跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊諺
研究生(外文):Jiun-Yan Huang
論文名稱:草蝦硫醇氧化還原蛋白與蝦白點症病毒極早期表現蛋白IE1蛋白質交互作用之機制研究
論文名稱(外文):Study of the interaction mechanisms between white spot syndrome virus (WSSV) immediate early gene #1 (IE1) and P. monodon thioredoxin
指導教授:郭光雄羅竹芳羅竹芳引用關係
口試委員:張震東蔡孟勳呂健宏王涵青
口試日期:2012-07-20
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:動物學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:102
中文關鍵詞:蝦白點症病毒硫醇氧化還原蛋白
外文關鍵詞:white spot syndrome virusthioredoxin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硫醇氧化還原蛋白為生物內參與許多氧化還原反應之蛋白質,利用硫醇-二硫化物間的轉換提供氫離子及電子以進行氧化還原反應。在本研究中發現到當利用本實驗室所產製的草蝦cDNA微陣列晶片觀測草蝦感染白點症病毒後基因表現量的變化時,發現草蝦硫醇氧化還原蛋白基因的表現量有升高之趨勢,在佐以即時定量核酸聚合酶鏈鎖反應確認此一結果後,接續利用西方點墨法得知在轉譯層次上草蝦硫醇氧化還原蛋白在草蝦感染白點症病毒後其蛋白表現量也有上升的現象,顯示草蝦硫醇氧化還原蛋白在白點症病毒感染草蝦過程中應該有重要的角色。硫醇氧化還原蛋白的目標蛋白通常含有Cys-x-x-Cys motif,故我們對白點症病毒基因進行序列比對,共發現有70個白點症病毒開放轉譯區皆含有此motif,其中一個即是白點症病毒極早期表現基因IE1。硫醇氧化還原蛋白會幫助轉錄因子維持其還原態構型,使轉錄因子保有可以與目標DNA啟動子區域結合的能力,故我們先針對草蝦硫氧化還原蛋白是否會與白點症病毒極早期表現基因IE1有蛋白交互作用進行試驗分析。我們利用體外試驗的His pull down分析法証實當在有硫醇氧化劑Diamide的處理下,草蝦硫醇氧化還原蛋白會與白點症病毒極早期表現基因、同時也是轉錄因子的IE1有蛋白交互作用的產生,並且鑑定出在草蝦硫醇氧化還原蛋白藉由Cys62半胱氨酸與IE1結合。接續以昆蟲細胞株SF9進行共免疫沉澱法的體內試驗當中發現到,當細胞株受到氧化壓力如過氧化氫的處理時,草蝦硫醇氧化還原蛋白會與白點症病毒IE1有蛋白交互作用的現象產生,我們進一步的推測白點症病毒IE1其蛋白活性與功能會受到氧化還原的調控,進而我們利用EMSA証實了當白點症病毒IE1受到硫醇氧化劑Diamide處理過後會喪失與DNA結合的能力,而硫醇還原劑如dithiothreitol與beta-mercaptoethanol 皆可以使其恢復活性、使白點症病毒IE1重獲與DNA結合的能力。進一步我們也證實了IE1蛋白其Cys55、Cys189與Cys192 (CXXC motif) 半胱氨酸對IE1的DNA 結合活性有重要的影響,我們証實了草蝦硫氧化蛋白可以直接幫助白點症病毒的轉錄因子IE1維持或恢復其與DNA結合的能力,而以LC/MS/MS分析法發現氧化壓力指標之一的GSH/GSSG比值在蝦體感染白點症病毒24小時後有上升的趨勢,在感染後48小時會有顯著性的下降;而在Trx基因靜默化的蝦體中,白點症病毒的複製套數以及蝦體感染白點症病毒的死亡率都會有顯著性的下降,本研究結果讓我們對硫氧化蛋白所扮演的功能有更多的了解之外,對於白點症病毒的致病機制與在宿主細胞中生存策略提供不同的視野與新思維。

A shrimp cDNA microarray and immunoblotting were used to confirm that white sopt syndrome virus (WSSV) infection up-regulated expression of the important redox regulator thioredoxin (Trx). WSSV immediate early gene #1 (IE1) was identified as a possible target protein of Trx and selected for further study. In a pull down assay, we found that recombinant Trx bound to IE1 under oxidizing conditions, and a co-immunoprecipitation assay showed that Trx bound to WSSV IE1 when the transfected cells were subjected to oxidative stress. A pull down assay with Trx mutants showed that no IE1 binding occurred when cysteine 62 was replaced by serine. EMSA showed that the DNA binding activity of WSSV IE1 was down-regulated under oxidative conditions, and that PmTrx restored the DNA binding activity of the inactivated, oxidized WSSV IE1. Another EMSA experiment showed that IE1’s Cys-X-X-Cys motif and cysteine residue 55 were necessary for Trx binding. Measurement of the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) in WSSV-infected shrimp showed that oxidative stress was significantly increased at 48 hpi. The biological significance of Trx was also demonstrated in a dsRNA Trx knockdown experiment where suppression of shrimp Trx led to significant decreases in mortality and viral copy numbers. Based on all of these results, we hypothesize that Trx uses the same binding sites and redox control mechanism in vitro and in vivo, and that Trx increase WSSV’s pathogenicity by rescuing IE1’s DNA binding ability in vivo.

誌謝.......................................I
中文摘要...............................II
英文摘要...............................IV
第一章 文獻回顧..................................1
第二章 草蝦硫醇氧化還原蛋白與蝦白點症病毒極早期表現蛋白IE1蛋白質交互作用之機制研究.....................................32
文獻探討...........................................32
研究方法...........................................38
結果..................................................47
討論..................................................57
圖.....................................................69
表.....................................................88
參考文獻............................................94
個人相關著作....................................101
研討會論文.......................................102


第一章參考文獻
1.Aispuro-Hernandez E, Garcia-Orozco KD, Muhlia-Almazan A, Del-Toro-Sanchez L, Robles-Sanchez RM, Hernandez J, Gonzalez-Aguilar G, Yepiz-Plascencia G, Sotelo-Mundo RR. Shrimp thioredoxin is a potent antioxidant protein. Comp Biochem Physiol C Toxicol Pharmacol 148: 94-9, 2008.
2.Alvarez AL, Racotta IS, Arjona O, Palacios E. Salinity stress test as a predictor of survival during growout in Pacific white shrimp (Litopenaeus vannamei). Aquaculture 237: 237-249, 2004.
3.Aslund F, Berndt KD, Holmgren A. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. Journal of Biological Chemistry 272: 30780-30786, 1997.
4.Bacano Maningas MB, Koyama T, Kondo H, Hirono I, Aoki T. A peroxiredoxin from kuruma shrimp, Marsupenaeus japonicus, inhibited by peptidoglycan. Dev Comp Immunol 32: 198-203, 2008.
5.Bagnyukova TV, Storey KB, Lushchak VI. Induction of oxidative stress in Rana ridibunda during recovery from winter hibernation. Journal of Thermal Biology 28: 21-28, 2003.
6.Bardwell JC. Building bridges: disulphide bond formation in the cell. Mol Microbiol 14: 199-205, 1994.
7.Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425: 980-4, 2003.
8.Bordo D, Djinovic K, Bolognesi M. Conserved patterns in the Cu,Zn superoxide dismutase family. J Mol Biol 238: 366-86, 1994.
9.Brouwer M, Brouwer TH, Grater W, Enghild JJ, Thogersen IB. The paradigm that all oxygen-respiring eukaryotes have cytosolic CuZn-superoxide dismutase and that Mn-superoxide dismutase is localized to the mitochondria does not apply to a large group of marine arthropods. Biochemistry 36: 13381-8, 1997.
10.Brouwer M, Hoexum Brouwer T, Grater W, Brown-Peterson N. Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport. Biochem J 374: 219-28, 2003.
11.Cadenas E. Biochemistry of oxygen toxicity. Annu Rev Biochem 58: 79-110, 1989.
12.Campa-Cordova AI, Hernandez-Saavedra NY, Ascencio F. Superoxide dismutase as modulator of immune function in American white shrimp (Litopenaeus vannamei). Comp Biochem Physiol C Toxicol Pharmacol 133: 557-65, 2002.
13.Castille FL, Lawrence AL. The Effect of Salinity on the Osmotic, Sodium and Chloride Concentrations in the Hemolymph of Euryhaline Shrimp of the Genus Penaeus. Comparative Biochemistry and Physiology a-Physiology 68: 75-80, 1981.
14.Chang TC, Chang MJ, Hsueh S. Glutathione concentration and distribution in cervical cancers and adjacent normal tissues. Gynecol Obstet Invest 36: 52-5, 1993.
15.Chen IT, Aoki T, Huang YT, Hirono I, Chen TC, Huang JY, Chang GD, Lo CF, Wang HC. White Spot Syndrome Virus Induces Metabolic Changes Resembling the Warburg Effect in Shrimp Hemocytes in the Early Stage of Infection. Journal of Virology 85: 12919-12928, 2011.
16.Chen LL, Leu JH, Huang CJ, Chou CM, Chen SM, Wang CH, Lo CF, Kou GH. Identification of a nucleocapsid protein (VP35) gene of shrimp white spot syndrome virus and characterization of the motif important for targeting VP35 to the nuclei of transfected insect cells. Virology 293: 44-53, 2002.
17.Cheng W, Chen JC. Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium rosenbergii. Fish & Shellfish Immunology 10: 387-391, 2000.
18.Cheng W, Tung YH, Liu CH, Chen JC. Molecular cloning and characterisation of cytosolic manganese superoxide dismutase (cytMn-SOD) from the giant freshwater prawn Macrobrachium rosenbergii. Fish Shellfish Immunol 20: 438-49, 2006.
19.Chu FF. The Human Glutathione-Peroxidase Genes Gpx2, Gpx3, and Gpx4 Map to Chromosome-14, Chromosome-5, and Chromosome-19, Respectively. Cytogenetics and Cell Genetics 66: 96-98, 1994.
20.Chu FF, Esworthy RS, Ho YS, Bermeister M, Swiderek K, Elliott RW. Expression and chromosomal mapping of mouse Gpx2 gene encoding the gastrointestinal form of glutathione peroxidase, GPX-GI. Biomedical and Environmental Sciences 10: 156-162, 1997.
21.Cotgreave IA, Gerdes R, Schuppe-Koistinen I, Lind C. S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase: role of thiol oxidation and catalysis by glutaredoxin. Methods Enzymol 348: 175-82, 2002.
22.Dizdaroglu M, Gajewski E, Reddy P, Margolis SA. Structure of a Hydroxyl Radical Induced DNA Protein Cross-Link Involving Thymine and Tyrosine in Nucleohistone. Biochemistry 28: 3625-3628, 1989.
23.Dowell FJ, Hamilton CA, McMurray J, Reid JL. Effects of a xanthine oxidase/hypoxanthine free radical and reactive oxygen species generating system on endothelial function in New Zealand white rabbit aortic rings. J Cardiovasc Pharmacol 22: 792-7, 1993.
24.Downs CA, Fauth JE, Woodley CM. Assessing the health of grass shrimp (Palaeomonetes pugio) exposed to natural and anthropogenic stressors: a molecular biomarker system. Mar Biotechnol (NY) 3: 380-97, 2001.
25.Eaton P. Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures. Free Radic Biol Med 40: 1889-99, 2006.
26.Fenton HJH. Oxidation of tartaric acid in presence of iron. J. Chem. Soc., Trans., 65: 899-910, 1894.
27.Fridovich I. Oxygen toxicity: a radical explanation. J Exp Biol 201: 1203-9, 1998.
28.Fujii T, Endo T, Fujii J, Taniguchi N. Differential expression of glutathione reductase and cytosolic glutathione peroxidase, GPX1, in developing rat lungs and kidneys. Free Radical Research 36: 1041-1049, 2002.
29.Garcia-Triana A, Zenteno-Savin T, Peregrino-Uriarte AB, Yepiz-Plascencia G. Hypoxia, reoxygenation and cytosolic manganese superoxide dismutase (cMnSOD) silencing in Litopenaeus vannamei: effects on cMnSOD transcripts, superoxide dismutase activity and superoxide anion production capacity. Dev Comp Immunol 34: 1230-5, 2010.
30.Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nature Reviews Cancer 4: 891-899, 2004.
31.Godeas C, Sandri G, Panfili E. Distribution of Phospholipid Hydroperoxide Glutathione-Peroxidase (Phgpx) in Rat Testis Mitochondria. Biochimica Et Biophysica Acta-Biomembranes 1191: 147-150, 1994.
32.Gomez-Anduro GA, Ascencio-Valle F, Peregrino-Uriarte AB, Campa-Cordova A, Yepiz-Plascencia G. Cytosolic manganese superoxide dismutase genes from the white shrimp Litopenaeus vannamei are differentially expressed in response to lipopolysaccharides, white spot virus and during ontogeny. Comp Biochem Physiol B Biochem Mol Biol 162: 120-5, 2012.
33.Gomez-Anduro GA, Barillas-Mury CV, Peregrino-Uriarte AB, Gupta L, Gollas-Galvan T, Hernandez-Lopez J, Yepiz-Plascencia G. The cytosolic manganese superoxide dismutase from the shrimp Litopenaeus vannamei: molecular cloning and expression. Dev Comp Immunol 30: 893-900, 2006.
34.Goncalves-Soares D, Zanette J, Yunes JS, Yepiz-Plascencia GM, Bainy AC. Expression and activity of glutathione S-transferases and catalase in the shrimp Litopenaeus vannamei inoculated with a toxic Microcystis aeruginosa strain. Marine Environmental Research 75: 54-61, 2012.
35.Gopalakrishna R, Jaken S. Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28: 1349-61, 2000.
36.Green DE. The reduction potentials of cysteine, glutathione and glycylcysteine. Biochem J 27: 678-89, 1933.
37.Green DR, Reed JC. Mitochondria and apoptosis. Science 281: 1309-12, 1998.
38.Greetham D, Vickerstaff J, Shenton D, Perrone GG, Dawes IW, Grant CM. Thioredoxins function as deglutathionylase enzymes in the yeast Saccharomyces cerevisiae. Bmc Biochemistry 11, 2010.
39.Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344: 721-4, 1994.
40.Halliwell B, Gutteridge, J.M.C. . Free radicals in Biology and Medicine. New York: Oxford Univ. Press., 1999.
41.Hill BG, Bhatnagar A. Role of glutathiolation in preservation, restoration and regulation of protein function. IUBMB Life 59: 21-6, 2007.
42.Holmgren A. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem 254: 9627-32, 1979.
43.Huang HT, Leu JH, Huang PY, Chen LL. A putative cell surface receptor for white spot syndrome virus is a member of a transporter superfamily. PLoS ONE 7: e33216, 2012.
44.Huang JY, Liu WJ, Wang HC, Lee DY, Leu JH, Tsai MH, Kang ST, Chen IT, Kou GH, Chang GD, Lo CF. Penaeus monodon Thioredoxin Restores the DNA Binding Activity of Oxidized White Spot Syndrome Virus IE1. Antioxid Redox Signal, 2012.
45.Jakob U, Muse W, Eser M, Bardwell JC. Chaperone activity with a redox switch. Cell 96: 341-52, 1999.
46.Jones DP, Eklow L, Thor H, Orrenius S. Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch Biochem Biophys 210: 505-16, 1981.
47.Jose S, Jayesh P, Sudheer NS, Poulose G, Mohandas A, Philip R, Singh ISB. Lymphoid organ cell culture system from Penaeus monodon (Fabricius) as a platform for white spot syndrome virus and shrimp immune-related gene expression. Journal of Fish Diseases 35: 321-334, 2012.
48.Kang JG, Paget MS, Seok YJ, Hahn MY, Bae JB, Hahn JS, Kleanthous C, Buttner MJ, Roe JH. RsrA, an anti-sigma factor regulated by redox change. EMBO J 18: 4292-8, 1999.
49.Kang ST, Leu JH, Wang HC, Chen LL, Kou GH, Lo CF. Polycistronic mRNAs and internal ribosome entry site elements (IRES) are widely used by white spot syndrome virus (WSSV) structural protein genes. Virology 387: 353-363, 2009.
50.Kanzok SM, Fechner A, Bauer H, Ulschmid JK, Muller HM, Botella-Munoz J, Schneuwly S, Schirmer R, Becker K. Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291: 643-6, 2001.
51.Kirkman HN, Gaetani GF. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci U S A 81: 4343-7, 1984.
52.Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF. Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem 274: 13908-14, 1999.
53.Kiruthiga C, Rajesh S, Rashika V, Priya R, Narayanan RB. Molecular cloning, expression analysis and characterization of peroxiredoxin during WSSV infection in shrimp Fenneropenaeus indicus. J Invertebr Pathol 109: 52-8, 2012.
54.Koharyova M, Kolarova M. Oxidative stress and thioredoxin system. Gen Physiol Biophys 27: 71-84, 2008.
55.Koppenol WH. The Haber-Weiss cycle--70 years later. Redox Rep 6: 229-34, 2001.
56.Kristal BS, Chen J, Yu BP. Sensitivity of mitochondrial transcription to different free radical species. Free Radic Biol Med 16: 323-9, 1994.
57.Kroll JS, Langford PR, Wilks KE, Keil AD. Bacterial [Cu,Zn]-superoxide dismutase: phylogenetically distinct from the eukaryotic enzyme, and not so rare after all! Microbiology 141 ( Pt 9): 2271-9, 1995.
58.Kuppusamy P, Zweier JL. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J Biol Chem 264: 9880-4, 1989.
59.Laurent TC, Moore EC, Reichard P. Enzymatic Synthesis of Deoxyribonucleotides. Iv. Isolation and Characterization of Thioredoxin, the Hydrogen Donor from Escherichia Coli B. J Biol Chem 239: 3436-44, 1964.
60.Le Moullac G, Soyez C, Saulnier D, Ansquer D, Avarre JC, Levy P. Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish & Shellfish Immunology 8: 621-629, 1998.
61.Leichert LI, Jakob U. Protein thiol modifications visualized in vivo. PLoS Biol 2: e333, 2004.
62.Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J 22: 5501-10, 2003.
63.Leu JH, Chen LL, Lin YR, Kou GH, Lo CF. Molecular mechanism of the interactions between white spot syndrome virus anti-apoptosis protein AAP-1 (WSSV449) and shrimp effector caspase. Developmental and Comparative Immunology 34: 1068-1074, 2010.
64.Leu JH, Wang HC, Kou GH, Lo CF. Penaeus monodon caspase is targeted by a white spot syndrome virus anti-apoptosis protein. Developmental and Comparative Immunology 32: 476-486, 2008.
65.Leu JH, Yang F, Zhang X, Xu X, Kou GH, Lo CF. Whispovirus. Curr Top Microbiol Immunol 328: 197-227, 2009.
66.Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32: 790-6, 2002.
67.Lin YC, Lee FF, Wu CL, Chen JC. Molecular cloning and characterization of a cytosolic manganese superoxide dismutase (cytMnSOD) and mitochondrial manganese superoxide dismutase (mtMnSOD) from the kuruma shrimp Marsupenaeus japonicus. Fish Shellfish Immunol 28: 143-50, 2010.
68.Linke K, Jakob U. Not every disulfide lasts forever: disulfide bond formation as a redox switch. Antioxid Redox Signal 5: 425-34, 2003.
69.Liu CH, Tseng MC, Cheng W. Identification and cloning of the antioxidant enzyme, glutathione peroxidase, of white shrimp, Litopenaeus vannamei, and its expression following Vibrio alginolyticus infection. Fish Shellfish Immunol 23: 34-45, 2007.
70.Liu KF, Yeh MS, Kou GH, Cheng W, Lo CF. Identification and cloning of a selenium-dependent glutathione peroxidase from tiger shrimp, Penaeus monodon, and its transcription following pathogen infection and related to the molt stages. Dev Comp Immunol 34: 935-44, 2010.
71.Liu Y, Wang WN, Wang AL, Wang JM, Sun RY. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes. Aquaculture 265: 351-358, 2007.
72.Lo CF, Ho CH, Peng SE, Chen CH, Hsu HC, Chiu YL, Chang CF, Liu KF, Su MS, Wang CH, Kou GH. White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Diseases of Aquatic Organisms 27: 215-225, 1996.
73.Lo CF, Kou GH. Virus-associated white spot syndrome of shrimp in Taiwan: A review. Fish Pathology 33: 365-371, 1998.
74.Malek RL, Sajadi H, Abraham J, Grundy MA, Gerhard GS. The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 138: 363-373, 2004.
75.Margolis SA, Coxon B, Gajewski E, Dizdaroglu M. Structure of a Hydroxyl Radical Induced Cross-Link of Thymine and Tyrosine. Biochemistry 27: 6353-6359, 1988.
76.Martinez-Alvarez RM, Morales AE, Sanz A. Antioxidant defenses in fish: Biotic and abiotic factors. Reviews in Fish Biology and Fisheries 15: 75-88, 2005.
77.Mccord JM, Fridovic.I. Superoxide Dismutase an Enzymic Function for Erythrocuprein (Hemocuprein). Journal of Biological Chemistry 244: 6049-&, 1969.
78.Meyer Y, Buchanan BB, Vignols F, Reichheld JP. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43: 335-67, 2009.
79.Mikulski CM, Burnett LE, Burnett KG. The effects of hypercapnic hypoxia on the survival of shrimp challenged with Vibrio parahaemolyticus. Journal of Shellfish Research 19: 301-311, 2000.
80.Moresino RDH, Helbling EW. Combined Effects of UVR and Temperature on the Survival of Crab Larvae (Zoea I) from Patagonia: The Role of UV-Absorbing Compounds. Marine Drugs 8: 1681-1698, 2010.
81.Munday R. Toxicity of thiols and disulphides: involvement of free-radical species. Free Radic Biol Med 7: 659-73, 1989.
82.Neale TJ, Kerjaschki D, Witztum J, Davis P, Ruger B. Reactive Oxygen Species (Ros) and Lipid-Peroxidation (Lpo) in Proteinuric Experimental Renal-Disease. Kidney International 46: 926-926, 1994.
83.Neves CA, Santos EA, Bainy AC. Reduced superoxide dismutase activity in Palaemonetes argentinus (Decapoda, Palemonidae) infected by Probopyrus ringueleti (Isopoda, Bopyridae). Dis Aquat Organ 39: 155-8, 2000.
84.Niyogi S, Biswas S, Sarker S, Datta AG. Seasonal variation of antioxidant and biotransformation enzymes in barnacle, Balanus balanoides, and their relation with polyaromatic hydrocarbons. Marine Environmental Research 52: 13-26, 2001.
85.Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31: 1287-312, 2001.
86.Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13: 179-91, 2001.
87.Qiu J, Wang WN, Wang LJ, Liu YF, Wang AL. Oxidative stress, DNA damage and osmolality in the Pacific white shrimp, Litopenaeus vannamei exposed to acute low temperature stress. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 154: 36-41, 2011.
88.Qiu L, Ma Z, Jiang S, Wang W, Zhou F, Huang J, Li J, Yang Q. Molecular cloning and mRNA expression of peroxiredoxin gene in black tiger shrimp (Penaeus monodon). Mol Biol Rep 37: 2821-7, 2010.
89.Rainwater R, Parks D, Anderson ME, Tegtmeyer P, Mann K. Role of cysteine residues in regulation of p53 function. Mol Cell Biol 15: 3892-903, 1995.
90.Ren Q, Zhang RR, Zhao XF, Wang JX. A thioredoxin response to the WSSV challenge on the Chinese white shrimp, Fenneropenaeus chinensis. Comp Biochem Physiol C Toxicol Pharmacol 151: 92-8, 2010.
91.Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 3: 1129-34, 2002.
92.Rinalducci S, Murgiano L, Zolla L. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59: 3781-801, 2008.
93.Romantsev FE, Prozorovskii VN, Andrianova LE. [Isolation from Micrococcus sp. n. of a homogeneous heme-containing catalase and a crystalline protein with catalase activity]. Biokhimiia 48: 2023-7, 1983.
94.Roos G, Messens J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med 51: 314-26, 2011.
95.Ruddock LW, Klappa P. Oxidative stress: Protein folding with a novel redox switch. Curr Biol 9: R400-2, 1999.
96.Samocha TM, Guajardo H, Lawrence AL, Castille FL, Speed M, McKee DA, Page KI. A simple stress test for Penaeus vannamei postlarvae. Aquaculture 165: 233-242, 1998.
97.Schwaab V, Faure J, Dufaure JP, Drevet JR. GPx3: The plasma-type glutathione peroxidase is expressed under androgenic control in the mouse epididymis and vas deferens. Molecular Reproduction and Development 51: 362-372, 1998.
98.Sies H. Strategies of antioxidant defense. Eur J Biochem 215: 213-9, 1993.
99.Sies H, Menck CFM. Singlet Oxygen Induced DNA Damage. Mutation Research 275: 367-375, 1992.
100.Sritunyalucksana K, Wannapapho W, Lo CF, Flegel TW. PmRab7 is a VP28-binding protein involved in white spot syndrome virus infection in shrimp. Journal of Virology 80: 10734-10742, 2006.
101.Tavares-Sanchez OL, Gomez-Anduro GA, Felipe-Ortega X, Islas-Osuna MA, Sotelo-Mundo RR, Barillas-Mury C, Yepiz-Plascencia G. Catalase from the white shrimp Penaeus (Litopenaeus) vannamei: molecular cloning and protein detection. Comp Biochem Physiol B Biochem Mol Biol 138: 331-7, 2004.
102.Tsai JM, Wang HC, Leu JH, Hsiao HH, Wang AHJ, Kou GH, Lo CF. Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. Journal of Virology 78: 11360-11370, 2004.
103.Tsai JM, Wang HC, Leu JH, Wang AHJ, Zhuang Y, Walker PJ, Kou GH, Lo CF. Identification of the nucleocapsid, tegument, and envelope proteins of the shrimp white spot syndrome virus virion. Journal of Virology 80: 3021-3029, 2006.
104.Tsai YL, Lin YC, Chou PH, Teng PH, Lee PY. Detection of white spot syndrome virus by polymerase chain reaction performed under insulated isothermal conditions. J Virol Methods 181: 134-7, 2012.
105.Tsuji T, Watanabe Y, Katoh H, Sato K, Kunieda T. Cloning and mapping of the mouse Gpx2 gene encoding gastrointestinal glutathione peroxidase. Journal of Veterinary Medical Science 60: 651-654, 1998.
106.Ursini F, Maiorino M, Brigeliusflohe R, Aumann KD, Roveri A, Schomburg D, Flohe L. Diversity of Glutathione Peroxidases. Biothiols, Pt B 252: 38-53, 1995.
107.Verlecar XN, Jena KB, Chainy GB. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chem Biol Interact 167: 219-26, 2007.
108.Wang CH, Lo CF, Leu JH, Chou CM, Yeh PY, Chou HY, Tung MC, Chang CF, Su MS, Kou GH. Purification and genomic analysis of baculovirus associated with white spot syndrome (WSBV) of Penaeus monodon. Diseases of Aquatic Organisms 23: 239-242, 1995.
109.Wang HC, Ko TP, Lee YM, Leu JH, Ho CH, Huang WP, Lo CF, Wang AH. White spot syndrome virus protein ICP11: A histone-binding DNA mimic that disrupts nucleosome assembly. Proc Natl Acad Sci U S A 105: 20758-63, 2008.
110.Wang HC, Wang HC, Ko TP, Lee YM, Leu JH, Ho CH, Huang WP, Lo CF, Wang AHJ. White spot syndrome virus protein ICP11: A histone-binding DNA mimic that disrupts nucleosome assembly. Proceedings of the National Academy of Sciences of the United States of America 105: 20758-20763, 2008.
111.Wang HC, Wang HC, Leu JH, Kou GH, Wang AHJ, Lo CF. Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Developmental and Comparative Immunology 31: 672-686, 2007.
112.Wang KCHC, Kondo H, Hirono I, Aoki T. The Marsupenaeus japonicus voltage-dependent anion channel (MjVDAC) protein is involved in white spot syndrome virus (WSSV) pathogenesis. Fish & Shellfish Immunology 29: 94-103, 2010.
113.Wang WN, Li BS, Liu JJ, Shi L, Alam MJ, Su SJ, Wu J, Wang L, Wang AL. The respiratory burst activity and expression of catalase in white shrimp, Litopenaeus vannamei, during long-term exposure to pH stress. Ecotoxicology, 2012.
114.Warburg O. On the origin of cancer cells. Science 123: 309-14, 1956.
115.Watthanasurorot A, Jiravanichpaisal P, Soderhall I, Soderhall K. A gC1qR prevents white spot syndrome virus replication in the freshwater crayfish Pacifastacus leniusculus. J Virol 84: 10844-51, 2010.
116.Winterbourn CC, Vissers MC, Kettle AJ. Myeloperoxidase. Curr Opin Hematol 7: 53-8, 2000.
117.Yost FJ, Jr., Fridovich I. An iron-containing superoxide dismutase from Escherichia coli. J Biol Chem 248: 4905-8, 1973.
118.Zenteno-Savin T, Saldierna R, Ahuejote-Sandoval M. Superoxide radical production in response to environmental hypoxia in cultured shrimp. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 142: 301-308, 2006.
119.Zhang Q, Li F, Zhang J, Wang B, Gao H, Huang B, Jiang H, Xiang J. Molecular cloning, expression of a peroxiredoxin gene in Chinese shrimp Fenneropenaeus chinensis and the antioxidant activity of its recombinant protein. Mol Immunol 44: 3501-9, 2007.
120.Zhang Q, Li F, Zhang X, Dong B, Zhang J, Xie Y, Xiang J. cDNA cloning, characterization and expression analysis of the antioxidant enzyme gene, catalase, of Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol 24: 584-91, 2008.
121.Zheng M, Aslund F, Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279: 1718-21, 1998.
122.Zhou J, Wang L, Xin Y, Wang WN, He WY, Wang AL, Liu YA. Effect of temperature on antioxidant enzyme gene expression and stress protein response in white shrimp, Litopenaeus vannamei. Journal of Thermal Biology 35: 284-289, 2010.
123.Zhou J, Wang WN, Wang AL, He WY, Zhou QT, Liu Y, Xu J. Glutathione S-transferase in the white shrimp Litopenaeus vannamei: Characterization and regulation under pH stress. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 150: 224-230, 2009.


第二章參考文獻
1.Ahn BY, Moss B. Glutaredoxin homolog encoded by vaccinia virus is a virion-associated enzyme with thioltransferase and dehydroascorbate reductase activities. Proc Natl Acad Sci U S A 89: 7060-4, 1992.
2.Aispuro-Hernandez E, Garcia-Orozco KD, Muhlia-Almazan A, Del-Toro-Sanchez L, Robles-Sanchez RM, Hernandez J, Gonzalez-Aguilar G, Yepiz-Plascencia G, Sotelo-Mundo RR. Shrimp thioredoxin is a potent antioxidant protein. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 148: 94-99, 2008.
3.Aslund F, Beckwith J. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 96: 751-3, 1999.
4.Bacik JP, Brigley AM, Channon LD, Audette GF, Hazes B. Purification, crystallization and preliminary diffraction studies of an ectromelia virus glutaredoxin. Acta Crystallogr Sect F Struct Biol Cryst Commun 61: 550-2, 2005.
5.Bauer H, Kanzok SM, Schirmer RH. Thioredoxin-2 but not thioredoxin-1 is a substrate of thioredoxin peroxidase-1 from Drosophila melanogaster: isolation and characterization of a second thioredoxin in D. Melanogaster and evidence for distinct biological functions of Trx-1 and Trx-2. J Biol Chem 277: 17457-63, 2002.
6.Casagrande S, Bonetto V, Fratelli M, Gianazza E, Eberini I, Massignan T, Salmona M, Chang G, Holmgren A, Ghezzi P. Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems. Proc Natl Acad Sci U S A 99: 9745-9, 2002.
7.Chen LL, Wang HC, Huang CJ, Peng SE, Chen YG, Lin SJ, Chen WY, Dai CF, Yu HT, Wang CH, Lo CF, Kou GH. Transcriptional analysis of the DNA polymerase gene of shrimp white spot syndrome virus. Virology 301: 136-47, 2002.
8.Darling AJ. The Principal Hydrogen Donor for the Herpes-Simplex Virus Type-1-Encoded Ribonucleotide Reductase in Infected-Cells Is a Cellular Thioredoxin. Journal of General Virology 69: 515-523, 1988.
9.Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y. Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 18: 1905-14, 1999.
10.Fabianek RA, Hennecke H, Thony-Meyer L. Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli. FEMS Microbiol Rev 24: 303-16, 2000.
11.Fitzgerald LA, Zhang Y, Lewis G, Van Etten JL. Characterization of a monothiol glutaredoxin encoded by Chlorella virus PBCV-1. Virus Genes 39: 418-26, 2009.
12.Fraternale A, Paoletti MF, Casabianca A, Nencioni L, Garaci E, Palamara AT, Magnani M. GSH and analogs in antiviral therapy. Mol Aspects Med 30: 99-110, 2009.
13.Fujii S, Nanbu Y, Nonogaki H, Konishi I, Mori T, Masutani H, Yodoi J. Coexpression of adult T-cell leukemia-derived factor, a human thioredoxin homologue, and human papillomavirus DNA in neoplastic cervical squamous epithelium. Cancer 68: 1583-91, 1991.
14.Garcia-Orozco KD, Sanchez-Paz A, Aispuro-Hernandez E, Gomez-Jimenez S, Lopez-Zavala A, Araujo-Bernal S, Muhlia-Almazan A. Gene expression and protein levels of thioredoxin in the gills from the whiteleg shrimp (Litopenaeus vannamei) infected with two different viruses: the WSSV or IHHNV. Fish Shellfish Immunol 32: 1141-7, 2012.
15.Gasdaska JR, Kirkpatrick DL, Montfort W, Kuperus M, Hill SR, Berggren M, Powis G. Oxidative inactivation of thioredoxin as a cellular growth factor and protection by a Cys73-->Ser mutation. Biochem Pharmacol 52: 1741-7, 1996.
16.Gvakharia BO, Koonin EK, Mathews CK. Vaccinia virus G4L gene encodes a second glutaredoxin. Virology 226: 408-11, 1996.
17.Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM, Dimmeler S. Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 4: 743-9, 2002.
18.Han F, Xu J, Zhang X. Characterization of an early gene (wsv477) from shrimp white spot syndrome virus (WSSV). Virus Genes 34: 193-8, 2007.
19.Hashemy SI, Holmgren A. Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues. J Biol Chem 283: 21890-8, 2008.
20.He F, Fenner BJ, Godwin AK, Kwang J. White spot syndrome virus open reading frame 222 encodes a viral E3 ligase and mediates degradation of a host tumor suppressor via ubiquitination. J Virol 80: 3884-92, 2006.
21.He F, Kwang J. Identification and characterization of a new E3 ubiquitin ligase in white spot syndrome virus involved in virus latency. Virol J 5: 151, 2008.
22.Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A 94: 3633-8, 1997.
23.Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, Yodoi J. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 274: 27891-7, 1999.
24.Hogg PJ. Disulfide bonds as switches for protein function. Trends in Biochemical Sciences 28: 210-214, 2003.
25.Holmgren A. Thioredoxin. Annu Rev Biochem 54: 237-71, 1985.
26.Huang C, Zhang X, Lin Q, Xu X, Hu Z, Hew CL. Proteomic analysis of shrimp white spot syndrome viral proteins and characterization of a novel envelope protein VP466. Mol Cell Proteomics 1: 223-31, 2002.
27.Huang JY, Liu WJ, Wang HC, Lee DY, Leu JH, Tsai MH, Kang ST, Chen IT, Kou GH, Chang GD, Lo CF. Penaeus monodon Thioredoxin Restores the DNA Binding Activity of Oxidized White Spot Syndrome Virus IE1. Antioxid Redox Signal, 2012.
28.Huang Y, Domann FE. Redox modulation of AP-2 DNA binding activity in vitro. Biochem Biophys Res Commun 249: 307-12, 1998.
29.Kanzok SM, Fechner A, Bauer H, Ulschmid JK, Muller HM, Botella-Munoz J, Schneuwly S, Schirmer R, Becker K. Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291: 643-6, 2001.
30.Kurooka H, Kato K, Minoguchi S, Takahashi Y, Ikeda J, Habu S, Osawa N, Buchberg AM, Moriwaki K, Shisa H, Honjo T. Cloning and characterization of the nucleoredoxin gene that encodes a novel nuclear protein related to thioredoxin. Genomics 39: 331-9, 1997.
31.Laurent TC, Moore EC, Reichard P. Enzymatic Synthesis of Deoxyribonucleotides. Iv. Isolation and Characterization of Thioredoxin, the Hydrogen Donor from Escherichia Coli B. J Biol Chem 239: 3436-44, 1964.
32.Leu JH, Chang CC, Wu JL, Hsu CW, Hirono I, Aoki T, Juan HF, Lo CF, Kou GH, Huang HC. Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon. BMC Genomics 8, 2007.
33.Leu JH, Chang CC, Wu JL, Hsu CW, Hirono I, Aoki T, Juan HF, Lo CF, Kou GH, Huang HC. Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon. BMC Genomics 8: 120, 2007.
34.Leu JH, Tsai JM, Wang HC, Wang AH, Wang CH, Kou GH, Lo CF. The unique stacked rings in the nucleocapsid of the white spot syndrome virus virion are formed by the major structural protein VP664, the largest viral structural protein ever found. J Virol 79: 140-9, 2005.
35.Leu JH, Yang F, Zhang X, Xu X, Kou GH, Lo CF. Whispovirus. Curr Top Microbiol Immunol 328: 197-227, 2009.
36.Levenson CW, Fitch CA. Effect of altered thyroid hormone status on rat brain ferritin H and ferritin L mRNA during postnatal development. Brain Res Dev Brain Res 119: 105-9, 2000.
37.Li F, Li M, Ke W, Ji Y, Bian X, Yan X. Identification of the immediate-early genes of white spot syndrome virus. Virology 385: 267-74, 2009.
38.Lin F, Huang H, Xu L, Li F, Yang F. Identification of three immediate-early genes of white spot syndrome virus. Arch Virol, 2011.
39.Lin ST, Chang YS, Wang HC, Tzeng HF, Chang ZF, Lin JY, Wang CH, Lo CF, Kou GH. Ribonucleotide reductase of shrimp white spot syndrome virus (WSSV): expression and enzymatic activity in a baculovirus/insect cell system and WSSV-infected shrimp. Virology 304: 282-90, 2002.
40.Liu WJ, Chang YS, Huang WT, Chen IT, Wang KC, Kou GH, Lo CF. Penaeus monodon TATA Box-Binding Protein Interacts with the White Spot Syndrome Virus Transactivator IE1 and Promotes Its Transcriptional Activity. J Virol 85: 6535-47, 2011.
41.Liu WJ, Chang YS, Huang WT, Chen IT, Wang KCHC, Kou GH, Lo CF. Penaeus monodon TATA Box-Binding Protein Interacts with the White Spot Syndrome Virus Transactivator IE1 and Promotes Its Transcriptional Activity. Journal of Virology 85: 6535-6547, 2011.
42.Liu WJ, Chang YS, Wang AH, Kou GH, Lo CF. WSSV has Successfully Annexed a Shrimp STAT To Enhance the Expression of the Immediate Early Gene (ie1). J Virol, 2006.
43.Liu WJ, Chang YS, Wang AH, Kou GH, Lo CF. White spot syndrome virus annexes a shrimp STAT to enhance expression of the immediate-early gene ie1. J Virol 81: 1461-71, 2007.
44.Liu WJ, Chang YS, Wang CH, Kou GH, Lo CF. Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp. Virology 334: 327-41, 2005.
45.Liu WJ, Chang YS, Wang HC, Leu JH, Kou GH, Lo CF. Transactivation, Dimerization, and DNA-Binding Activity of White Spot Syndrome Virus Immediate-Early Protein IE1. Journal of Virology 82: 11362-11373, 2008.
46.Liu WJ, Chang YS, Wang HC, Leu JH, Kou GH, Lo CF. Transactivation, dimerization, and DNA-binding activity of white spot syndrome virus immediate-early protein IE1. J Virol 82: 11362-73, 2008.
47.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-8, 2001.
48.Mai WJ, Wang WN. Protection of blue shrimp (Litopenaeus stylirostris) against the White Spot Syndrome Virus (WSSV) when injected with shrimp lysozyme. Fish Shellfish Immunol 28: 727-33, 2010.
49.Makino Y, Yoshikawa N, Okamoto K, Hirota K, Yodoi J, Makino I, Tanaka H. Direct association with thioredoxin allows redox regulation of glucocorticoid receptor function. J Biol Chem 274: 3182-8, 1999.
50.Masutani H, Hirota K, Sasada T, Ueda-Taniguchi Y, Taniguchi Y, Sono H, Yodoi J. Transactivation of an inducible anti-oxidative stress protein, human thioredoxin by HTLV-I Tax. Immunol Lett 54: 67-71, 1996.
51.Masutani H, Naito M, Takahashi K, Hattori T, Koito A, Takatsuki K, Go T, Nakamura H, Fujii S, Yoshida Y, et al. Dysregulation of adult T-cell leukemia-derived factor (ADF)/thioredoxin in HIV infection: loss of ADF high-producer cells in lymphoid tissues of AIDS patients. AIDS Res Hum Retroviruses 8: 1707-15, 1992.
52.Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 20: 3821-30, 1992.
53.Munro HN, Linder MC. Ferritin: structure, biosynthesis, and role in iron metabolism. Physiol Rev 58: 317-96, 1978.
54.Nakamura H, De Rosa S, Roederer M, Anderson MT, Dubs JG, Yodoi J, Holmgren A, Herzenberg LA. Elevation of plasma thioredoxin levels in HIV-infected individuals. Int Immunol 8: 603-11, 1996.
55.Nilsson O, Tapia O, van Gunsteren WF. Structure and fluctuations of bacteriophage T4 glutaredoxin modelled by molecular dynamics. Biochem Biophys Res Commun 171: 581-8, 1990.
56.Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med 28: 1405-20, 2000.
57.Ren Q, Zhang RR, Zhao XF, Wang JX. A thioredoxin response to the WSSV challenge on the Chinese white shrimp, Fenneropenaeus chinensis. Comp Biochem Physiol C Toxicol Pharmacol 151: 92-8, 2010.
58.Ruan YH, Kuo CM, Lo CF, Lee MH, Lian JL, Hsieh SL. Ferritin administration effectively enhances immunity, physiological responses, and survival of Pacific white shrimp (Litopenaeus vannamei) challenged with white spot syndrome virus. Fish & Shellfish Immunology 28: 542-548, 2010.
59.Sasada T, Nakamura H, Masutani H, Ueda S, Sono H, Takabayashi A, Yodoi J. Thioredoxin-mediated redox control of human T cell lymphotropic virus type I (HTLV-I) gene expression. Mol Immunol 38: 723-32, 2002.
60.Sengupta R, Holmgren A. Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. Antioxid Redox Signal, 2012.
61.Sono H, Teshigawara K, Sasada T, Takagi Y, Nishiyama A, Ohkubo Y, Maeda Y, Tatsumi E, Kanamaru A, Yodoi J. Redox control of Epstein-Barr virus replication by human thioredoxin/ATL-derived factor: differential regulation of lytic and latent infection. Antioxid Redox Signal 1: 155-65, 1999.
62.Spector A, Yan GZ, Huang RR, McDermott MJ, Gascoyne PR, Pigiet V. The effect of H2O2 upon thioredoxin-enriched lens epithelial cells. J Biol Chem 263: 4984-90, 1988.
63.Sumida Y, Nakashima T, Yoh T, Nakajima Y, Ishikawa H, Mitsuyoshi H, Sakamoto Y, Okanoue T, Kashima K, Nakamura H, Yodoi J. Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection. J Hepatol 33: 616-22, 2000.
64.Tagaya Y, Maeda Y, Mitsui A, Kondo N, Matsui H, Hamuro J, Brown N, Arai K, Yokota T, Wakasugi H, et al. ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J 8: 757-64, 1989.
65.Tassanakajon A, Klinbunga S, Paunglarp N, Rimphanitchayakit V, Udomkit A, Jitrapakdee S, Sritunyalucksana K, Phongdara A, Pongsomboon S, Supungul P, Tang S, Kuphanumart K, Pichyangkura R, Lursinsap C. Penaeus monodon gene discovery project: the generation of an EST collection and establishment of a database. Gene 384: 104-12, 2006.
66.Tsai JM, Wang HC, Leu JH, Hsiao HH, Wang AH, Kou GH, Lo CF. Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol 78: 11360-70, 2004.
67.Tsai JM, Wang HC, Leu JH, Wang AH, Zhuang Y, Walker PJ, Kou GH, Lo CF. Identification of the nucleocapsid, tegument, and envelope proteins of the shrimp white spot syndrome virus virion. J Virol 80: 3021-9, 2006.
68.Tsai MF, Lo CF, van Hulten MC, Tzeng HF, Chou CM, Huang CJ, Wang CH, Lin JY, Vlak JM, Kou GH. Transcriptional analysis of the ribonucleotide reductase genes of shrimp white spot syndrome virus. Virology 277: 92-9, 2000.
69.Tsai MF, Yu HT, Tzeng HF, Leu JH, Chou CM, Huang CJ, Wang CH, Lin JY, Kou GH, Lo CF. Identification and characterization of a shrimp white spot syndrome virus (WSSV) gene that encodes a novel chimeric polypeptide of cellular-type thymidine kinase and thymidylate kinase. Virology 277: 100-10, 2000.
70.Tzeng HF, Chang ZF, Peng SE, Wang CH, Lin JY, Kou GH, Lo CF. Chimeric polypeptide of thymidine kinase and thymidylate kinase of shrimp white spot syndrome virus: thymidine kinase activity of the recombinant protein expressed in a baculovirus/insect cell system. Virology 299: 248-55, 2002.
71.Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T, Yamaoka Y, Yodoi J, Nikaido T. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem 274: 35809-15, 1999.
72.VanLandingham JW, Levenson CW. Effect of retinoic acid on ferritin H expression during brain development and neuronal differentiation. Nutr Neurosci 6: 39-45, 2003.
73.Vivancos AP, Castillo EA, Biteau B, Nicot C, Ayte J, Toledano MB, Hidalgo E. A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. Proc Natl Acad Sci U S A 102: 8875-80, 2005.
74.Wang KC, Kondo H, Hirono I, Aoki T. The Marsupenaeus japonicus voltage-dependent anion channel (MjVDAC) protein is involved in white spot syndrome virus (WSSV) pathogenesis. Fish Shellfish Immunol 29: 94-103, 2010.
75.Wang X, Ling S, Zhao D, Sun Q, Li Q, Wu F, Nie J, Qu L, Wang B, Shen X, Bai Y, Li Y. Redox Regulation of Actin by Thioredoxin-1 Is Mediated by the Interaction of the Proteins via Cysteine 62. Antioxid Redox Signal, 2010.
76.Wang Z, Chua HK, Gusti AA, He F, Fenner B, Manopo I, Wang H, Kwang J. RING-H2 protein WSSV249 from white spot syndrome virus sequesters a shrimp ubiquitin-conjugating enzyme, PvUbc, for viral pathogenesis. J Virol 79: 8764-72, 2005.
77.Watson WH, Pohl J, Montfort WR, Stuchlik O, Reed MS, Powis G, Jones DP. Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J Biol Chem 278: 33408-15, 2003.
78.Weichsel A, Gasdaska JR, Powis G, Montfort WR. Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Structure 4: 735-51, 1996.
79.White CL, Weisberg AS, Moss B. A glutaredoxin, encoded by the G4L gene of vaccinia virus, is essential for virion morphogenesis. J Virol 74: 9175-83, 2000.
80.Yeh SP, Chen YN, Hsieh SL, Cheng WT, Liu CH. Immune response of white shrimp, Litopenaeus vannamei, after a concurrent infection with white spot syndrome virus and infectious hypodermal and hematopoietic necrosis virus. Fish & Shellfish Immunology 26: 582-588, 2009.
81.Zhang X, Huang C, Tang X, Zhuang Y, Hew CL. Identification of structural proteins from shrimp white spot syndrome virus (WSSV) by 2DE-MS. Proteins 55: 229-35, 2004.
82.Zheng M, Aslund F, Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279: 1718-21, 1998.

個人相關著作
1.Huang JY*, Liu WJ, Wang KH, Lee DY, Leu JH, Wang HC, Tsai MH, Kang ST, Chen IT, Kou GH, Chang GD, Lo CF. Penaeus monodon thioredoxin restores the DNA binding activity of oxidized WSSV IE1. Antioxid Redox Signal, 17(6): 914-926, 2012. [IF=8.456, Endocrinology & Metabolism, ranking 5/121 =Top 4.1 %; Biochemistry and Molecular biology, ranking 25/289=Top 8.7 %]
2.Leu JH, Lin SJ, Huang JY, Chen TC, Lo CF. A model for apoptotic interaction between white spot syndrome virus and shrimp. Fish Shellfish Immun. 2012. (Accepted) [IF=3.044, Veterinary Science, ranking 4/145=Top 2.75%; MARINE & FRESHWATER BIOLOGY, ranking 9/93=Top 9.67%; Fisheries, ranking 5/46 =Top 10.8%; Immunology, ranking 58/134 =Top 43.28%;]
3.Lin SJ, Hsia HL, Liu WJ, Huang JY, Liu KF, Chen WY, Yeh YC, Huang YT, Lo CF, Kou KH, Wang HC. Spawning stress triggers WSSV replication in brooders via the activation of shrimp STAT. Dev Comp Immunol. 2012. (Accepted) [IF=3.293, Zoology, ranking 4/145=Top 2.8%; Immunology, ranking 51/134=Top 38%]
4.Chen IT, Aoki T, Huang YT, Hirono I, Chen TC, Huang JY, Chang GD, Lo CF, Wang HC. White spot syndrome virus induces metabolic changes resembling the warburg effect in shrimp hemocytes in the early stage of infection. J Virol 85: 12919-28, 2011. [IF=5.189, Virology, ranking 5/33=Top 15.2%]
5.Chang YS, Liu WJ, Lee CC, Chou TL, Lee YT, Wu TS, Huang JY, Huang WT, Lee TL, Kou GH, Wang AH, Lo CF. A 3D model of the membrane protein complex formed by the white spot syndrome virus structural proteins. PLoS ONE 5: e10718, 2010. [IF=4.411, Biology, ranking 12/86=Top 14%]

研討會論文
1.J. Y. Huang. 2012. Penaeus monodon thioredoxin restores the DNA binding activity of oxidized WSSV IE1. The 27th joint annual conference of biomedical sciences, Taipei, Taiwan. (Oral presentation)
2.J. Y. Huang, W. J. Liu, H. C. Wang, G. D. Chang and C. F. Lo. 2011. Penaeus monodon thioredoxin restores the DNA binding activity of oxidized WSSV IE1. Eighth Symposium on Diseases in Asian Aquaculture, Mangalore, India.
3.J. Y. Huang, G. H. Kou, G. D. Chang and C. F. Lo. 2010. Redox controls the DNA binding activity of white spot syndrome virus (WSSV) immediate early protein #1 (IE1). Kanagawa University‐National Taiwan University Symposium, Taipei, Taiwan.
4.J. Y. Huang, M. F. Tsai, G. H. Kou and C. F. Lo. 2008. Gene Expression Profiling of White Spot Syndrome Virus- Challenged P. monodon Shrimp. Seventh Symposium on Diseases in Asian Aquaculture, Taipei, Taiwan.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top