跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/28 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張文欣
研究生(外文):Wen-Hsin Chang
論文名稱:應用變性梯度度膠體電泳探討肉雞消化道乳酸桿菌相之變化
論文名稱(外文):Monitoring the Lactobacillus population in broiler gastrointestinal tract by Denaturing Gradient Gel Electrophoresis
指導教授:余碧余碧引用關係
指導教授(外文):Bi Yu
口試委員:陳奕伸李滋泰
口試日期:2012-01-18
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:肉雞變性梯度膠體電泳菌相
外文關鍵詞:broilerPolymerase Chain Reaction- Denaturing Gradient Gel Electrophoresismicroflora
相關次數:
  • 被引用被引用:1
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
動物腸道菌相為健康的指標,其易受到宿主年齡及飼糧組成等因子所影響,而菌相組成、菌數的改變及菌種的分類在微生物學的研究已有許多方法可以量化及質化。在環境微生物相的研究上常採用PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis)電泳技術,以一種較簡便及巨觀的方式探討環境中主要菌群的組成及改變。因此,本研究目的為(1)建立腸道中乳酸桿菌相變化之PCR-DGGE電泳條件,(2)使用此技術監測年齡改變及益生菌對肉雞消化道中乳酸桿菌相之影響。結果顯示,雞隻腸道內容物樣品選用乳酸桿菌專一性引子對(LabtufGC及LabtufR),經巢式PCR (nested PCR)擴增並純化後,於含10%丙烯醯胺且變性梯度為35-47.5%之膠體,在60℃下以80V進行16小時之電泳後經銀染方式進行染色,可獲得條帶分離效果較佳及解析度較高之電泳圖譜。而初生雛口服三天乳酸桿菌液後犧牲並蒐集消化道內容物進行PCR-DGGE,在嗉囊及迴腸內容物DGGE圖譜上均可檢測到對照組未出現之乳酸桿菌條帶,顯示PCR-DGGE技術於探討家禽消化道乳酸桿菌相之變化有一定的可行性。進一步於雞隻飼糧中添加乳酸桿菌粉,於不同日齡犧牲後蒐集消化道內容物進行PCR-DGGE電泳,結果顯示,雞隻隨著年齡增長,迴腸內容物DGGE圖譜上條帶數目隨著日齡增加逐漸減少,乳酸桿菌種歧異度(Shannon’s index)亦隨之降低,於1日齡時為3.262,至35日齡時降低為2.237,但在盲腸反之,隨年齡增長則乳酸桿菌相歧異度增加,由1日齡之2.753至35日齡時提高為3.738。另外,由相似度指數結果可得知,不同消化道部位乳酸桿菌的發育程度均有所不同,嗉囊在1日齡以後菌相趨於穩定,而迴腸菌相則在7日齡後較無改變,至於盲腸部分菌相隨年齡增長改變,至採樣後期(35日齡)仍持續變化。另外,添加益生菌不會影響嗉囊中乳酸桿菌的種數,但可能提高菌種間的均勻度。益生菌可增加21日齡時盲腸乳酸桿菌條帶數,進而提升菌相歧異度之效果。益生菌和抗生素對促進宿主生長性狀之機制不完全相同,抗生素主要藉由減少腸道中互相競爭之細菌種類,降低腸道菌相之歧異度而達到減少能量浪費之作用,而給予益生菌處理可提高嗉囊及迴腸乳酸桿菌相之歧異度,藉由有益菌的均勻度增加,使消化道菌相趨於正相平衡,進一步達到促進生長之效果。綜上所述,PCR-DGGE技術可應用於動物腸道乳酸桿菌相之監測,未來可配合分子選殖技術進一步判定圖譜條帶所代表之菌種,並藉由不同引子對的組合,更清楚的了解腸道中複雜菌相的改變。

An understanding of the dynamics of bacterial community structure in the chicken intestine is essential for selection of diets for optimal nutrition, effective treatment of enteric pathogens, and the development of competitive exclusion products. The microbial diversity, count of bacteria and classification of bacteria in microbiology are many ways to quantitative and qualitative. It’s used in research on PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis), that a more convenient way to explore the changes in the composition of flora. In the present study, establishing the optimal condition of PCR-DGGE, and investigate the transition of the bacterial community structure and the predominant bacteria in the intestine of chicks from hatching to 5 wk of age or diet supplement antibiotic and probiotic were investigated using PCR-DGGE and phylogenetic analysis. The results demonstrated that samples of intestinal contents used lactobacillus-specific primers (LabtufGC / LabtufR), by nested PCR amplification and purification, with 10% acrylamide and denaturing gradient of 35-47.5% of the gel, in order to 80V at 60 ℃ for 16 hours after electrophoresis were stained by the silver staining method, obtain a better separation bands and higher resolution of DGGE profile. Newborn chicks after oral lactobacillus broth three days, digestive tract contents collected for PCR-DGGE, the crop and ileal contents in the DGGE patterns can be detected the bands of lactic acid bacteria that not appear in the control group. With age, the bands number of ileal contents DGGE profiles were decreased, and the biodiversity of Lactobacillus species (Shannon''s index) also decreases. However, the opposite in the cecum, the biodiversity of Lactobacillus species were increase with age. Index of similarity results that the development of lactic acid bacteria were different on disparity parts of the gastrointestinal tract. Crop microflora stabilized after 1-day-old, and ileum microflora in no change after 7 days, as cecal microflora changes due to age, to the late sampling (35 days) continued to vary. Probiotics and antibiotics to promote growth performent of the host mechanisms are not identical, that antibiotics to decrease intestinal bacterial species and reducing the biodiversity of intestinal microflora and to reduce energy waste, the probiotic can improve the biodiversity of lactobacillus on crop and ileum, and the digestive tract microflora to become positive equilibrium, and further to improve the growth performent. Application of PCR-DGGE to monitor the changes of Lactobacillus population in gastrointestinal tract of broiler is feasible. The species of Lactobacillus can be determined by PCR-DGGE combine with molecular cloning technique in the further study.

目次
第一章、 文獻探討…………………………………………………………1
壹、 消化道生態系簡介…………………………………………………1
一、 動物消化道微生物組成…………………………………………1
二、 消化道微生物與宿主之關係……………………………………5
三、 影響消化道微生物之因素………………………………………7
貳、 消化道微生物相研究方法…………………………………………9
一、 傳統培養法………………………………………………………11
二、 分子遺傳法………………………………………………………12
參、 變性梯度膠體電泳(DGGE)……………………………………18
一、 DGGE之原理……………………………………………………18
二、 DGGE於複雜微生物相分析之應用……………………………20
第二章、 肉雞消化道乳酸桿菌相PCR-DGGE條件建立與應用……21
壹、 前言…………………………………………………………………21
貳、 材料與方法…………………………………………………………21
一、 材料………………………………………………………………21
二、 試驗設計…………………………………………………………24
參、 結果…………………………………………………………………27
一、 引子專一性評估…………………………………………………27
二、 膠體染色方法……………………………………………………28
三、 巢式PCR及PCR產物純化……………………………………29
四、 變性梯度區間、電壓及電泳時間………………………………31
五、 利用PCR-DGGE追蹤肉雞消化道中菌群變化之可行性………34
肆、 討論…………………………………………………………………35

第三章、 年齡及益生菌對肉雞消化道乳酸桿菌相之影響…………38
壹、 前言…………………………………………………………………38
貳、 材料與方法…………………………………………………………38
一、 材料……………………………………………………………….38
二、 試驗方法………………………………………………………..39
三、 測定項目及分析方法…………………………………………..39
四、 統計分析…………………………………………………………40
參、 結果………………………………………………………………….41
一、 年齡對肉雞消化道乳酸桿菌相之影響…………………………41
(一) 以平板培養法計算消化道乳酸菌及大腸桿菌群菌數……41
(二) 以DGGE探討年齡對肉雞消化道乳酸桿菌相之影響………43
二、 益生菌對肉雞消化道乳酸桿菌相之影響………………………53
(一) 以平板培養法計算消化道乳酸菌及大腸桿菌群菌數……53
(二) 以DGGE探討年齡對肉雞消化道乳酸桿菌相之影響…………56
肆、 討論……………………………………………………………..….60
一、 年齡對肉雞消化道乳酸桿菌相之影響…………………………60
二、 益生菌對肉雞消化道乳酸桿菌相之影響………………………64
第四章、 參考文獻………………..……………………………………….66

表目次
表 1. 肉雞迴腸及盲腸菌相16S rDNA序列分析結果………………………4
表2. 影響胃腸道菌相之因子…………………………...……………………7
表 3. 目前用於檢測複雜微生物之研究方法…………….…………………10
表 4. 變性膠體溶液…...…………………………………………………….23
表 5. 年齡變化對肉雞腸道乳酸菌、大腸桿菌群菌數及兩者比值之影響42
表 6. 不同年齡雞隻飼糧中添加益生菌或抗生素之消化道乳酸桿菌相DGGE圖譜條帶數…………………….………………………………………44
表 7. 不同年齡雞隻飼糧中添加益生菌或抗生素之消化道乳酸桿菌相歧異度指數………………………………..…………………………………45
表 8. 混合型益生菌及抗生素對肉雞嗉囊乳酸菌、大腸桿菌群菌數及兩者比值之影響………………………………………………………………53
表 9. 混合型益生菌及抗生素對肉雞迴腸乳酸菌、大腸桿菌群菌數及兩者比值之影響…………..……………………………………………………54
表 10. 混合型益生菌及抗生素對肉雞盲腸乳酸菌、大腸桿菌群菌數及兩者比值之影響……...………………………………………………………55

圖目次
圖1. 以16S rDNA定序技術分析肉雞迴腸及盲腸菌相組成…………………3
圖2 . 宿主及細菌對碳水化合物利用之概述…………………………………6
圖3. 應用rRNA定序方法之免培養技術探討微生物群落組成……………12
圖4. 已定義菌門及準菌門之可培養比例……………………………………13
圖5. 垂直型DGGE電泳原理…………………………………………………19
圖6. 垂直(A)及水平式(B)變性梯度膠體電泳………………………19
圖7. 變性梯度膠體電泳設備…………………………………………………21
圖 8. LabtufGC/LabtufR引子組專一性試驗之電泳圖………………………27
圖9. 染色方法對腸道內容物乳酸桿菌相分析之影響……………………28
圖10. 不同PCR方法對腸道內容物乳酸桿菌相分析之影響………………29
圖11. PCR產物純化與否對腸道內容物乳酸桿菌相分析之影響……………30
圖12.變性梯度區間對腸道內容物乳酸桿菌相分析之影響…………………31
圖13.電壓及電泳時間對腸道內容物乳酸菌相分析之影響…………………32
圖14.電壓及電泳時間對腸道內容物乳酸桿菌相分析之影響………………33
圖15. 應用PCR-DGGE分析雞隻口服乳酸桿菌液後腸道乳酸桿菌相變化34
圖16. 不同年齡雞隻飼糧中添加益生菌或抗生素之嗉囊乳酸桿菌相PCR-DGGE圖譜………………………………………………………46
圖16(續). 不同年齡雞隻飼糧中添加益生菌或抗生素之嗉囊乳酸桿菌相PCR-DGGE圖譜………………………………………………………47
圖17. 不同年齡雞隻飼糧中添加益生菌或抗生素之迴腸乳酸桿菌相PCR-DGGE圖譜………………………………………………………48
圖17(續). 不同年齡雞隻飼糧中添加益生菌或抗生素之迴腸乳酸桿菌相PCR-DGGE圖譜………………………………………………………49
圖18. 不同年齡雞隻飼糧中添加益生菌或抗生素之盲腸乳酸桿菌相PCR-DGGE圖譜………………………………………………………50
圖18(續). 不同年齡雞隻飼糧中添加益生菌或抗生素之盲腸乳酸桿菌相PCR-DGGE圖譜………………………………………………………51
圖19. 不同年齡雞隻嗉囊(A)、迴腸(B)及盲腸(C)乳酸桿菌相相似度指數UPGMA歸群樹狀圖………………………………………………52


圖20. 不同年齡雞隻飼糧中添加益生菌或抗生素之嗉囊乳酸桿菌相相似度指數UPGMA歸群樹狀圖………………………………………………57
圖21. 不同年齡雞隻飼糧中添加益生菌或抗生素之迴腸乳酸桿菌相相似度指數UPGMA歸群樹狀圖………………………………………………58
圖22. 不同年齡雞隻飼糧中添加益生菌或抗生素之盲腸乳酸桿菌相相似度指數UPGMA歸群樹狀圖………………………………………………59


陳信志。2008。應用聚合酶連鎖反應-變性梯度膠體電泳法檢測與鑑定乳酸桿菌、葡萄球菌與環脂酸芽孢桿菌。博士論文。國立中興大學食品暨應用生物科技學系。台中。
Ba ̈ ckhed, F., R. E. Ley, J. L. Sonnenburg, D. A. Peterson, and J. I. Gordon. 2005. Host-bacterial mutualism in the human intestine. Science. 307:1915-1920.
Barbara T., K. Wonerow, and K. Paschke. 1999. DGGE is more sensitive for the detection of somatic point mutations than direct sequencing. BioTechniques. 27:266-268.
Barbosa T. M., and S. B. Levy. 2000. The impact of antibiotic use on resistance development and persistence. Drug resistance updates. 3:303-311.
Barnes E. M., G. C. Mead, D. A. Barnum, and E. G. Harry. 1972. The intestinal flora of the chicken in the period 2 to 6 weeks of age, with particular reference to the anaerobic bacteria. Br. Poult. Sci. 13:311-326.
Barnes, E. M. 1979. The intestinal microflora of poultry and game birds during life and after storage. J. Appl. Bacteriol. 46:407-419.
Bengmark, S. 1998. Probiotics and prebiotics in prevention and treatment of gastrointestinal diseases. Gastroenterol Int. 11: 4-7.
Bernet-Camard, M. F., V. Lievin, D. Brassart, J. R. Nesser, A. L. Servin, and S. Hudault. 1997. The human Lactobacillus acidophilus LA1 secretes a nonbacteriocin antibacterial substances active in vitro and in vivo. Appl. Environ. Microbiol. 63:2747-2753.
Bjerrum, L., R. M. Engberg, T. D. Leser, B. B. Jensen, K. Finster, and K. Pedersen. 2006. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poult. Sci. 85:1151-1164.
Cebra, J. J. 1999. Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69:1046S-1051S.
Coconnier, M. H., V. Lievin, M. F. B. Camard, S. Hudault, and A. L. Servin. 1997. Antibacteriaal effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrobal. Agents and Chemotherapy. 5:1046-1052.
Collier, C. T., M. R. Smiricky-Tjardes, D. M. Albin, J. E. Wubben, V. M. Gabert, B. Deplancke, D. Bane, D. B. Anderson and H. R. Gaskins. 2003. Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters. J. Anim. Sci. 81:3035-3045.
Cummings, J. H., and G. T. Macfarlane. 1991. A review: the control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70:443-459.
Cummings, J. H., J. G. Banwell, H. N. Englyst, N. Coleman, I. Segal, and D. Bersohn. 1990. The amount and composition of large bowel contents. Gastroenterol. 98:408.
Dahiya, R. S., and L. Speck. 1968. Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus. J. Dairy Sci. 51:1568-1572.
Decuypere, C. J., Van Nevel, N., Dierick, K., and Molly, K. 2002. The influence of Lentinus edodes (Shiitake mushroom) preparations on bacteriological and morphological aspects of the small intestine in piglets. Reprod. Nutr. Dev. 42:S18.
Dorman, H. J., and S. G. Deans. 2000. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88:308-316.
Edwards, J. E., N. R. McEwan, A. J. Travis, and R. J. Wallace. 2004. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA Genes. Antonie van Leeuwenhoek. 86:263-281.
Ewing, W. N., and D. J. A. Cole. 1994. The use of antibiotics. Pages 75-89 in The living gut. Redwood. Books, Trowbridge, Wiltshire. England.
Felske, A., B. Engelen, U. Nübel, and H. Backhaus. 1996. Direct ribosomal isolation from soil to extract bacterial rRNA for community analysis. Appl. Environ. Microbiol. 62:4162-4167.
Francisco, G., and J. Malagelada. 2003. Gut flora in health and disease. Lancet. 361:512-519.
Fuller, R. 1973. Ecological studies on the Lactobacillus flora associated with the crop epithelium of the fowl. J. Appl. Bacteriol. 36:131-139.
Gabriela, F. D., A. S. Rosado, L. Seldin, W. de Araujo, and J. D. van Elsas. 2001. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization gene. Appl. Environ. Microbiol. 67:1052-1062.
Gaskins, H. R. 2001. Intestinal bacteria and their influence on swine growth. Pages 585-608 in A. J. Lewis and L. L. Southern, eds. Swine nutrition. 2nd ed. CRC Press, Boca Raton, FL.
Giovannoni, S. J., T. B. Britschgi, C. L. Moyer, and K. G. Field. 1990. Genetic diversity in Sargasso Sea bacterio plankton. Nature. 345:60-63.
Gong, J., R. J. Forster, H. Yu, J. R. Chambers, P. M. Sabour, R. Wheatcroft, and S. Chen. 2002a. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Micro. Biol. Lett. 208:1-7.
Gong, J., R. J. Forster, Yu H, J. R. Chambers, R. Wheatcroft, P. M. Sabour, and S. Chen. 2002b. Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. FEMS Microbiol. Ecol. 41:171-179.
Gong, J., W. Si, R. J. Forster, R. Huang, H. Yu, Y. Yin, C. Yang, and Y. Han. 2007. 16S rRNAgene-based analysis of mucosa-associated bacterial communityand phylogeny in the chicken gastrointestinal tracts: fromcrops to ceca. FEMS Microbiol. Ecol. 59:147-157.
Gordon, J. J., E. Zumstein, P. Dabert, F. Habouzit, and R. Moletta. 1997. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63:2802-2813.
Guarner, F., and J. Malagelada. 2003. Gut flora in health and disease. Lancet. 361:512-519.
Hallin, S., and P. E. Lindgren. 1999. PCR detection of genes encoding nitrite reductase in denitrifying bacteria”. Appl. Environ. Microbiol. 65:1652-1657.
Harmsen, H. J., A. C. Wildeboer-Veloo, G. C. Raangs, A. A. Wagendorp, N. Klijn, J. G. Bindels, and G. W. Welling. 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30:61-7.
Hawrelak, J. A., and S. P. Myers. 2004. The causes of intestinal dysbiosis: A review. Altern. Med. Rev. 9:180-197.
Heuer, H., and K. Smalla. 1997. Application of denaturing gradient gel electrophoresis and temperature gradient gel elecphoresis for studying soil microbial communities. Pages 353-373 in Elsas JD van, Trevors JT, Wellungton EMH (eds) Modern soil microbiology. Dekker, New York.
Holzapfel, W. H., P. Haberer, J. Snel, U. Schillinger, and V. J. H. Huis. 1998. Overview of gut flora and probiotics. Int. J. Food Microbiol. 41:85-101.
Hooper, L. V., and J. I. Gordon. 2001. Commensal host-bacterial relationships in the gut. Science. 292:1114-1118.
Hungate, R. E. 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14:1-49.
Jaccard, P. 1908. Nouvelles recerches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44:223-270.
Janczyk, P., I. Halle, G. Freyer, and W. B. Souffrant. 2009. Effect of microalgae Chlorella vulgaris on laying hen performance. Arch. Zootec. 12:5-13.
Janssen, P. H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA Genes. Appl. Environ. Microbiol. 72(3):1719.
Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin. 1996. Influence of dried Bacillus subtilis and Lactobacilli culture on intestinal microflora and performance in broilers. Asian-Australas. J. Anim. Sci. 9:397-404.
Karaoglu, M., and H. Durdag. 2005. The influence of dietary probiotic (Saccharomyces cerevisiae) supplementation and different slaughter age on the performance, slaughter and carcass properties of broilers. Poult. Sci. 5:309-316.
Kim, G. B., Y. M. Seo, C. H. Kim, and I. K. Paik. 2011. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult. Sci. 90:75-82.
Knarreborg, A., M. A. Simon, R. M. Engberg, B. B. Jensen, and G. W. Tannock. 2002. Effects of dietary fat source and subtherapeutic levels of antibioticon the bacterial community in the ileum of broiler chickens at various ages. Appl. Environ. Microbiol. 68(12):5918-5924.
Kociubinski, G., P. Perez, M. Anon, and G. De Antoni. 1996. Amethod of screening of highly inhibitory lactic acid bacteria. J. Food Prot. 59:1-8.
Kovach, W. L. 1999. MVSP-Multi-Variate Statistical Package for window, version 3.1. Kovach Computing Services, Pentraeth, Wales, UK.
Lan Y., B. A. Williams, M. W. A. Verstegen, R. Patterson, and S. Tamminga. 2007. Soy oligosaccharides in vitro fermentation characteristics and its effect on caecal microorganisms of young broiler chickens. Anim. Feed Sci. Technol. 133:286-297.
Langendijk, P. S., F. Schut, G. J. Jansen, G. C. Raangs, G. R. Kamphuis, M. H. F. Wilkinson, and G. W. Welling. 1995. Quantitative fluorescence in-situ hybridization of Bifidobacterium spp with genus-specific 16S ribosomal-rRNA-targeted probes and its application in fecal samples. Appl. Environ. Microbiol. 61:3069-3075.
Langhout, D. J., J. B. Schutte, and J. de Jong. 1998. Interaction between nutrition, the intestinal microflora and the health status of broiler chicks. Proceeding of 10th European Poultry Conference, Isreal. pp. 425-429.
La-ongkhum O, N. Pungsungvorn, N. Amornthewaphat, and S. Nitisinprasert. 2011. Effect of the antibiotic avilamycin on the structure of the microbial community in the jejunal intestinal tract of broiler chickens. Poult. Sci. 90(7):1532-1538.
Leeson, S., and J. D. Summers. 1991. Feeding broiler breeders. In:Commercial Poultry Nutrition. University Books, Guilph, ON, Canada.
Leser, T. D., J. Z. Amenuvor, T. K. Jensen, R. H. Lindecrona, M. Boye, and K. Møller. 2002. Culture-Independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68(2):673-690.
Lesher, S., H. E. Jr Wallbury, and G. A. Sacher. 1964. Generation cycle in the duodenal crypt cells of germ-free and conventional mice. Nature. 202:884-886.
Levy, S. B. 2002. The antibiotic paradox, How the misuse of antibiotics destroy their curative powers 2nd ed. Perseus Publishing New York, N Y.
Lu, J., U. Idris, B. Harmon, C. Hofacre, J. J. Maurer, and M. D. Lee. 2003. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microbiol. 69(11):6816-6824.
Lukow, T., P. F. Dunfield, and W. Liesack. 2000. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol. Ecol. 32(3):241-247.
Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2(3)323-327.
McCracken, V. J., and H. R. Gaskins. 1999. Probiotics and the immune system. Pages 85-111 in G. W. Tannock (Ed.), Probiotics: A Critical Review. Wymondham: Horizon Scientific Press.
McPherson M. J., P. Quirke, and G. R. Taylor. 1991. PCR a practicle approach. Oxford University Press, New York. p.253.
Mead, G. C. 1989. Microbes of the avian cecum: types present and substrates utilized. J. Exp. Zool. 3:48-54.
Meslin, J. C., N. Fontaine, and C. Andrieux. 1999. Variation of mucin distribution in the rat intestine, caecum and colon: effect of the bacterial flora. Comp. Biochem. Physiol. 123:235-239.
Mitsuoka, T. 1996. Intestinal flora and human health. Asia Pacific J. Clin. Nutr. 5:2-9.
Montesi, A., R. Garcı′a-Albiach, M. J. Pozuelo, C. Pintado, I. Gon˜i, and R. Rotger. 2005. Molecular and microbiological analysis of caecal microbiota in rats fed with diets supplemented either with prebiotics or probiotics. Int. J. Food Microbiol. 98:281-289.
Mosenthin, R., and B. Zimmermann. 2000. Probiotics and prebiotics in pig nutrition—Alternatives for antibiotics? Pages 29-50 in Selected Topics in Animal Nutrition, Biochemistry and Physiology, R. Mosenthin, ed. University of Alberta, Edmonton, Alberta, Canada.
Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ. Microbiol. 59(3):695-700.
Naidu, A. S., W. R. Bidlack, and R. A. Clemens. 1999. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 39:13-126.
Ouwehand, A. C., E. Isolauri, P. V. Kirjavainen, and S. J. Salminen. 1999. Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups. FEMS Microbiol. Lett. 172:61-64.
Pace, N. R. 1996. New perspectives on the natural microbial world: molecular microbial ecology. ASM news. 62:463-470.
Reyes, F. L., D. B. Oerther, M. F. Reyes, M. Hernandez, and L. Raskin. 1998. Characterization of filamentous foaming in activated sludge systems using oligonucleotide hybridization probes and antibody probes. Water Sci. Technol. 37:485-493.
Roediger, W. E. W. 1994. Famine, fiber, fatty acids, and failed colonic absorption: does fiber fermentation ameliorate diarrhea. J. Parenter. Enteral Nutr. 18:4-8.
Rotimi, V. O., and B. I. Duerden. 1981. The development of the bacterial-flora in normal neonates. J. Med. Microbiol. 14:51-62.
Santegoeds, C. M., L. R. Damgaard, G. Hesselink, J. Zopfi, P. Lens, G. Muyzer, and D. de Beer. 1999. Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses. Appl. Environ. Microbiol. 65(10):4618-4629.
Sarah J. M., J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spil. Appl. Environ. Microbiol. 65:3566-3574.
SAS. 1999. SAS/STAT User’s Guide. Version 8.01. SAS Institute Inc., Cary, NC.
Savage, D. C. 1977. Microbial ecology of the gastrointestinal tract. Ann. Rev. Microbiol. 31:107-133.
Savage, D. C. 1986. Gastrointestinal microflora in mammalian nutrition. Ann. Rev. Nutr. 6:155-178.
Schloss, P. D., and J. Handelsman. 2004. Status of the microbial census. Microbiol. Mol. Biol. Rev. 68:686-691.
Schwieger, F., and C. T. Christoph. 1998. Approach to utilize PCR–single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl. Environ. Microbiol. 64(12):4870-4876.
Shannon, C. E. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27:379-423.
Sigler, W. V., C. Miniaci, and J. Zeyer. 2004. Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment of bacterial community structure. J. Microbiol. Methods. 57:17-22.
Smalla, K., G. Wieland, A. Buchner, A. Zock, J. Parzy, S. Kaiser, N. Roskot, H. Heuer, and G. Berg. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67:4742-4751.
Snel, J., H. J. M. Harmsen, P. W. J. J. ven de Wielen, and B. A. Williams. 2002. Dietary strategies to influence the gastrointestinal microflora of young animals, and its potential to improve intestinal health, pages 37-69 in BLOK, M.C. (Ed.) Nutrition and health on the gastrointestinal tract. Wageningen Academic Publishers, Wageningen, Netherlands.
Suau, A., R. Bonnet, M. Sutren, J. J. Godon, G. R. Gibson, M. D. Collins, and J. Dore. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65:4799-4807.
Tagg, J. R., Dajani, A. S., and L. W. Wannamaker. 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40:722-756.
Tanikawa, T., N. Shoji, N. Sonohara, S. Saito, Y. Shimura, J. Fukushima, and T. Inamoto. 2011. Aging transition of the bacterial community structure in the chick ceca. Poult. Sci. 90:1004-1008.
Tannock, G. W. 2004. A special fondness for lactobacilli. Appl. Environ. Microbiol. 70:3189-3194.
Van der Waaij, D., B. de Vries, J. M., and J. E. C. Lekkerkerkvan der Wees. 1971. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hygiene. 69:405-411.
Van der Wielen, P. W. J. J., D. A. Keuzenkamp, L. J. A. Lipman, F. van Knapen, and S. Biesterveld, 2002. Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth. Microbial Ecol. 44:286-293.
Walter, J., C. Hertel, G. W. Tannock, C. M. Lis, K. Munro, and W. P. Hammes. 2001. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67:2578-2585.
Whitford, M. F., R. J. Forster, C. E. Beard, J. Gong, and R. M. Teather. 1998. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe. 4:153-163.
Widjojoatmodjo, M. N., A. C. Fluit, and J. Verhoef. 1995. Molecular identification of bacteria by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J. Clin. Microbiol. 33:2601-2606.
Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221-271.
Yeo, J., and K. Kim. 1997. Effect of feeding diets containing an antibiotic, a probiotic, or yucca extract on growth and intestinal urease activity in broiler chicks. Poult. Sci. 76:381-385.
Zhu, X. Y., T. Zhong, Y. Pandya, and R. D. Joerger. 2002. 16S rRNAbased analysis of microbiota from the cecum of broiler chickens. Appl. Environ. Microbiol. 68:124-137.
Zoetendal, E. G., C. T. Collier, S. Koike, R. I. Mackie, and H. R. Gaskins. 2004. Molecular ecological analysis of the gastrointestinal microbiota: a review. J. Nutri. 134(2):465-472.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊