(100.26.176.182) 您好!臺灣時間:2019/12/12 18:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:林志威
研究生(外文):Chih-Wei Lin
論文名稱:百葉窗靜電集塵器之開發與電暈放電產生奈米微粒現象之探討
論文名稱(外文):Development of the louver electrostatic precipitator and the characteristics of particle generation by corona discharge
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh Chen
口試委員:鄭福田林文印吳章甫蕭大智
口試日期:2012-07-30
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:96
中文關鍵詞:電暈放電靜電集塵器奈米微粒百葉窗微粒產生器
外文關鍵詞:corona dischargeelectric field strengthnanoparticlelouverparticle generator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
空調系統能夠創造舒適的室內環境,但是須要耗費大量能源,使用自然通風則會讓外界污染物進入室內。本研究研發一百葉窗型靜電除塵器,能夠在使用自然通風時同時去除空氣中的微粒。並且探討靜電集塵器轉變成奈米微粒產生器之現象,找出影響此現象之參數,設計出一以電暈放電為基礎之奈米微粒產生器。

實驗中使用板線型靜電集塵器,在測試不同實驗參數下量測靜電集塵器的穿透率、能量品質、臭氧濃度以及產生微粒分布。實驗參數包括收集板角度、收集板長度、放電極位置、電場強度、電流強度、氣流風速、溫度、放電極直徑、放電極材質、收集板間距離以及挑戰氣膠濃度與大小。同時也針對產生微粒的外觀以及成分進行分析。

實驗結果顯示收集板角度增加會減少收集板與放電極間的距離,風速與電場分布也隨之改變。過高的電場強度會大幅降低能量品質。增加氣流溫度、降低挑戰氣膠濃度降低以及增加放電極直徑可降低靜電集塵器產生的微粒濃度。在特定的電場強度以及風速下,有最高的微粒濃度。使用過後的放電極表面有氧化現象,此氧化層會影響微粒產生穩定度,使用金當做電極則可穩定產生。

百葉窗型靜電集塵器可有效阻檔進入室內之輻射熱且同時去除微粒,兼顧自然通風以及空調系統之優點。靜電集塵器除了能夠收集微粒,同時會產生奈米微粒。根據此現象研發之電暈放電奈米微粒產生器具有反應時間短、設備簡單以及可改變濃度等優點,產生的微粒大小為5-40 nm,眾數約在12 nm。

An air conditioner is used to increase the occupants’ comfort by adjusting the indoor air temperature, but it is a major part of energy consumption. We can achieve equivalent or superior results by using general ventilation but drawbacks may include the incursion of outdoor air pollutants and an increase in radiant energy from sunlight into the home. This study designs a low-cost, practical, louver-window-type, electrostatic precipitator that can reduce pollutants entering the indoor space and shade the indoor area, while permitting increased ventilation in a home or small office environment. We also demonstrated that an electrostatic precipitator, originally designed for dust collection, could become an efficient nanoparticle generator under specific operating conditions. This unique feature was utilized in the present study to develop a nanoparticle generator based on corona discharge.

A lab-scale, adjustable, wire-plate positive louver ESP and a wire-plate corona discharger were built for measuring particle penetration, energy quality, ozone concentration and particle emission. Environmental contaminants were removed by HEPA filter, active charcoal and silica gel. Gold, tungsten, molybdenum, and stainless steel were used as the electrode to study the material dependency. Gas temperature was controlled by a feedback heater. A positive direct current power supply was employed to energize the corona discharger. A scanning mobility particle sizer with a nano differential mobility analyzer was employed to measure the aerosol number concentration and size distribution. Ozone concentration was monitored by using an ozone analyzer. The sampling locations of SMPS and ozone analyzer were 20 and 15 cm downstream the corona discharger, respectively. The major operating parameters included louver angle, electrode diameter, electrode spacing, electrode material, air velocity, air temperature, applied voltage and current.

The results showed that the louver adjustment significantly affected the ESP performance. The discharge wire should be positioned in the middle to provide optimal ESP performance, although moving around the electrode did not significantly change the energy consumption and ozone generation. The collection plates with excessive length were proven to be ineffective. The wire-to-plate distance decreased with increasing louver angle. The louver adjustments resulted in changes of the effective collection area, electric field strength and air velocity. The field strength should be as low as possible to obtain a high energy quality index. For a given energy consumption, the energy quality index was not significantly affected by the louver angle. This phenomenon was due to a trade-off between the electric field strength and the effective collection area. Therefore, all aerosol penetration curves showed within a narrow band.

The air temperature appeared to have a strong effect on ESP nanoparticle generation. At temperature above 37°C and flow rate below 9 L/min, the nanoparticle penetration of ESP exceeded 100%, indicating that the ESP was generating aerosol particles. Sputtering on the corona discharger appeared to be the key mechanism of aerosol generation. Particles were generated as soon as the ESP was on set. The ozone concentration increased with increasing corona current. The ESP reached a maximum number concentration at the electric field strength of 4.8 kv/cm when the air flow and temperature were fixed at 6 L/min and 40°C, respectively. The particle size ranged from 5 to 40 nm. Elementary components of the discharge wire were detected on the filter samples collected downstream the ESP and ground plates, indicating that nanoparticles were generated from the discharge wire. The ESP transit to a nanoparticle generator when it could not efficiently capture the particles generated from itself.

The maximum aerosol concentration occurred when the electric field strength was around 8.2, 9.8, and 11.2 kV for electrode diameter of 0.1, 0.2 and 0.3 mm, respectively. The smaller discharge electrode diameter generated more aerosol particles, but lower ozone concentration when compared to larger electrode diameter. The differences in aerosol concentration due to the change of electric field strength decreased with increasing electrode diameter, because the mean kinetic energy was more uniform in the larger electrode. Electrode materials did not affect the I-V curve but the aerosol generation rate and the ozone concentration were clearly material-dependent. Gold was chosen as the discharge electrode because of stable and high sputtering yield.

摘要 I
Abstract III
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 研究背景與目的 1
1.1 背景 1
1.2 研究目的 2
第二章 文獻探討 3
2.1 靜電集塵器 3
2.2電暈放電 4
2.3 微粒電移動度與帶電機制 7
2.4 百葉窗 9
2.5 臭氧 9
2.6能量品質指標 10
2.7 微粒產生原理 11
2.7.1 物理產生理論 11
2.7.2 化學產生理論 12
2.8 其他奈米微粒產生方法 13
2.8.1 化學氣相層析法(Chemical vapor deposition, CVD) 13
2.8.2 高溫凝結法 (Gas phase condensation) 14
2.8.3 液態燃燒法 (Liquid flame spray, LFS) 14
2.8.4 雷射溶損法 (laser ablation) 14
2.8.5 火花放電法(Spark discharge) 15
2.8.6 電噴灑(Electrospray) 16
2.8.7真空濺鍍 16
2.8.8 理想的微粒產生器 17
第三章. 材料與方法 18
3.1 百葉窗型靜電集塵器之特性描述 18
3.2靜電集塵器之特性描述 18
3.3 實驗系統設置 18
第四章 結果與討論 21
4.1 百葉窗型靜電集塵器 21
4.1.1放電極位置與收集板長度的影響 21
4.1.2相同風速與電場強度下角度改變的影響 22
4.1.3相同空氣流量與電場強度下角度改變的影響 22
4.1.4 相同風速與供給電壓下角度改變的影響 22
4.1.5 相同風速與角度下電場強度改變的影響 23
4.1.6相同供給能量與空氣流量下角度對穿透率的影響 23
4.1.7 改裝自市售型百葉窗之靜電集塵器特性 23
4.2 從靜電集塵器到奈米微粒產生器之轉變 24
4.2.1 電流電壓曲線特性 24
4.2.2 溫度對ESP穿透率之影響 24
4.2.3 流量對ESP穿透率之影響 25
4.2.4 挑戰氣膠濃度與大小對ESP穿透率之影響 25
4.2.5 ESP產生微粒之反應時間 26
4.2.6 電場強度與ESP產生微粒之關係 27
4.2.7 臭氧產生 27
4.2.8 微粒產生連續監測 27
4.2.9 產生微粒之特性分析 27
4.3 奈米微粒產生器 28
4.3.1 不同放電極直徑對電流電壓特性之影響 28
4.3.2不同放電極直徑對臭氧產生特性之影響 28
4.3.3不同放電極直徑對微粒產生特性之影響 28
4.3.4不同放電極材質對電流電壓特性之影響 29
4.3.5不同放電極材料對臭氧產生特性之影響 29
4.3.6不同放電極材質對微粒產生特性之影響 30
4.3.7不同溫度對微粒產生特性之影響 30
4.3.8不同風速對微粒產生特性之影響 30
4.3.9不同電流強度對微粒產生特性之影響 31
4.3.10不同收集板間距對微粒產生特性之影響 31
4.3.11 不同電流強度下的微粒產生反應時間 31
第五章 結論與建議 33
第六章 參考文獻 36
附錄 A 77
附錄 B 87

Adachi, M., Tsukui, S. and Okuyama, K., (2003). Nanoparticle formation mechanism in CVD reactor with ionization of source vapor. Journal of Nanoparticle Research, 5(1): 31-37.
Aromaa, M., Keskinen, K. and Makela Jyrki, M., (2007). The effect of process parameters on the Liquid Flame Spray generated titania nanoparticles. Biomolecular Engineering, 24(5): 543-548.
Balabanova, E., (2000). Mechanism of nanoparticle generation by high-temperature methods. Vacuum, 58(2-3): 174-182.
Barrero, A., Ganan-calvo, A.M., Davila, J., Palacios, A. and Gomez-gonzaleze, E., (1999). The role of the electrical conductivity and viscosity on the motions inside Taylor cones. Journal of Electrostatics, 47(1-2): 13-26.
Biris, A.S., De, S., Mazumder, M.K., Sims, R.A., Buzatu, D.A. and Mehta, R., (2004). Corona Generation and Deposition of Metal Nanoparticles on Conductive Surfaces and Their Effects on the Substrate Surface Texture and Chemistry. Particulate Science and Technology, 22(4): 405-416.
Bocci, V., (2006). Is it true that ozone is always toxic? The end of a dogma. Toxicology and Applied Pharmacology, 216(3): 493-504.
Boelter, K.J. and Davidson, J.H., (1997). Ozone generation by indoor, electrostatic air cleaners. Aerosol Science and Technology, 27(6): 689-708.
Borra, J., P., Jidenko, N. and Bourgeois, E., (2009). Atmospheric pressure plasmas for aerosols processes in materials and environment. European Physical Journal Applied Physics., 47(2): 22804.
Borra, J.P., Goldman, A., Goldman, M. and Boulaud, D., (1998). Electrical discharge regimes and aerosol production in point-to-plane DC high-pressure cold plasmas: aerosol production by electrical discharges. Journal of Aerosol Science, 29(5-6): 661-674.
Byeon, J.H., Park, J.H. and Hwang, J., (2008). Spark generation of monometallic and bimetallic aerosol nanoparticles. Journal of Aerosol Science, 39(10): 888-896.
Cai, H., Chaudhary, N., Lee, J., Becker, M.F., Brock, J.R. and Keto, J.W., (1998). Generation of metal nanoparticles by laser ablation of microspheres. Journal of Aerosol Science, 29(5-6): 627-636.
Castle, G.S.P., Inculet, I.I. and Burgess, K.I., (1969). Ozone generation in positive corona electrostatic precipitators. Industry and General Applications, IEEE Transactions on, IGA-5(4): 489-496.
Chang, C.-L. and Bai, H., (2000). Effects of some geometric parameters on the electrostatic precipitator efficiency at different operation Indexes. Aerosol Science & Technology, 33(3): 228-238.
Chang, J.S., Lawless, P.A. and Yamamoto, T., (1991). Corona discharge processes. Plasma Science, IEEE Transactions on, 19(6): 1152-1166.
Chen, J. and Davidson, J.H., (2002). Ozone production in the positive DC corona discharge: model and comparison to experiments. Plasma Chemistry and Plasma Processing, 22(4): 495-522.
Cheung, C.K.W., Haley, D., Fletcher, D.F., Barton, G.W. and McNamara, P., (2007). Simulation of particle-vortex interactions in the modified chemical vapor deposition process. Journal of Non-Crystalline Solids, 353(44-46): 4066-4075.
Datta, G., (2001). Effect of fixed horizontal louver shading devices on thermal perfomance of building by TRNSYS simulation. Renewable Energy, 23(3-4): 497-507.
El-Sayed, M.A., (2001). Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of chemical reaserch 34(4): 257-264.
Falaguasta, M.C.R., Coury, J.R. and Nobrega, S.W., (2006a). Scaleup investigation of a wire-plate geometry electrostatic precipitator. Particulate Science and Technology, 24(4): 453 - 465.
Falaguasta, M.C.R., Coury, J.R., oacute and brega, S.W., 2006b. Scaleup Investigation of a Wire-Plate Geometry Electrostatic Precipitator. Taylor & Francis, pp. 453 - 465.
Hatamipour, M.S. and Abedi, A., (2008). Passive cooling systems in buildings: Some useful experiences from ancient architecture for natural cooling in a hot and humid region. Energy Conversion and Management, 49(8): 2317-2323.
Hinds, W.C., 1999. Aerosol technology. John Wiley & Sons, Inc.
Hobbs, P.C.D., Gross, V.P. and Murray, K.D., (1990). Suppression of particle generation in a modified clean room corona air ionizer. Journal of Aerosol Science, 21(3): 463-465.
Horvath, H. and Gangl, M., (2003). A low-voltage spark generator for production of carbon particles. Journal of Aerosol Science, 34(11): 1581-1588.
Huang, S.H. and Chen, C.C., (2001). Filtration characteristics of a miniature electrostatic precipitator. Aerosol Science and Technology, 35: 792-804.
Huang, S.H. and Chen, C.C., (2002). Ultrafine aerosol penetration through electrostatic precipitators. Environmental Science and Technology, 36(21): 4625-4632.
Jaworek, A., Czech, T., Rajch, E. and Lackowski, M., (2006). Laboratory studies of back-discharge in fly ash. Journal of Electrostatics, 64(5): 326-337.
Jung, J.H., Hyun, C.O., Hyung, S.N., Ji, J.H. and Kim, S.S., (2006). Metal nanoparticle generation using a small ceramic heater with a local heating area. Journal of Aerosol Science, 37(12): 1662-1670.
Kim, J.-T. and Chang, J.-S., (2005). Generation of metal oxide aerosol particles by a pulsed spark discharge technique. Journal of Electrostatics, 63(6-10): 911-916.
Kunzli, N., Lurmann, F., Segal, M., Ngo, L., Balmes, J. and Tager, I.B., (1997). Association between lifetime ambient ozone exposure and pulmonary function in college freshmen--results of a pilot study. Environmental Research, 72(1): 8-23.
Lopez-Herrera, J.M., Barrero, A., Lopez., A., Loscertales, I.G. and Marquez., M., (2003). Coaxial jets generated from electrified Taylor cones. Scaling laws. Journal of Aerosol Science, 34(5): 535-552.
Liao, C.-M., Chiang, Y.-H. and Chio, C.-P., (2009). Assessing the airborne titanium dioxide nanoparticle-related exposure hazard at workplace. Journal of Hazardous Materials, 162(1): 57-65.
Liu, B., Hu, Z., Che, Y., Chen, Y. and Pan, X., (2007). Nanoparticle generation in ultrafast pulsed laser ablation of nickel. Applied Physics Letters, 90(4): 044103-1-04103-3.
Liu, B.Y.H., Pui, D.Y.H., Kinstley, W.O. and G., W., (1987). Aerosol charging and neutralization and electrostatic discharge in clean rooms. the journal of environmental sciences, 30(2): 5.
Makela, J.M., Keskinen, H., Forsblom, T. and Keskinen, J., (2004). Generation of metal and metal oxide nanoparticles by liquid flame spray process. Journal of Materials Science, 39(8): 2783-2788.
Malesevic, A., Vizireanu, S., Kemps, R., Vanhulsel, A., Haesendonck, C.V. and Dinescu, G., (2007). Combined growth of carbon nanotubes and carbon nanowalls by plasma-enhanced chemical vapor deposition. Carbon, 45(15): 2932-2937.
Marijnissen, J.C.M., Oostra, W., Mollinger, A.M. and Vercoulen, P.H.W., (1999). Electrostatic precipitator as a generator rather than a remover of small droplets. Environmental Science and Technology, 33(24): 4492-4494.
Mizuno, A., (2000). Electrostatic precipitation. Dielectrics and Electrical Insulation, IEEE Transactions on, 7(5): 615-624.
Mott, N.F., (1947). The theory of the formation of protective oxide films on metals.-III. Transactions of the Faraday Society, 43: 429-434.
Navarrete, B., Canadas, L., Cortes, V., Salvador, L. and Galindo, J., (1997). Influence of plate spacing and ash resistivity on the efficiency of electrostatic precipitators. Journal of Electrostatics, 39(1): 65-81.
Nolan, P.J. and O''Toole, C.P.J., (1959). The condensation nuclei produced by point discharge. Pure and Applied Geophysics, 42(1): 117-126.
Ohkubo, T., Hamasaki, S., Nomoto, Y., Chang, J.S. and Adachi, T., (1988). Effect of corona wire heating on the ozone generations in an air cleaning electrostatic precipitator. 35 n 6: 1647-1651.
Ohkubo, T., Kanazawa, S., Nomoto, Y., Jen-Shih, C. and Adachi, T., (1994). NOx removal by a pipe with nozzle-plate electrode corona discharge system. Industry Applications, IEEE Transactions on, 30(4): 856-861.
Patil, A.N., Andrest, R.P. and Otsuka, N., (1994). Synthesis and minimum energy structure of novel metal/silica clusters. J. Phys. Chem., 98: 9247-9251.
Peyrous, R. and Lapeyre, R.M., (1982). Gaseous products created by electrical discharges in the atmosphere and condensation nuclei resulting from gaseous phase reactions. Atmospheric Environment 16(5): 959-968.
Pontius, D.H., Bush, P.V. and Sparks, L.E., (1984). Performance of large-diameter wires as discharge electrodes in electrostatic precipitators. Journal of the Air Pollution Control Association, 34(12): 1203-1207.
Qi, C., Chen, D.-R. and Pui, D.Y.H., (2007). Experimental study of a new corona-based unipolar aerosol charger. Journal of Aerosol Science, 38(7): 775-792.
Rastkar, A.R., Niknam, A.R. and Shokri, B., (2009). Characterization of copper oxide nanolayers deposited by direct current magnetron sputtering. Thin Solid Films, 517(18): 5464-5467.
Romay, F.J., Liu, B.Y.H. and Pui, D.Y.H., (1994). A sonic jet corona ionizer for electrostatic discharge and aerosol neutralization. Aerosol Science and Technology, 20(1): 31-41.
Roth, C., Ferron, G.A., Karg, E., Lentner, B., Schumann, G., Takenaka, S. and Heyder, J., (2004). Generation of ultrafine particles by spark discharging. Aerosol Science and Technology, 38(3): 228-235.
Salata, O.V., (2004). Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology, 2(1): 1-6.
Sigmund, P., (1969). Theory of sputtering. I. sputtering yield of amorphous and polycrystalline targets. Physical Review, 184(2): 383-416.
Tager, I.B., Balmes, J., Lurmann, F., Ngo, L., Alcorn, S. and Kunzli, N., (2005). Chronic exposure to ambient ozone and lung function in young adults.[see comment]. Epidemiology, 16(6): 751-9.
Takaki, K., Shimizu, M., Mukaigawa, S. and Fujiwara, T., (2004). Effect of electrode shape in dielectric barrier discharge plasma reactor for NOx removal. Plasma Science, IEEE Transactions on, 32(1): 32-38.
Takeuchi, M., Imazono, H., Terashige, T., Kusakari, S., Tsuruta, N. and Okano, K., (2003). Contamination control of a corona discharge air ionizer. Semiconductor Manufacturing, 2003 IEEE International Symposium on: 483-486.
Tikkanen, J., Gross, K.A., Berndt, C.C., Pitkanen, V., Keskinen, J., Raghu, S., Rajala, M. and Karthikeyan, J., (1997). Characteristics of the liquid flame spray process. Surface and Coatings Technology, 90(3): 210-216.
Ullmann, M., Friedlander, S.K. and Schmidt-Ott, A., (2002). Nanoparticle formation by laser ablation. Journal of Nanoparticle Research, 4(6): 499-509.
Viner, A.S., Lawless, P.A., Ensor, D.S. and Sparks, L.E., (1992). Ozone generation in DC-energized electrostatic precipitators. IEEE Transactions on Industry Applications, 28(3): 504-512.
Waring, M.S., Siegel, J.A. and Corsi, R.L., (2008). Ultrafine particle removal and generation by portable air cleaners. Atmospheric Environment, 42(20): 5003-5014.
White, H.J., (1974). Resistivity problems in electrostatic precipitation. Journal of the Air Pollution Control Association, 24(4): 313-338.
Yagi, S. and Tanaka, M., (1979). Mechanism of ozone generation in air-fed ozonisers. Journal of Physics D: Applied Physics, 12(9): 1509.
Yehia, A. and Mizuno, A., (2005). Silver discharge electrode for suppression of ozone generation in positive dc corona. Industry Applications Conference, 3: 1828-1832 Vol. 3.
Yehia, A., mizuno, A. and takashima, K., (2000). On the characteristics of the corona discharge in a wire-duct reactor. Journal of Physics D: Applied Physics, 33(21): 2807.
Zhuang, Y., Jin Kim, Y., Gyu Lee, T. and Biswas, P., (2000). Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators. Journal of Electrostatics, 48(3-4): 245-260.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔