跳到主要內容

臺灣博碩士論文加值系統

(44.192.114.32) 您好!臺灣時間:2022/07/07 04:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡文凱
研究生(外文):Kevin Wen-Kai Tsai
論文名稱:多投影核磁共振逆影像
論文名稱(外文):Multi-projection magnetic resonance inverse imaging
指導教授:林發暄
指導教授(外文):Fa-Hsuan Lin
口試委員:王福年黃騰毅吳文超林益如郭文瑞蔡尚岳
口試日期:2012-04-11
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:48
中文關鍵詞:核磁共振核磁共振影像功能性核磁共振影像相列線圈射頻線圈逆影像視覺運動逆算問題投影
外文關鍵詞:event-relatedfMRIInIvisualmotorMRIinverse problemprojection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用高度平行化核磁共振射頻線圈,核磁共振逆影像(magnetic resonance inverse imaging, InI) 可以達到全腦造影視野與100毫秒的時間解析度。此一快速動態影像技術是基於省略了使用梯度線圈於空間編碼的步驟,¬而改藉由射頻線圈的空間敏感度分布,從二維投影影像重建出三維的空間訊息。然而射頻線圈的空間敏感度分布因過於平滑, 所以不足以完全確切地解出三維影像,因此通常還要依靠數學上的限制以求出唯一解,若以要求解出之三維影像要有最小範數 (minimum l^2-norm),則影像多會模糊。本論文提出結合多個投影影像,在維持100毫秒的時間解析度下,減少核磁共振逆影像空間解析度損失的方法。我們利用32通道頭部相列線圈於不同回合的功能性磁振造影中,分別擷取冠狀 (coronal)、矢狀 (sagittal)、與橫切面 (transverse) 投影影像, 再加以組合出三維影像。模擬的結果顯示,與核磁共振逆影像使用最小範數的影像重建相比較,多投影核磁共振逆影像(multi-projection InI, mInI) 可以顯著的增進影像空間解析度。當合併三組投影影像時,由點擴散函數的半高全寬值來量化的空間解析度,可由一組投影影像時的2.6像素提升至1.4像素 (每像素為4微米解析度)。若我們進一步考量點擴散函數的形狀,等效空間解析度將由16.9像素提升至4.7像素。
本論文所發展之多投影核磁共振逆影像也應用於人腦功能性核磁共振影像實驗上,當受試者執行二選項反應時間 (two-choice reaction time) 工作時,多投影核磁共振逆影像顯示出與平面迴訊影像 (echo-planar imaging, EPI) 一致的視覺與感覺-運動(somatosensory) 腦區活化空間分佈。然而多投影核磁共振逆影像提供了100毫秒的空間解析度與全腦造影視野。使用三個投影的投影核磁共振逆影像資料揭露了側膝狀核 (lateral geniculate nucleus, LGN) 與視覺區之血液動態變化 (hemodynamic response) 分別比感覺運動區的血液動態變化早了1300毫秒與700毫秒。我們預期多投影核磁共振逆影像將可應用於血氧濃度變化對比之功能性核磁共振影像研究上以提供高時間與空間解析度的動態資訊幫助瞭解人腦功能。

Using highly parallel radiofrequency (RF) detection, magnetic resonance inverse imaging (InI) can achieve 100-millisecond temporal resolution with the whole brain coverage. This is achieved by trading off partition encoding steps and thus the spatial resolution for a higher acquisition rate. The reduced spatial information is typically estimated by solving under-determined inverse problems using RF coil sensitivity information. The reconstructed InI images under the minimum l-2-norm constraint typically demonstrate a lower spatial resolution. Here we propose the multi-projection inverse imaging (mInI) method to combine different projection images to reduce the loss of spatial resolution of InI. Specifically, coronal, sagittal, and transverse projection images are acquired from different runs of the functional MRI (fMRI) acquisitions using a 32-channel head coil array. Simulations show that, compared to the InI reconstruction using the minimum l-2-norm, mInI improves the spatial resolution of the reconstructed image significantly. Going from one projection to three projections, the spatial resolution quantified by the full-width–half-maximum of the point-spread function (PSF) is improved from 2.6 pixels to 1.4 pixels (4 millimeter per pixel nominal resolution). Considering the shape of the PSF, the effective spatial resolution improves from 16.9 pixels to 4.7 pixels. In vivo fMRI experiments using a two-choice reaction time task shows visual and sensorimotor cortical activity spatially consistent with typical EPI data, yet mInI offers the 100 millisecond temporal. The mInI data with three projections reveal that the hemodynamic response at the lateral geniculate nuclei (LGN) and at the visual cortex precedes that at the sensorimotor cortex by 1300 ms and 700 ms respectively. mInI can be applied to BOLD-contrast fMRI experiments to characterize the dynamics of the activated brain areas with a high spatiotemporal resolution.

口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES x
Chapter 1 Introduction 1
Chapter 2 Material and Methods 4
2.1 Participants and tasks 4
2.2 Pulse sequence and data acquisition 5
2.3 Image reconstruction 8
2.4 Performance measures 13
2.4.1 Conditioning of forward operator 13
2.4.2 Convergence of mInI reconstruction 14
2.4.3 Reconstruction error 14
2.4.4 Receiver operating characteristic analysis 15
2.4.5 Spatial resolution analysis 16
Chapter 3 Results 18
3.1 Conditioning of forward operator 18
3.2 Convergence of mInI reconstruction 18
3.3 Reconstruction error 19
3.4 Receiver operating characteristic analysis 22
3.5 Spatial resolution analysis 23
3.6 In vivo experiments 27
Chapter 4 Discussion 34
REFERENCE 41

Belliveau, J.W., Kennedy, D.N., Jr., McKinstry, R.C., Buchbinder, B.R., Weisskoff, R.M., Cohen, M.S., Vevea, J.M., Brady, T.J., Rosen, B.R., 1991. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254, 716-719.
Brainard, D.H., 1997. The Psychophysics Toolbox. Spat Vis 10, 433-436.
Burock, M., Dale, A., 2000. Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach. Hum Brain Mapp 11, 249-260.
Buxton, R.B., 2002. Introduction to functional magnetic resonance imaging : principles and techniques. Cambridge University Press, Cambridge, UK ; New York.
Chou, C.H., Kuo, T.F., Lin, C.C., Tsai, J.C., Lin, F.H., 2008. Glycosaminoglycan Synthesis of Chondrocytes in Fibrin Glue with Ghc6s Particles. Biomedical Engineering-Applications Basis Communications 20, 329-335.
Creelman, C.D., 1998. Signal detection theory and ROC analysis in psychology and diagnostics: Collected papers. Contemporary Psychology 43, 840-841.
Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179-194.
Dale, A.M., Liu, A.K., Fischl, B.R., Buckner, R.L., Belliveau, J.W., Lewine, J.D., Halgren, E., 2000. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26, 55-67.
Deshpande, G., Sathian, K., Hu, X., Effect of hemodynamic variability on Granger causality analysis of fMRI. Neuroimage 52, 884-896.
Engel, S.A., Glover, G.H., Wandell, B.A., 1997. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex 7, 181-192.
Fischl, B., Liu, A., Dale, A.M., 2001. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20, 70-80.
Fischl, B., Sereno, M., Tootell, R., Dale, A., 1999a. High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8, 272-284.
Fischl, B., Sereno, M.I., Dale, A.M., 1999b. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195-207.
Friston, K.J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M.D., Turner, R., 1998. Event-related fMRI: Characterizing differential responses. Neuroimage 7, 30-40.
Glover, G.H., 1999. Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9, 416-429.
Grotz, T., Zahneisen, B., Ella, A., Zaitsev, M., Hennig, J., 2009. Fast Functional Brain Imaging Using Constrained Reconstruction Based on Regularization Using Arbitrary Projections. Magnetic Resonance in Medicine 62, 394-405.
Hennig, J., Zhong, K., Speck, O., 2007. MR-Encephalography: Fast multi-channel monitoring of brain physiology with magnetic resonance. Neuroimage 34, 212-219.
Kastner, S., O''Connor, D.H., Fukui, M.M., Fehd, H.M., Herwig, U., Pinsk, M.A., 2004. Functional imaging of the human lateral geniculate nucleus and pulvinar. J Neurophysiol 91, 438-448.
Kayser, A.S., Sun, F.T., D''Esposito, M., 2009. A comparison of Granger causality and coherency in fMRI-based analysis of the motor system. Hum Brain Mapp 30, 3475-3494.
Krolak-Salmon, P., Henaff, M.A., Tallon-Baudry, C., Yvert, B., Guenot, M., Vighetto, A., Mauguiere, F., Bertrand, O., 2003. Human lateral geniculate nucleus and visual cortex respond to screen flicker. Ann Neurol 53, 73-80.
Kruger, G., Glover, G.H., 2001. Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46, 631-637.
Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., Cheng, H., Brady, T.J., Rosen, B.R., 1992. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89, 5675-5679.
Lin, F.-H., Witzel, T., Raij, T., Ahveninen, J., Belliveau, J.W., 2010a. Relative Timing of Brain Activations Revealed by Ultra-Fast MR Inverse Imaging (InI). Proc. Intl. Soc. Mag. Reson. Med., Stockholm, Sweden, p. 268.
Lin, F.H., Nummenmaa, A., Witzel, T., Polimeni, J.R., Zeffiro, T.A., Wang, F.N., Belliveau, J.W., 2011. Physiological noise reduction using volumetric functional magnetic resonance inverse imaging. Hum Brain Mapp.
Lin, F.H., Tsai, K.W., Chu, Y.H., Witzel, T., Nummenmaa, A., Raij, T., Ahveninen, J., Kuo, W.J., Belliveau, J.W., 2012. Ultrafast inverse imaging techniques for fMRI. Neuroimage.
Lin, F.H., Wald, L.L., Ahlfors, S.P., Hamalainen, M.S., Kwong, K.K., Belliveau, J.W., 2006a. Dynamic magnetic resonance inverse imaging of human brain function. Magnetic Resonance in Medicine 56, 787-802.
Lin, F.H., Wald, L.L., Ahlfors, S.P., Hamalainen, M.S., Kwong, K.K., Belliveau, J.W., 2006b. Dynamic magnetic resonance inverse imaging of human brain function. Magn Reson Med 56, 787-802.
Lin, F.H., Witzel, T., Chang, W.T., Wen-Kai Tsai, K., Wang, Y.H., Kuo, W.J., Belliveau, J.W., 2010b. K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems. Neuroimage 49, 3086-3098.
Lin, F.H., Witzel, T., Mandeville, J.B., Polimeni, J.R., Zeffiro, T.A., Greve, D.N., Wiggins, G., Wald, L.L., Belliveau, J.W., 2008a. Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual processing. Neuroimage 42, 230-247.
Lin, F.H., Witzel, T., Zeffiro, T.A., Belliveau, J.W., 2008b. Linear constraint minimum variance beamformer functional magnetic resonance inverse imaging. Neuroimage 43, 297-311.
Liou, S.T., Witzel, T., Numenmaa, A., Chang, W.T., Tsai, K.W., Kuo, W.J., Chung, H.W., Lin, F.H., Functional magnetic resonance inverse imaging of human visuomotor systems using eigenspace linearly constrained minimum amplitude (eLCMA) beamformer. Neuroimage 55, 87-100.
Liou, S.T., Witzel, T., Numenmaa, A., Chang, W.T., Tsai, K.W., Kuo, W.J., Chung, H.W., Lin, F.H., 2011. Functional magnetic resonance inverse imaging of human visuomotor systems using eigenspace linearly constrained minimum amplitude (eLCMA) beamformer. Neuroimage 55, 87-100.
Mansfield, P., 1977. Multi-Planar Image-Formation Using Nmr Spin Echoes. Journal of Physics C-Solid State Physics 10, L55-L58.
Mansfield, P., Coxon, R., Glover, P., 1994. Echo-planar imaging of the brain at 3.0 T: first normal volunteer results. J Comput Assist Tomogr 18, 339-343.
Mansfield, P., Coxon, R., Hykin, J., 1995. Echo-volumar imaging (EVI) of the brain at 3.0 T: first normal volunteer and functional imaging results. J Comput Assist Tomogr 19, 847-852.
Menon, R.S., Luknowsky, D.C., Gati, J.S., 1998. Mental chronometry using latency-resolved functional MRI. Proceedings of the National Academy of Sciences of the United States of America 95, 10902-10907.
Menon, R.S., Ogawa, S., Tank, D.W., Ugurbil, K., 1993. Tesla Gradient Recalled Echo Characteristics of Photic Stimulation-Induced Signal Changes in the Human Primary Visual-Cortex. Magnetic Resonance in Medicine 30, 380-386.
Myers, W., Slichter, D., Hatridge, M., Busch, S., Mossle, M., McDermott, R., Trabesinger, A., Clarke, J., 2007. Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 mu T to 1.5 T. Journal of Magnetic Resonance 186, 182-192.
Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W., 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87, 9868-9872.
Ogawa, S., Lee, T.M., Stepnoski, R., Chen, W., Zhuo, X.H., Ugurbil, K., 2000. An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds. Proceedings of the National Academy of Sciences of the United States of America 97, 11026-11031.
Pelli, D.G., 1997. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10, 437-442.
Poser, B.A., Norris, D.G., 2009. Investigating the benefits of multi-echo EPI for fMRI at 7 T. Neuroimage 45, 1162-1172.
Posse, S., Wiese, S., Gembris, D., Mathiak, K., Kessler, C., Grosse-Ruyken, M.L., Elghahwagi, B., Richards, T., Sr, D., Kiselev, V.G., 1999. Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging. Magnetic Resonance in Medicine 42, 87-97.
Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P., 1999. SENSE: Sensitivity encoding for fast MRI. Magnetic Resonance in Medicine 42, 952-962.
Roebroeck, A., Formisano, E., Goebel, R., 2005. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25, 230-242.
Rosen, B.R., Buckner, R.L., Dale, A.M., 1998. Event-related functional MRI: Past, present, and future. Proceedings of the National Academy of Sciences of the United States of America 95, 773-780.
Sodickson, D.K., Manning, W.J., 1997. Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magnetic Resonance in Medicine 38, 591-603.
Somersalo, E., Kaipio, J., 2007. Statistical inverse problems: Discretization, model reduction and inverse crimes. Journal of Computational and Applied Mathematics 198, 493-504.
Song, A.W., Wong, E.C., Hyde, J.S., 1994. Echo-volume imaging. Magn Reson Med 32, 668-671.
Sonneveld, P., 1989. Cgs, a Fast Lanczos-Type Solver for Nonsymmetric Linear-Systems. Siam Journal on Scientific and Statistical Computing 10, 36-52.
Thirion, B., Flandin, G., Pinel, P., Roche, A., Ciuciu, P., Poline, J.B., 2006. Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRl datasets. Human Brain Mapping 27, 678-693.
Thyreau, B., Schwartz, Y., Thirion, B., Frouin, V., Loth, E., Vollstadt-Klein, S., Paus, T., Artiges, E., Conrod, P.J., Schumann, G., Whelan, R., Poline, J.-B., 2012. Very large fMRI study using the IMAGEN database: Sensitivity–specificity and population effect modeling in relation to the underlying anatomy. Neuroimage 61, 295-303.
Vanvaals, J.J., Brummer, M.E., Dixon, W.T., Tuithof, H.H., Engels, H., Nelson, R.C., Gerety, B.M., Chezmar, J.L., Denboer, J.A., 1993. Keyhole Method for Accelerating Imaging of Contrast Agent Uptake. Jmri-Journal of Magnetic Resonance Imaging 3, 671-675.
Weaver, J.B., Xu, Y.S., Healy, D.M., Driscoll, J.R., 1992. Wavelet-Encoded Mr Imaging. Magnetic Resonance in Medicine 24, 275-287.
Wiesinger, F., Boesiger, P., Pruessmann, K.P., 2004. Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 52, 376-390.
Wiggins, G.C., Polimeni, J.R., Potthast, A., Schmitt, M., Alagappan, V., Wald, L.L., 2009. 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation. Magn Reson Med 62, 754-762.
Wiggins, G.C., Triantafyllou, C., Potthast, A., Reykowski, A., Nittka, M., Wald, L.L., 2006. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 56, 216-223.
Witzel, T., Polimeni, J.R., Lin, F.H., Numenmaa, A., Wald, L.L., 2011. Single-Shot Whole Brain Echo Volume Imaging for Temporally Resolved Physiological Signals in fMRI. Proc Intl Soc Magn Reson Med, 633.
Zahneisen, B., Grotz, T., Lee, K.J., Ohlendorf, S., Reisert, M., Zaitsev, M., Hennig, J., 2011a. Three-dimensional MR-encephalography: Fast volumetric brain imaging using rosette trajectories. Magn Reson Med 65, 1260-1268.
Zahneisen, B., Grotz, T., Zaitsev, M., Hennig, J., 2011b. Ultra Fast Volumetric Functional Imaging using Single Shot Concentric Shells Trajectories. Proc Intl Soc Magn Reson Med, 4360.
Zhao, X., Bodurka, J., Jesmanowicz, A., Li, S.J., 2000. B(0)-fluctuation-induced temporal variation in EPI image series due to the disturbance of steady-state free precession. Magn Reson Med 44, 758-765.
Zientara, G.P., Panych, L.P., Jolesz, F.A., 1994. Dynamically Adaptive Mri with Encoding by Singular-Value Decomposition. Magnetic Resonance in Medicine 32, 268-274.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊