跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/24 06:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳東峰
研究生(外文):Dong-Feng Wu
論文名稱:高分子光纖感測器之研究
論文名稱(外文):A Study on Polymer Optical Fiber Sensor
指導教授:陳勇全陳勇全引用關係
指導教授(外文):Yung-Chuan Chen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:93
中文關鍵詞:高分子光纖丙酮感測器磁場感測器靈敏度
外文關鍵詞:POFmagnetic field sensoracetone sensorsensitivity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要以高分子光纖(POF)作為基礎,來設計製作磁場及丙酮感測器。分析時分成兩部分,一是實驗量測,另一則是利用有限元素模型,來分析探討不同設計參數對感測器靈敏度之影響。有限元素模擬分析,主要是用來輔助說明實驗之結果。POF磁場感測器探討之參數是光纖間距。而POF丙酮感測器,探討之參數則是POF光纖間距及丙酮濃度。結果顯示,光纖間距愈小磁場感測器之靈敏度愈高。當光纖間距為10mm時,其靈敏度為5.37×10-3V/G。而在POF丙酮感測器方面,POF光纖間距愈小其靈敏度愈高,但也會加速感測器受丙酮腐蝕而斷裂。當光纖間距為5 mm時,其靈敏度為0.63μw/sec。
本文同時也利用有限元素電磁模型,來探討感測器放置位置及磁導率對磁場分佈之影響。結果顯示,當磁導率越大或感測器距離磁場產生器越近時,磁場強度就越大。當磁導率固定為19854×10-6 H/m時,感測器距離由6mm降到1mm時,其磁場強度之增加1.14倍。
關鍵字:高分子光纖、丙酮感測器、磁場感測器、靈敏度

In this thesis, a magnetic sensor and an acetone sensor are proposed based on the polymer optical fiber. Both experimental tests and the finite element models are used to explore the effects of different design parameters on the sensitivity of the sensors. The finite element models are used to provide more information for the explanation of the experimental results. The parameter discussed for the magnetic sensor is the space between two fiber ends. The parameters discussed for the acetone sensor are the space between two fiber centers and the concentration of acetone. The results indicate that a smaller fiber space results in a higher sensitivity of the magnetic sensor. The sensitivity is 5.37×10-3 V/G as the fiber space is 10 mm. In addition, the sensitivity of the acetone sensor increases as the space between two fiber centers decreases. However, this will speed up the corrosion and fracture of the acetone sensor. The sensitivity of the acetone sensor is 0.63 μw/sec as the space between two fiber centers is 5 mm.
Meanwhile, an electromagnetic finite element model is used to explore the effects of sensor location and the magnetic permeability of the sensor on the magnetic field distribution. The results show that higher magnetic field is obtained as the magnetic permeability increases or the sensor is located near the magnetic field generator. For a sensor with a magnetic permeability of 19854 × 10-6 H/m, the magnetic field is increased by 1.14 when the distance between the sensor and the magnetic field generator decreases from 6 mm to 1 mm.
Keywords : POF, magnetic field sensor, acetone sensor, sensitivity
目錄
摘 要 ............................................................................................................ I
Abstract ......................................................................................................... II
謝 誌 ......................................................................................................... IV
表目錄 ...................................................................................................... VIII
圖目錄 ......................................................................................................... IX
符號索引................................................................................................... XIV
第1章 緒論 .................................................................................................. 1
1.1 前言 ..................................................................................................... 1
1.2 文獻回顧 .............................................................................................. 2
1.3 組織與章節 .......................................................................................... 4
第2章 理論導引 .......................................................................................... 5
2.1 Snell’s定律 ........................................................................................... 5
2.2 法拉第定律 .......................................................................................... 7
2.3 安培定律 .............................................................................................. 7
2.4 Biot-Savart定律 ................................................................................... 8
第3章 POF磁場感測器 ............................................................................ 10
3.1 感測器設計與製作 ............................................................................ 10
3.2 實驗裝置及設備 ................................................................................ 11
VI
3.3 光纖間距之影響 ................................................................................ 16
3.4 鐵粉磁場感測器光纖間距之影響 ..................................................... 27
3.5 磁場有限元素分析 ............................................................................ 33
3.5.1 有限元素模型 .............................................................................. 33
3.5.2 電磁材料參數 .............................................................................. 35
3.5.3 有限元素模型驗證 ...................................................................... 35
3.5.4 電磁分析結果與討論 .................................................................. 38
第4章 POF丙酮濃度感測器 .................................................................... 48
4.1 感測器設計與製作 ............................................................................ 48
4.2 實驗裝置及設備 ................................................................................ 52
4.3 感測器光纖間距變化對POF功率衰減之影響 ................................ 55
4.4 POF感測器丙酮吸收率實驗分析 ..................................................... 62
4.5 POF有限元素分析 ............................................................................. 65
4.5.1 有限元素模型 .............................................................................. 65
4.5.2 材料參數 ...................................................................................... 65
4.5.3 收斂分析 ...................................................................................... 69
4.5.4 POF不同曲率半徑之變化 ........................................................... 69
第5章 結論 ................................................................................................ 72
參考文獻...................................................................................................... 73

作者簡介...................................................................................................... 77
1. 陳寶全,2004,彎曲變形對高分子光纖功率衰減之探討,碩士論文,國立屏東科技大學,車輛工程系,屏東。
2. 張華均,2006,塑性能密度對高分子光纖功率衰減影響之研究,碩士論文,國立屏東科技大學,車輛工程系,屏東。
3. 石江哲,2007,潛變特性對高分子光纖功率衰減影響之研究,碩士論文,國立屏東科技大學,車輛工程系,屏東。
4. 謝文富,2008,高分子光纖靈敏度之研究與應用,國立屏東科技大學,車輛工程系,屏東。
5. 柯益隆,2008,漸變式高分子光纖功率衰減研究,國立屏東科技大學,車輛工程系,屏東。
6. 黃紹瑋,2009,高分子光纖高溫潛變功率衰減之研究,國立屏東科技大,學車輛工程系,屏東。
7. Wardand, I. M. and Hadley, D. W., 1993, “An Introduction to the Mechanical Properties of Solid Polymers,” New York, John Wiley and Son, pp.55-61,91-97,194-211, 214-244
8. Zubia, J., Arrue, J., and Mendioroz, A., 1997, “Theoretical Analysis of the Torsion-Induce Optical Effect in a Plastic Optical Fiber,” Optical Fiber Technology, 3: 162-167.
9. Zubia, J., and Arrue, J., 2000, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications,” Optical Fiber Technology, 7: 101-140.
10. Arrue, J., Zubia, J., Fuster, G., and Kalymnios, D., 1998, “Light Power Behaviour when Bending Plastic Optical Fiber,” IEE Proceedings: Optoelectronics, 145(6): 313-318.
11. http://www.pofeska.com/pofeskae/tece/homenet1e/homenet1e.htm
12. Eggeler, G., and Wiesner, C., 1993, “A Numerical Study of Parameters Controlling Stress Redistribution in Circular Notched Specimens During Creep,” Journal of Strain Analysis, Vol. 28, pp. 13-22.
13. Ishigure, T., Makino, K., Tanaka, S., and Koike, Y., 2003, High-Bandwidth Graded-Index Polymer Optical Fiber Enabling Power Penalty-Free Gigabit Data Transmission,” Journal of Lightwave Technology, Vol. 21, pp. 2923-2930.
14. Koike, Y., Ishigure, T., and Nihei, E., 1995, “High-Bandwidth Graded-Index Polymer Optical Fiber,” Journal of Lightwave Technology, Vol. 13, pp. 1475-1489.
15. Babchenko, A., and Maryles, J., 2007, “Graded-Index Plastic Optical Fiber for Deformation sensing,” Optical and Lasers in Engineering, 45: 757-760.
16. Kibler, T., Poferl, D., Böck, G., Huber, H. P., and Zeeb, E., 2004, “Optical Data Buses for Automotive Applications,” Journal of Lightwave Technology, 22(9): 2184-2199.
17. Kiesel, S., Van Vickle, P., Peters, K., Abdi, O., Hassan, T., and Kowalsky, M., 2006, “Polymer Optical Fiber Sensors for the Civil Infrastructure,” Smart Structures and Materials, 6174(2): 1-12.
18. Kuang, K. S. C., and Cantwell, W. J., 2003, “The use of Plastic Optical Fiber Aensors for Monitoring the Dynamic Response of Fiber Composite Beams,” Measurement Science and Technology, 14(6): 736-745.
19. Kuang, K. S. C., Kmaluddin, A., Cantwell, W. J., and Thomas, C., 2003, “Crack Detection and Vertical Deflection Monitoring in Concrete Beams using Plastic Optical fiber sensors,” Measurement Science and Technology, 14(2): 205-216.
20. Daum, W., Krauser, J., Zamzow, P. E., and Ziemann, O., 2002, “POF-Polymer Optical Fibers for Data Communication,” Springer, Germany, pp.321-362..
21. Yang Su ,Yong Zhu, Baofu Zhang, Jianhua Li, Yuquan Li., 2011, “Use of the Polarization Properties of Magneto-Optic Fiber Bragg Gratings for Magnetic Field sensing Purposes,” Optical Fiber Technology, 17 :196–200.
22. Orr, P. and Niewczas, P., 2010, “An Optical Fiber System Design Enabling Simultaneous Point Measurement of Magnetic Field Strength and Temperature using Low-Birefringence FBGs,” Sensors and Actuators, A 163 :68–74.
23. Orr, P., Niewczas, P., Michael Stevenson, and John Canning., 2010, Compound Phase-Shifted Fiber Bragg Structures as Intrinsic Magnetic Field Sensors,” Journal of Lightwave Technology, Vol. 28, Issue 18, pp. 2667-2673.
24. Sully M. M. Quintero , Arthur M. B. Braga , Hans I. Weber , Antonio C. Bruno and Jefferson F. D. F., 2010, “A Magnetostrictive Composite-Fiber Bragg Grating Sensor,” Sensors , 10, 8119-8128.
25. Jixiang Dai, Minghong Yang, Xiaobing Li, Hongliang Liu, Xinglin Tong, 2011, “Magnetic Field Sensor Based on Magnetic Fluid Clad Etched Fiber Bragg Grating,” Optical Fiber Technology, 17 :210–213.
26. Djinovic, Z., Tomic, M., Gamauf, C., 2010, “Fiber-Optic Interferometric Sensor of Magnetic Field for Structural Health Monitoring,” Procedia Engineering, 5 :1103–1106.
27. Tanaka, Y., Ogata, M., Nagashima, K., Agawa, H., Matsuura, S., Kumagai, Y., 2010, “Experimental Investigation of Optical Fiber Temperature Sensors at Cryogenic Temperature and in High Magnetic Fields,” Physica C, 470:1890–1894.
28. Radojevic, V., Nedeljkovic, D., Talijan, N., Trifunovic, D., Aleksic, R., 2004, “Optical Fibers with Composite Magnetic Coating for Magnetic Field Sensing,” Journal of Magnetism and Magnetic Materials, 272–276 e1755–e1756.
29. Miroslav Sedlar, Vlastimil Matejec, Ivan Paulicka., 2000, “Optical Fibre Magnetic Field Sensors using Ceramic Magnetostrictive Jackets,” Sensors and Actuators, 84:297–302.
30. Klaus Korena, Günter Mistlberger, Sergey M. Borisov, Ingo Klimant., 2010, “Ferromagnetic and Permanent Magnetic Spheres as Platform Forsingle and Dual-Analyte Optical Sensors,” Procedia Engineering, 5 :997–1000.
31. Ines Latka , Wolfgang Ecke, Bernd Höfer, Tobias Habisreuther, Reinhardt Willsch., 2009, “Fiber-Optic Bragg Gratings as Magnetic Field-Insensitive Strain Sensors for the Surveillance of Cryogenic Devices,” Cryogenics 49:490–496.
32. Heliang Liu, Siu Wing, Hwa Yaw Tam., 2011, “Magnetostrictive Composite–Fiber Bragg Grating (MC–FBG) Magnetic Field Sensor,” Sensors and Actuators A: Physical, In Press, Accepted Manuscript, Available online 12 November.
33. Tassev, V., Diankov, G., Gospodinov, M., 1996, “Doped Sillenite Crystals Applicable for Fiber-Optic Magnetic Sensors,” Optical Materials 6:347-351
34. Rashleigh, S.C., 1981, “Magnetic Field Sensing with a Single-Mode Fiber,” Opt. Lett. 6:19–21.
35. Dandridge, A., Tveten, A.B., Sigel, G.H., West, E.J., Giallorenzi, T.G., 1980, “Optical Fibre Magnetic Field Sensors,” Electron., Lett., 16 .408–409.
36. 李沐臻,2004,使用雙光纖光柵電流感測器之研究,碩士論文,國立清華大學,電機工程學系,新竹。
37. 陳朝陽,1995,小型化的三軸光纖磁力計及其校正,碩士論文,國立中山大學,電機工程系,高雄。
38. 林景鴻,2009,光纖光柵電流感測器之磁場分析,碩士論文,南榮技術學院,工程科技研究所碩士在職專班,台南。
39. 許柏榕,2002,溫度無感之布拉格光纖光柵磁場感測器,碩士論文,國立清華大學,電機工程學系,新竹。
40. http://zh.wikipedia.org/zh-tw/%E9%9B%BB%E5%B0%8E%E7%8E%87
41. http://zh.wikipedia.org/zh-tw/%E7%A3%81%E5%AF%BC%E7%8E%87
42. Vehoff, H., Neumann, P., 1979, “In Situ SEM Experiments Concerning the Mechanism of Ductile Crack Growth,” Acta Metall 27, pp. 915–920

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top