.Ng, J.M.K., et al., Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophresis, 2002. 23(20): p. 3461-3473.
61.Makamba, H., et al., Surface modification of poly(dimethylsiloxane) microchannels. Electrophresis, 2003. 24(21): p. 3607-3619.
62.Hjerten, S., High-performance Electrophoresis : elimination of electroendosmosis and solute adsorption. Journal of Chromatography A, 1985. 347(0): p. 191-198.
63.Mahkam, M. and L. Vakhshouri, Colon-specific drug delivery behavior of ph-responsive pmaa/perlite composite. International Journal of Molecular Sciences, 2010. 11(4): p. 1546-1556.
64.Hwang, C.M., et al., Benchtop fabrication of PDMS microstructures by an unconventional photolithographic method. Biofabrication, 2010. 2(4): p. 045001.
65.Rao, A.R., R. Sarada, and G.A. Ravishankar, Stabilization of astaxanthin in edible oils and its use as an antioxidant. Journal of the Science of Food and Agriculture, 2007. 87(6): p. 957-965.
66.Chae, S.-K., et al., Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase. Lab on a Chip, 2009. 9(13): p. 1957-1961.
67.Pu, J., J.D. Bankston, and S. Sathivel, Developing microencapsulated flaxseed oil containing shrimp (Litopenaeus setiferus) astaxanthin using a pilot scale spray dryer. Biosystems Engineering, 2011. 108(2): p. 121-132.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊