跳到主要內容

臺灣博碩士論文加值系統

(44.192.114.32) 您好!臺灣時間:2022/07/07 04:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃琮閔
研究生(外文):Tsung-Min Huang
論文名稱:使用疊代式自我一致性運算於核磁共振逆影像重建
論文名稱(外文):Iterative self-consistent magnetic resonance inverse imaging
指導教授:林發暄
口試委員:吳文超王福年蔡尚岳林益如
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:43
中文關鍵詞:功能磁振造影逆影像視覺磁振造影K空間逆影像自我一致性
外文關鍵詞:fMRIInIvisualMRIK-InIself-consistency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
核磁共振逆影像(magnetic resonance inverse imaging, InI) 利用多組核磁共振射頻線圈同步接收核磁共振影像(magnetic resonance imaging, MRI) 信號以含括全腦的視區及100毫秒的時間解析度 。其基本原理是利用不同位置射頻線圈提供的空間敏感度重建在資料擷取中所忽略的空間編碼訊息。先前研究發現逆影像在K空間(k-space, K-InI)比起在影像空間(image space)使用最小範數估計解(minimum-norm estimate, MNE)的重建可有更高的空間解析度和對大腦活動訊號更高的靈敏度。最近的研究顯示使用多通道接受器的平行核磁共振影像在K空間中有一訊號的自我一致性(self-consistent property)。當運用這個特性在平行影像的重建時,可以提升重建影像的品質。根據這一特性,本研究提出運用自我一致性在核磁共振逆影像 的影像重建方法。其稱為自我一致性K空間逆影像(self-consistent K-InI)以及 範數自我一致性K空間逆影像( -self-consistent K-InI)。經由模擬,我們發現與K-InI 相比,self-consistent K-InI 和 -self-consistent K-InI可以提供更高的空間解析度。應用self-consistent K-InI 及 -self-consistent K-InI於真人視覺功能性核磁共振影像實驗時,這些影像重建方法可在100毫秒時間解析度下描繪出大腦視覺區域的血液動力學變化。Self-consistent K-InI與K-InI在偵測大腦活動訊號的BOLD對比靈敏度相近,但是 -self-consistent 則比K-InI提高約50%的偵測靈敏度。我們預期self-consistent K-InI 和 -self-consistent K-InI可以提供高時間和高空間解析度的大腦活動訊號來進一步了解人腦功能。

Magnetic resonance inverse imaging (InI) using multiple channel radio-frequency (RF) coil detection can achieve 100 ms temporal resolution with the whole brain coverage. InI reconstructions use the RF coil sensitivity information to reconstruct the omitted partition encoding data. Previously we proposed the k-space InI (K-InI) reconstruction to provide higher spatial resolution and higher sensitivity in detecting activated brain areas in BOLD fMRI experiment than the image domain minimum-norm estimate (MNE) InI reconstruction. Recently, the self-consistent property has been suggested as a useful property in k-space parallel MRI reconstruction because it improves the reconstruction image quality. Studying this study, we develop self-consistent K-InI and -self-consistent K-InI algorithms to use the self-consistent property to reconstruct highly accelerated InI acquisitions. Numerical simulations show that self-consistent K-InI and -self-consistent K-InI can provide higher spatial resolution than K-InI. Applying self-consistent K-InI and -self-consistent K-InI to BOLD contrast fMRI experiments, we found that all methods can reveal visual cortex activation at the 100 ms temporal resolution. Self-consistent K-InI has a comparable detection sensitivity to K-InI. -self-consistent K-InI the sensitivity of detecting brain activation is 50% higher than that of K-InI. Self-consistent K-InI and -self-consistent K-InI can be useful tools in fMRI data analysis to characterize brain activity with a high spatiotemporal resolution.

誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES v
Chapter 1 Introduction 1
Chapter 2 Material and Method 5
2.1 Participants and tasks 5
2.2 Image acquisition 5
2.3 Data analysis 7
2.4 Image reconstruction 8
2.4.1 K-InI reconstruction 8
2.4.2 Self-consistent K-InI 12
2.4.3 -self-consistent K-InI reconstruction theory 16
2.5 Performance measures 17
2.5.1 Reconstruction error analysis 17
2.5.2 Spatial resolution analysis 17
Chapter 3 Result 20
3.1 Image reconstruction analysis 20
3.2 Spatial resolution analysis 25
3.3 In vivo experiments 35
Chapter 4 Discussion 38
REFERENCE 41


Belliveau, J., Kennedy, D., McKinstry, R., Buchbinder, B., Weisskoff, R., Cohen, M., Vevea, J., Brady, T., Rosen, B., 1991. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254, 716-719.
Blaimer, M., Breuer, F., Mueller, M., Heidemann, R.M., Griswold, M.A., Jakob, P.M., 2004. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 15, 223-236.
Brainard, D.H., 1997. The Psychophysics Toolbox. Spat Vis 10, 433-436.
Buehrer, M., Pruessmann, K.P., Boesiger, P., Kozerke, S., 2007. Array compression for MRI with large coil arrays. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 57, 1131-1139.
Bydder, M., Jung, Y., 2009. A nonlinear regularization strategy for GRAPPA calibration. Magnetic resonance imaging 27, 137-141.
Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179-194.
de Zwart, J.A., van Gelderen, P., Kellman, P., Duyn, J.H., 2002. Reduction of gradient acoustic noise in MRI using SENSE-EPI. Neuroimage 16, 1151-1155.
Ding, Y., Xue, H., Chang, T.-c., Guetter, C., Simonetti, O., 2012. Self-consistent GRAPPA Reconstruction with Close-form Solution. Proceedings 20th Scientific Meeting, International Society for Magnetic Resonance in Medicine
Australia.
Doneva, M., Bornert, P., 2008. Automatic coil selection for channel reduction in SENSE-based parallel imaging. MAGMA 21, 187-196.
Farzaneh, F., Riederer, S.J., Pelc, N.J., 1990. Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn Reson Med 14, 123-139.
Fischl, B., Liu, A., Dale, A.M., 2001. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20, 70-80.
Fischl, B., Sereno, M.I., Dale, A.M., 1999. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195-207.
Golay, X., de Zwart, J.A., Ho, Y.C., Sitoh, Y.Y., 2004. Parallel imaging techniques in functional MRI. Top Magn Reson Imaging 15, 255-265.
Griswold, M.A., Jakob, P.M., Chen, Q., Goldfarb, J.W., Manning, W.J., Edelman, R.R., Sodickson, D.K., 1999. Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (SMASH). Magn Reson Med 41, 1236-1245.
Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A., 2002. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47, 1202-1210.
Hennig, J., Zhong, K., Speck, O., 2007. MR-Encephalography: Fast multi-channel monitoring of brain physiology with magnetic resonance. Neuroimage 34, 212-219.
Hugger, T., Zahneisen, B., LeVan, P., Lee, K.J., Lee, H.L., Zaitsev, M., Hennig, J., 2011. Fast undersampled functional magnetic resonance imaging using nonlinear regularized parallel image reconstruction. PLoS One 6, e28822.
Jakob, P.M., Griswold, M.A., Edelman, R.R., Sodickson, D.K., 1998. AUTO-SMASH: a self-calibrating technique for SMASH imaging. SiMultaneous Acquisition of Spatial Harmonics. MAGMA 7, 42-54.
King, S.B., Varosi, S.M., Duensing, G.R., 2010. Optimum SNR data compression in hardware using an Eigencoil array. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 63, 1346-1356.
Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., et al., 1992. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89, 5675-5679.
Lin, F.H., Wald, L.L., Ahlfors, S.P., Hamalainen, M.S., Kwong, K.K., Belliveau, J.W., 2006. Dynamic magnetic resonance inverse imaging of human brain function. Magn Reson Med 56, 787-802.
Lin, F.H., Witzel, T., Chang, W.T., Wen-Kai Tsai, K., Wang, Y.H., Kuo, W.J., Belliveau, J.W., 2010. K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems. Neuroimage 49, 3086-3098.
Lin, F.H., Witzel, T., Mandeville, J.B., Polimeni, J.R., Zeffiro, T.A., Greve, D.N., Wiggins, G., Wald, L.L., Belliveau, J.W., 2008a. Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual processing. Neuroimage 42, 230-247.
Lin, F.H., Witzel, T., Zeffiro, T.A., Belliveau, J.W., 2008b. Linear constraint minimum variance beamformer functional magnetic resonance inverse imaging. Neuroimage 43, 297-311.
Lustig, M., Alley, M., Vasanawala, S., Donoho, D., Pauly, J., 2009. L1 SPIR-iT: Autocalibrating Parallel Imaging Compressed Sensing. Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Honolulu, p. 379.
Lustig, M., Pauly, J.M., 2010. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 64, 457-471.
Mansfield, P., 1977. Multi-planar image formation using NMR spin echoes. Journal of Physics C: Solid State Physics 10, L55.
McGibney, G., Smith, M.R., Nichols, S.T., Crawley, A., 1993. Quantitative evaluation of several partial Fourier reconstruction algorithms used in MRI. Magn Reson Med 30, 51-59.
Murphy, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M., 2012. Fast l(1) -SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime. Ieee Transactions on Medical Imaging 31, 1250-1262.
Noll, D.C., Nishimura, D.G., Macovski, A., 1991. Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imaging 10, 154-163.
Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W., 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87, 9868-9872.
Pelli, D.G., 1997. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10, 437-442.
Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P., 1999. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42, 952-962.
Qu, P., Wang, C., Shen, G.X., 2006. Discrepancy-based adaptive regularization for GRAPPA reconstruction. J Magn Reson Imaging 24, 248-255.
Roemer, P.B., Edelstein, W.A., Hayes, C.E., Souza, S.P., Mueller, O.M., 1990. The NMR phased array. Magn Reson Med 16, 192-225.
Shewchuk, J.R., 1994. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Carnegie Mellon University.
Sodickson, D.K., Manning, W.J., 1997. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38, 591-603.
Zhang, T., Pauly, J.M., Vasanawala, S.S., Lustig, M., 2012. Coil compression for accelerated imaging with Cartesian sampling. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊