跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/28 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莫辛恩
研究生(外文):Rakesh Singh Moirangthem
論文名稱:A STUDY ON SURFACE PLASMON RESONANCE ELLIPSOMETRY AND ITS APPLICATION IN BIOSENSING: FROM BULK SENSITIVITY TO BIO-MOLECULES DETECTION
論文名稱(外文):表面電漿共振橢圓儀之研究及其在生物檢測之應用:從元件響應到生物分子偵測
指導教授:張亞中張亞中引用關係曾繁根曾繁根引用關係魏培坤
指導教授(外文):Chang, Yia-ChungTseng, Fang-GangWei, Pei-Kuen
口試委員:李超煌鄭郅言
口試日期:2011-10-24
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:140
中文關鍵詞:表面電漿共振橢圓儀生物檢測
外文關鍵詞:SURFACE PLASMON RESONANCE ELLIPSOMETRYBIOSENSING
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
Biosensor based on surface plasmons has attracted a great deal of attention in recent years due to its simple detection system and high sensitivity. Propagating surface plasmon and localized surface plasmons based biosensors have become a central tool for characterizing and quantifying biomolecular interactions. Biomolecular binding and/or unbinding at the active surface of an SPR biosensor is controlled by various mechanisms, and quantitative analysis of the sensor response to interactions between the studied biomolecule (analyte) and the surface bound receptors requires a state of the art technology with multi-functionality .
Here, we present the development of a label free optical biosensor based on a combination of surface plasmon resonance (SPR) and ellipsometry, called SPR ellipsometry. With high precision measurement of ellipsometry having thickness sensitivity down to ∼ 0.1 A and high sensitivity response of the SPR, this optical tool facilitates to detect changes in the effective thickness of analytes and surface bound receptor at very low concentration. Both prism and grating coupling schemes were implemented in this study. Starting with prism coupling scheme, our proposed optical technique was assembled by using a dove prism integrated with a commercially ellipsometry system. Metal film on glass substrate was fixed on the custom made microfluidic flow cell and finally mounted on the top of the long edge of the dove prism. An index matching liquid was used to suppress the unnecessary prism–slide interference due to the air gap. Single axis alignment of the optical components in our optical setup cannot tune the position of the SPR dip thereby limiting its application. Hence, a tunable SPR biochip in wider spectral range is still desired to extend the applications of our proposed technique. This difficulty can be overcome by utilizing the gold nanoparticle immobilized on the metal surface, which helps to modulate of the surface plasmon dispersion relation. In addition, the gold nanoparticles can lead to strong coupling of incident light to plasmon resonances and enhance the sensitivity of the SPR biosensor. In this prospect, the amplified plasmonic response from various distributions of gold nanoparticles coated on top of gold thin film was studied using our proposed optical tool. Based on this study, we found that the surface plasmon resonance dip can be tuned from the visible to near infrared by simply varying the gold nanoparticle concentration. After these investigations were made, our sensor performance was tested through spectroscopic measurements which further help to choose corresponding wavelength with maximum sensitivity. Dynamic measurements at a fixed wavelength (correspond to maximum sensitivity) allow us to monitor the real-time response to the changes in surface properties on a metallic film. Our study is further extended to study biomolecular interactions. By recording the ellipsometry data in terms of relative changes in the ellipsometric parameters, ? and ? as sensor signals we monitor the biomolecular interactions in dynamic and static modes.
Moving on, we explore the possibilities of using gold nanostructure film (instead of thin film) with ellipsometry to design a localized surface plasmon resonance biosensor so called nanoparticle enhanced ellipsometry. Two different gold nanostructure films, one prepared by immobilizing the colloidal gold nanoparticle on glass substrate and another prepared by thermal annealing of gold film were used in this study. The thermal annealed samples show the formation of the gold nano islands film partially embedded in the glass substrate. Based on the bulk sensitivity test, the thermally annealed film gives one order of magnitude higher in the refractive index (RI) sensitivity as compare to the gold thin film. This gold nanostructure films were used in various kinds of biomolecular interaction studies including DNA hybridization, antigen-antibody interaction, protein-cell interaction etc. By combining spectroscopic ellipsometry measurements with theoretical modeling, our proposed technique allows quantitative analysis of the biomolecules such as effective change in thickness, refractive index, porosity, surface mass density etc. when capture on thin film as well as nanostructure film. Through dynamic measurement, we can understand the adsorption time, interaction time, and the dissociation time about the biomolecules under investigation.
In this thesis, we use a grating coupling scheme to combine the SPR with ellipsometry and used ellipsometry phase information as a sensor signal. A facile way of preparing large area of plasmonic nanostructures through soft nanoimprint lithography is presented. This technique significantly reduces the cost of the fabrication and makes it easy to replicate the samples without using expensive tools such as e-beam lithography, focus ion beam etc. Based on the bulk sensitivity test for imprint plasmonic nanostructures using ellipsometry phase signal, we found that the 1D binary metallic grating gives the best refractive index sensitivity which is comparable to that of the nanoparticle enhance ellipsometry. Finally, this biochip is used in studying protein–protein interaction, as a demonstration we dynamically monitor the interaction between bovine serum albumin (BSA) and anti-BSA protein. Thus, we envision that ellipsometry investigations with these highly sensitive sensing platforms can be used in developing a non-destructive, label free, and highly sensitive biosensor with a sub-nanometer resolution in thickness.

Abstract I
Acknowledgements IV
Contents VI
List of Tables VIII
List of Figures IX
List of Publications XIV
Articles XIV
Proceedings and Manuscripts XIV

1. Introduction
1.1 Motivation 1
1.2 Plasmonics towards Bio-Medical Applications 3
1.2.1 Propagating surface plasmon resonance biosensor 5
1.2.2 Localized surface plasmon resonance biosensor 13
1.3 Ellipsometry towards Bio-Medical Applications 20
1.4 Scope of the Thesis 22

2. Basics of Surface Plasmons and Ellipsometry
2.1 Introduction 26
2.2 Theory of Surface Plasmons 27
2.2.1 Physics of Propagating Surface Plasmons 27
2.2.2 Physics of Localized Surface Plasmons 42
2.3 Principles of Ellipsometry 48
2.5 Conclusions 55

3. Studying biomolecular interactions using SPR ellipsometry
3.1 Introduction 56
3.2 Experimental Details 58
3.2.1 Instrumentation 58
3.2.2 Preparation of plasmonic biochip 61
3.2.3 Bulk sensitivity measurement 62
3.2.4 Protein Immobilization and Specific interactions 63
3.3 Results and Discussions 64
3.3.1 Analysis of the bulk sensitivity response 64
3.3.2 Study of tunable SPR plasmonic biochip 67
3.3.3 Study of Biomolecular interactions 70
3.4 Conclusions 77

4. Localized Plasmonic Biosensor Using Gold Nanoparticles Enhanced Ellipsometry
4.1 Introduction 79
4.2 Experimental Techniques 81
4.2.1 Synthesis of colloidal gold nanoparticles 81
4.2.2 Fabrication of embedded gold nanoparticles 84
4.2.3 Immobilization and conjugation of biomolecules 86
4.3 Bulk response of localized plasmonic sensor 88
4.3.1 Gold nanoparticles on transparent substrate 88
4.3.2 Partially embedded gold nanoparticles on transparent substrate 90
4.3.2 Comparisons of the sensor response 95
4.4 Detection of the biomolecular interactions 98
4.5 Conclusions 106

5. Plasmonic Biosensing with Nanoimprint Grating using Ellipsometry
5.1 Introduction 108
5.2 Fabrication of metallic nanostructure 110
5.3 Analysis of the bulk sensitivity 113
5.4 Discussion of 1D binary metallic grating 117
5.5 Biosensing application 120
5.6 Conclusion 121

6. Conclusions and Future works
6.1 Conclusions 122
6.2 Future works 126
6.2.1 Flexible low cost plasmonic biochip 126
6.2.2 Hybrid-plasmonic nanostructure for biosensing application 126
6.2.3Near field enhance imaging ellipsometry in biological studies. 127

Appendix I 129
Bio-conjugation of DNA with Gold nanoparticles 129

Appendix II 130
Effective Medium Approximation 130

Bibliography 134

Vaisocherova, H. and Homola, J., “SPR biosensor for medical diagnostic”, Springer Ser Chem Sens Biosens, 2006,4, 229.
Rini, B., Wadhwa, M., Bird, C., Small, E., Gaines-Das, R., Thorpe, R., Cytokine 2005, 29, 56.
Leng, S.X., McElhaney, J.E., Walston, J.D., Xie, D., Fedarko, N.S., Kuchel, G.A., J Gerontol A Biol Sci Med Sci. 2008, 63, 879.
Benesch, J., Askendal, A., Tengvall, P., Colloids Surf. B: Biointerf. 2000, 18, 71.
Yalow, R.S., Berson, S.A., Nature,1959,184,1648.
He, X., Ding, Y., Li, D., Lin, B., Electrophoresis 2004, 25, 697.
Dostalek, J., Knoll,W., Biointerphases 2008, 3, FD12.
Luppa, P.B., Sokoll, L.J., Chan, D.W., Clin Chim Acta 2001, 314,1.
McGlennen, R.C., Clin Chem. 2001, 47, 393.
Peter, C., Meusel, M., Grawe, F., Katerkamp, A., Cammann, K., Borchers, T., Fresenius J Anal Chem. 2001, 371,120.
Raether, H., Surface plasmons on smooth and rough surfaces and on gratings, Springer (1988).
Anker, J. N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P. Nat. Mater. 2008, 7, 442.
Schuller, J.A. Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., Brongersma, M.L. Nat .Mater. 2010, 9, 193.
Luther, J. M., Jain, P. K., Ewers, T., Alivisatos, A. P. Nat. Mater. 2011,10, 361.
Brongersma, M. L., Kik, P.G., Surface Plasmon Nanophotonics, Springer (2007).
Ozba, E., Science 2006, 311, 189.
Jain, P. K., El-Sayed, I. H., El-Sayed, M. A., Nanotoday 2007, 2, 18.
Nylander, C. Liedberg, B., Lind, T., Sensors and Actuators 1982, 3, 79.
Liedberg, B., Nylander, C., Lundstrom, I., Sensors and Actuators 1983, 4, 299.
www.biacore.com; www.appliedbiosystems.com; http://www.metrohmusa.com; www.ti.com
Willets, K. A., Van Duyne, R. P., Annu. Rev. Phys. Chem. 2007, 58, 267.
Homola, J., Anal Bioanal Chem 2003, 377, 528.
Brockman, J. M., Nelson, B. P., Corn, R. M., Ann Rev Phys Chem. 2000, 51, 41.
Arwin, H., Poksinski, M., Johansen, K., Appl. Opt. 2004, 43, 3028.
Homola, J., Piliarik, M., Springer Ser Chem Sens Biosens 2006, 4, 45.
Whitney, A. V., Elam, J. W., Zou, S., Zinovev, A. V., Stair, P. C., J. Phys. Chem. B 2005,109, 20522.
Haes , A. J., Zou, S., Schatz ,G.C., Van Duyne, R.P., J. Phys. Chem. B 2004,108,109.
Haes, A. J., Van Duyne, R.P., Anal. Bioanal. Chem. 2004, 379, 920.
Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., Nuzzo, R. G., Chem. Rev. 2008, 108, 494.
Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.
Underwood, S., Mulvaney, P., Langmuir 1994, 10, 3427.
Matsumoto, M., Yoshimura, H., Kulkarani, V. S., Nagayama, K., Colloid Polym. Sci.1990, 268, 1174.
Daniel, M. C., Astruc, D., Chem Rev. 2004, 104, 293.
Sonnichsen, C., Reinhard, B. M., Liphardt, J., Alivisatos, A. P., Nature Biotechnol.2005, 23, 741.
Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., Mirkin, C. A., Science 1997, 277, 1078.
Zhao, J., Zhang, X., Yonzon, C. R., Haes, A. J., Van Duyne, R. P., Nanomedicine 2006, 1, 219.
Haes, A. J., Van Duyne, R.P., J. Am. Chem. Soc. 2002, 124, 35,10601.
Malinsky, M. D., Kelly, K. L., Schatz, G. C., Van Duyne, R. P., J. Am. Chem. Soc. 2001, 123, 1471.
Jung, L. S., Campbell, C. T., Chinowsky, T.M., Mar, M. N., Yee, S. S., Langmuir 1998, 14, 5636.
Kedem, O., Tesler, A. B., Vaskevich, A, Rubinstein, I., ACS nano 2011, 5, 2, 748.
Sherry, L. J., Chang, S. H., Schatz, G. C., Van Duyne, R. P., Wiley, B. J., Xia, Y. N., Nano Lett. 2005, 5, 2034
Mayer, K. M., Hafner, J. H., Chem. Rev. 2011, 111, 3828.
Arwin, H., Thin Solid Films 1998, 313, 764.
Arwin, H., Thin Solid Films 2000, 377, 48.
Tengvall, P., Lundstrom, I., Liedberg, B., Biomaterials 1998, 19,407.
Westphal, P., Bornmann, A., Sens. Actuators B Chem. 2002, 84, 278.
Poksinski, M., Arwin, H., Sens. Actuators B Chem. 2003, 94, 247.
Naraoka, R., Kajiawa, K., Sens. Actuators B Chem. 2005,107,952.
He, L., Musick, M. D., Nicewarner, S. R., Salinas, F. G., Benkovic, S. J., Natan, M. J., Keating,C. D., J. Am. Chem. Soc. 2000, 122, 9071.
Lyon, L. A., Musick, M. D., Natan, M. J., Anal. Chem. 1998, 70, 5177.
Jackson, J. D., Classical Electrodynamics 1962 (Wiley).
Brongersma, M. L. and Kik, P. G., Surface Plasmon Nanophotonics 2007 (Springer).
Barnes, W.L., Dereux, A., Ebbesen, T.W., Nature 2003,424,824.
Homola, J., Koudela, I., Yee, S. S., Sens. Actuators B Chem. 1999, 54, 16.
Bohren, C. F., and Huffman, D. R., Absorption and Scattering of Light by Small Particles 1983 (Wiley).
Kittle, C., Introduction to Solid State Physic-8th Edition, 2004,(Wiley).
Azzam, R. M. A., and Bashara, N. M., Ellipsometry and Polarized light 1977(North-Holland, Amsterdam).
Born, M., and Wolf, E., Principles of optics -7th edition 1999, (Cambridge University Press).
Fujiwara, H., Spectroscopic Ellipsometry: Principles and Applications 2007(Wiley).
Nelson, S. G., Johnston, K. S., Yee, S. S., Sens. Actuators B Chem. 1996, 35,187.
Arwin, H., Poksinski, M., Johansen, K., Phys. Stat. Sol. (a) 2008, 205,817.
Aspnes, D. E., Thin Solid Film 1993, 233, 1.
Basa, C., Hu, Y. Z., Irene, E. A., Thin Solid Films 1998, 313, 424.
Nabok, A., Tsargorodskaya, A., Thin Solid Films 2008, 516, 8993.
Poksinski, M., Arwin, H., Opt. Lett. 2007, 32, 1308.
Hsu, W. L., Lee, S. S., Lee, C. K., J. Biomed. Opt. 2009, 14, 024036.
Hooper, I. R., Rooth, M., Sambles, J. R., Biosens. Bioelectron. 2009, 25, 411.
Poksinski, M., Arwin, H., Thin Solid Films 2004, 455, 716.
He, L., Musick, M. D., Nicewarner, S. R., Salinas, F. G., Benkovic, S. J., Natan, M. J. , Keating, C. D., J. Am. Chem. Soc. 2000,122, 9071.
Lyon, L. A., Musick, M. D., Natan, M. J., Anal. Chem.1998, 70, 5177.
Tamada, K., Nakamura, F., Ito, M, Li, M. X., Baba, A., Plasmonics 2007, 2, 185.
Law,W. C., Yong,K. T., Baev,A., Hu,R., Prasad,P. N., Opt. Express 2009,17,19041.
Jung, J., Na, K., Lee, J., Kim, K. W., Hyun, J., Anal. Chim. Acta 2009, 651, 91.
Bolduc, O. R., Live, L. S., Masson, J. F., Talanta 2009, 77, 1680.
Driskell, J. D., Lipert, R. J., Porter, M. D., J. Phys. Chem. B 2006,110, 17444.
Cho, H. M., Chegal, W., Cho, Y.J., Young-pil, K., Hak-sung, K., Proc. of SPIE 2005, 6008, 60081F, 1.
Bruggeman, D. A. G., Annalen der Physik 1935, 416, 636.
Hsu, S. H., Chang, Y. C., Chen, Y. C., Wei, P. K., Kim, Y. D., Optics Exp. 2010, 18, 1310.
Rezwan, K., Meier, L. P., Rezwan, M., Voros, J., Textor, M., Gauckler, L. J., Langmuir 2004, 20, 10055.
de Feijter, J. A., Benjamins, J., Veer, F. A., Biopolymers 1978, 17, 1759–1801.
Su, T. J., Lu, J. R., Thomas, R. K., Cui, Z. F., Penfold, J., J. Phys. Chem. B 1998, 102, 8100.
Jung, Y. W., Yoon, J. J., Kim, Y. D., Woo, D., J. Korean Phys. Soc. 2011, 58,1031.
Cuypers, P.A., Hermens, W. TH., Hemker, H. C., Anal. Biochem.1978, 84, 56-67.
Arwin, H., Applied Spectroscopy 1986, 40, 313.
Watanabe, N., Shirakawa, T., Iwahashi, M., Ohbu, K., Seimiya, T., Colloid and Polymer Sci. 1986,264, 903.
Sperling, R. A., Gil, P. R., Zhang, F., Zanella M., Parak, W. J., Chem. Soc. Rev. 2008, 37, 1896.
Baptista, P., Pereira, E., Eaton, P., Doria, G., Miranda, A., Gomes, I., Quaresma, P., Franco, R., Anal. Bioanal. Chem. 2008, 391, 943.
El-Sayed, I. H., Huang, X., El-Sayed, M. A., Nano Lett. 2005, 5, 829.
Nath, N., Chilkoti, A., Anal. Chem. 2002, 74, 504.
Karvets, V. G., Schedin, F., Kabashin, A. V., Grigorenko, A. N., Opt. Lett. 2010, 35, 956.
Lee, S. W., Lee, K. S., Ahn, J., Lee, J. J., Kim, M. G., Shin, Y. B., ACS Nano 2011, 5, 897.
Okamoto, T., Yamaguchi, I., Kobayashi, T., Opt. Lett. 2000, 25,372.
Miller, M. M., Lazarides, A. A., J. Phys. Chem. B 2005, 109, 21556.
Nath, N., Chilkoti, A., Anal. Chem. 2004, 76, 5370.
Kabashin, A. V., Patskovsky, S., Grigorenko, A. N., Opt. Express 2009, 17, 21191.
Kuo, W. K., Chang, C. H., Opt. Express 2010, 18, 19656.
Data are given in the Table 1.1 and 1.2 of the chapter 1.
Bendikov, T. A. ,Rabinkov, A., Karakouz, T., Vaskevich, A., Rubinstein, I., Anal. Chem. 2008, 80, 7487.
Frens, G., Nature Phys. Sci. 1973, 241, 20.
Karakouz, T., Tesler, A. B., Bendikov, T. A., Vaskevich, A., Rubinstein, I., Adv. Mater. 2008, 20, 3893.
Mirkin, C., A., Letsinger, R., L., Mucic, R., C., Storhoff, J., J., Nature 1996, 382,607.
Jung, L. S., Campbell, C. T., Chinowsky, T. M., Mar, M. N.,Yee, S. S., Langmuir 1998, 14, 5636
Kabashin, A. V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G. A., Atkinson, R., Pollard, R., Podolskiy, V. A., Zayats, A. V., Nat. Mater. 2009, 8, 867.
Hooper, I. R., Sambles, J. R., J. Appl. Phys. 2004, 96, 3004.
Ito, T., Okazaki, S., Nature 2000, 406, 1027.
Araci, I. E., Demir, V., Kropachev, A., Skotheim, T., Norwood, R. A., Peyghambarian, N., App. Phys. Lett. 2010, 97, 041102.
Hashmi, G., Miettunen, K., Peltola, T., Halme, J., Asghar, I., Aitola, K., Toivola, M., Lund, P., Renewable and Sustainable Energy Reviews 2011,15,3717.
Kuo, W. K., Chang, C. H., Opt. Express 2010, 18, 19656.
Byun, K. M., Kim, N. H., Ko, Y. H.,Yu, J. S., Sens. Actuators Chem B 2011, 155,375.
Taton, T. A., Curr Protoc Nucleic Acid Chem. 2002,Chapter 12:Unit 12.2.
Storhoff, J. J., Elghanian, R., Mucic, R. C., Mirkin, C. A., Letsinger, R. L., J. Am. Chem. Soc. 1998, 120, 1959.
Aspnes, D.E., Thin Solid Films 1982, 89,249.
Niklasson, G. A., Granqvist, C. G., Hunderi, O., Appl. Opt. 1981, 20, 26.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top