(3.231.229.89) 您好!臺灣時間:2019/12/15 20:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:詹為翔
研究生(外文):Wei-Hsiang Chan
論文名稱:振動篩板式霧化產生器特性研究
論文名稱(外文):Characterization of Vibrating Mesh Aerosol Generators
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh Chen
口試委員:鄭福田林文印陳友剛蕭大智
口試日期:2012-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:46
中文關鍵詞:霧化器呼吸治療振盪片振盪孔口板肺部沉積
外文關鍵詞:Nebulizerrespiratory careaerosol generationvibrating meshvibrating aperture platelung deposition
相關次數:
  • 被引用被引用:2
  • 點閱點閱:849
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來產生氣膠微粒的霧化器常被應用在醫療儀器上,現在常見的呼吸器投藥即是霧化器的應用之一。霧化器可有效的將藥物打碎成氣膠微粒狀,小粒徑微粒比例高且藥物殘餘量低,使呼吸病患者能藉由吸入的方式將藥物有效地送入肺部。現在常見用於治療囊腫性纖維化(cystic fibrosis)、氣喘、慢性肺部阻塞(COPD, chronic obstructive pulmonary disease)以及其他呼吸系統相關疾病。

而判斷霧化器效能的重要指標即是輸出的氣膠微粒的粒徑大小,不同粒徑大小對於呼吸治療的肺沉積效果也不同。根據ICRP(International Commission on Radiological Protection)的資料,微粒可進入肺部深層肺泡沉積的粒徑主要為2至10 μm,粒徑小至0.3 μm時穿透率較高較易到肺部深層的粒徑範圍。

本研究使用Vibrating mesh nebulizers作為研究材料,利用氣膠技術學的方法探討各影響霧化器輸出參數所產生的氣膠微粒粒徑與輸出量,本研究使用白光氣膠分徑儀(Welas)來量測氣膠微粒粒徑;實驗結果顯示有三個面向會影響輸出的粒徑與效率,第一為Vibrating mesh本身結構上的孔徑、孔間距與孔總面積,第二為調控nebulizer的振盪的電子參數如頻率、功率以及電壓等,第三面向為霧化器產生時外在的產生方向與傳輸溶液的方式,皆會影響輸出率與微粒的粒徑。

在本研究的條件下,當頻率為300 kHz,使用0.9%的氯化鈉溶液,目前產生的粒徑最小至約2 μm,最大粒徑可至10 μm,輸出量依傳輸速率不同,最大輸出流率可至4 mL/min;粒徑大小不受孔間距所影響,而輸出量與孔徑大小、孔總面積成正比關係。而振動的頻率越高,粒徑有較小的趨勢,但影響程度不明顯;另外給予的電流越大,輸出量也越多,但電流不影響粒徑分布。本研究所使用的振盪片霧化器最大特點為不受使用方向所影響,可在任何方向產生微粒不影響粒徑大小;雖然傳輸溶液的材料不影響粒徑,但仍須尋找更穩定傳輸溶液的方式與材料。


Recently developed vibrating mesh nebulizers have been reported to have increased output efficiency, minimal residual volume, and high percentage of particles in the emitted respirable and fine particle fraction. This work aimed to investigate and identify the major operating parameters of vibrating mesh nebulizers and their effects on the characteristics of aerosol output.

The vibrating mesh plates were customarily made to contain 279~4606 tapered holes. The aperture size was uniform on each plate and varied from 3 to 12 μm. The aperture distance also varied from 75 to 450 μm, to examine the potential of droplet coagulation. The aperture plates vibrated at a fixed frequency (100~300 kHz), which caused the ejection of liquid droplets. These nebulizers were mainly evaluated with 0.9% sodium chloride solution. A syringe pump was employed to carry the solution to the vibrating mesh plate. An aerosol size spectrometer (Welas 3000) was employed to measure the aerosol number concentration and size distribution.

The droplet size was found to increase with increasing aperture diameter. The distance between apertures and the frequency applied to the mesh plate did not significantly affect the aerosol concentration and size distribution. For each vibrating mesh of different aperture size and aperture number, there is an optimal vibrating frequency to stably deliver maximum amount of aerosol output. This maximum feeding rate increased with increasing aperture number and applied electric current, but the aerosol size distribution remained the same. Vibrating mesh aerosol generators can be orientation independent, if equipped with capillary transport device, such as fibrous absorbent materials.


致謝 I
摘要 II
Abstract IV
目 錄 VI
表目錄 VIII
圖目錄 IX
1. 研究緣起與目的 1
2. 文獻探討 2
2-1呼吸系統疾病現況 2
2-2霧化器 2
2-2-1 Jet nebulizers 3
2-2-2 Ultrasonic wave nebulizers 3
2-2-3 Vibrating mesh nebulizers 3
2-3肺部沉積粒徑 4
3. 實驗材料與方法 5
3-1霧化器: 5
3-2測試系統建置 6
3-3分析與資料統整 7
3-4實驗參數 9
4. 結果與討論 10
4-1壓電陶瓷振盪片共振頻率特性 10
4-2振盪片構型參數影響因子研究 10
4-2-1 孔徑對微粒產生的影響 10
4-2-2 孔間距對微粒產生的影響 11
4-2-3 最大輸出量 11
4-2-4 孔數對最高濃度供給輸出量的影響 12
4-2-5 孔徑、孔數的孔總面積對最大供給輸出量的影響 12
4-3 驅動振盪片的電子參數 12
4-3-1 頻率對微粒產生的影響 12
4-3-2 電流對微粒產生的影響 13
4-4 產生方式的影響 13
4-4-1 產生的方向性探討 13
4-4-2 間隙特性與毛細作用的影響 13
5 結論與建議 15
6 參考文獻 17


Alvine, G. F., Rodgers, P., Fitzsimmons, K. M. and Ahrens, R. C. (1992). Disposable jet nebulizers - how reliable are they. Chest 101:316-319.
Amaral, C. D., Guerra, V. G., Arouca, F. O. and Coury, J. R. (2010). Effect of the salt solution concentration in the number and size distribution of atomized nanometric aerosol particles. Materials Science Forum 660-661:581-586.
Bisgaard, H., Klug, B., Sumby, B. S. and Burnell, P. K. P. (1998). Fine particle mass from the diskus inhaler and turbuhaler inhaler in children with asthma. Eur Respir J 11:1111-1115.
Brocklebank, D., Ram, F., Wright, J., Barry, P., Cates, C., Davies, L., Douglas, G., Muers, M., Smith, D. and White, J. (2001). Comparison of the effectiveness of inhaler devices in asthma and chronic obstructive airways disease: A systematic review of the literature. Health Technol Assess 5:1-149.
Cady, W. G. (1964). Piezoelectricity : An introduction to the theory and applications of electromechanical phenomena, Dover Publications, Dover, USA.
Chetan, M. and Negoias, A. (2011). New approaches to nebulizer drug delivery, in Advanced Topics in Electrical Engineering (ATEE), 2011 7th International Symposium on, 1-4.
Davies, C. N. (1979). Coagulation of aerosols by brownian-motion. Journal of Aerosol Science 10:151-161.
Dhand, R. (2008). Aerosol delivery during mechanical ventilation: From basic techniques to new devices. Journal of Aerosol Medicine and Pulmonary Drug Delivery 21:45-60.
Dhand, R. (2002). Nebulizers that use a vibrating mesh or plate with multiple apertures to generate aerosol. Respiratory Care Journal Online 47:1406-1416; discussion 1416-1408.
Dhand, R. and Sohal, H. (2008). Pulmonary drug delivery system for inhalation therapy in mechanically ventilated patients. Expert Rev Med Devic 5:9-18.
Emmett, P. C., Aitken, R. J. and Hannan, W. J. (1982). Measurements of the total and regional deposition of inhaled particles in the human respiratory-tract. Journal of Aerosol Science 13:549-560.
Ferron, G. A. and Soderholm, S. C. (1990). Estimation of the times for evaporation of pure water droplets and for stabilization of salt solution particles. Journal of Aerosol Science 21:415-429.
Ghazanfari, T., Elhissi, A., Ding, Z. and Taylor, K. (2007). The influence of fluid physicochemical properties on vibrating-mesh nebulization. International Journal of Pharmaceutics 339:103-111.
Gonda, I. (2004). Targeting by deposition, Pharmaceutical inhalation aerosol technology, A. J. Hickey, ed., Marcel Dekker, New York, USA65-88.
Hardy, J. G., Newman, S. P. and Knoch, M. (1993). Lung deposition from four nebulizers. Respiratory Medicine 87:461-465.
Hess, D. R. (2004). The evidence for noninvasive positive-pressure ventilation in the care of patients in acute respiratory failure: A systematic review of the literature. Resp Care 49:810-829.
Heyder, J., Gebhart, J., Rudolf, G., Schiller, C. F. and Stahlhofen, W. (1986). Deposition of particles in the human respiratory tract in the size range 0.005-15 μm. Journal of Aerosol Science 17:811-825.
Hodkinson, J. R. and Greenlea, I. (1963). Computations of light-scattering and extinction by spheres according to diffraction and geometrical optics, and some comparisons with mie theory. J Opt Soc Am 53:577-588.
Hurd, S. (2000). The impact of copd on lung health worldwide - epidemiology and incidence. Chest 117:1-4.
James, A. C., Stahlhofen, W., Rudolf, G., Egan, M. J., Nixon, W., Gehr, P. and Briant, J. K. (1991). The respiratory-tract deposition model proposed by the icrp task group. Radiat Prot Dosim 38:159-165.
Jaques, P. A. and Kim, C. S. (2000). Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal Toxicol 12:715-731.
Lai, J. M., Huang, C. Y., Chen, C. H., Kung, L. L. and Lin, J. D. (2010). Influence of liquid hydrophobicity and nozzle passage curvature on microfluidic dynamics in a drop ejection process. J Micromech Microeng 20:1-14.
Liesker, J. J. W., Wijkstra, P. J., Ten Hacken, N. H. T., Koeter, G. H., Postma, D. S. and Kerstjens, H. A. M. (2002). A systematic review of the effects of bronchodilators on exercise capacity in patients with copd. Chest 121:597-608.
Lin, H. B., Eversole, J. D. and Campillo, A. J. (1990). Vibrating orifice droplet generator for precision optical studies. Rev Sci Instrum 61:1018-1023.
Maehara, N., Ueha, S. and Mori, E. (1986). Influence of the vibrating system of a multipinhole-plate ultrasonic nebulizer on its performance. Rev Sci Instrum 57:2870-2876.
Masoli, M., Fabian, D., Holt, S., Beasley, R. and Program, G. (2004). The global burden of asthma: Executive summary of the gina dissemination committee report. Allergy 59:469-478.
Mercer, T. T. (1973a). Aerosol technology in hazard evaluation, Academic Press, New York, USA, 249-289.
Mercer, T. T. (1973b). Production and characterization of aerosols. Arch Intern Med 131:39-50.
Murray, C. J. L. and Lopez, A. D. (1997). Alternative projections of mortality and disability by cause 1990-2020: Global burden of disease study. Lancet 349:1498-1504.
Nabel, E. G. (2007). Lung diseases, 2007 NHLBI morbidity and mortality chart book National Heart Lung and Blood Institute, Bethesda, USA, 4 62-87.
Neman, S. and Gee-Turner, A. (2005). The omron microair vibrating mesh technology nebuliser, a 21st century approach to inhalation therapy. Steve Newman and Adrian Gee-Turner 5:29-33.
Nickens, H. V. and Yannitell, D. W. (1987). The effects of surface-tension and viscosity on the rise velocity of a large gas bubble in a closed, vertical liquid-filled tube. Int J Multiphas Flow 13:57-69.
OCallaghan, C. and Barry, P. W. (1997). The science of nebulised drug delivery. Thorax 52:S31-S44.
Phipps, P. R. and Gonda, I. (1990). Droplets produced by medical nebulizers - some factors affecting their size and solute concentration. Chest 97:1327-1332.
Pilacinski, W., Ruuskanen, J., Chen, C. C., Pan, M. J. and Willeke, K. (1990). Size-fractionating aerosol generator. Aerosol Sci Tech 13:450-458.
Pritchard, J. N. (2001). The influence of lung deposition on clinical response. J Aerosol Med 14:S19-S26.
Rao, N., Kadrichu, N. and Ament, B. (2010). Application of a droplet evaporation model to aerodynamic size measurement of drug aerosols generated by a vibrating mesh nebulizer. Journal of Aerosol Medicine and Pulmonary Drug Delivery 23:295-302.
Rau, J. L. (2005). The inhalation of drugs: Advantages and problems. Resp Care 50:367-382.
Scheuch, G., Kohlhaeufl, M. J., Brand, P. and Siekmeler, R. (2006). Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv Drug Deliver Rev 58:996-1008.
Skaria, S. and Smaldone, G. C. (2010). Omron NE U22: Comparison between vibrating mesh and jet nebulizer. Journal of Aerosol Medicine and Pulmonary Drug Delivery 23:173-180.
Stahlhofen, W. (1980). Experimental-determination of the regional deposition of aerosol-particles in the human respiratory-tract. American Industrial Hygiene Association Journal 41:385-398.
Su, G. G., Longest, P. W. and Pidaparti, R. M. (2010). A novel micropump droplet generator for aerosol drug delivery: Design simulations. Biomicrofluidics 4:044108.
Takahashi, M., Sudou, K. and Hirayama, H. (1989). Ultrasonic wave nebulizers. USA Patent No. 4850534. United States Patent
Waldrep, J. C., Berlinski, A. and Dhand, R. (2007). Comparative analysis of methods to measure aerosols generated by a vibrating mesh nebulizer. J Aerosol Med 20:310-319.
Waldrep, J. C. and Dhand, R. (2008). Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Deliv 5:114-119.
Watts, A. B., McConville, J. T. and Williams, R. O. (2008). Current therapies and technological advances in aqueous aerosol drug delivery. Drug Dev Ind Pharm 34:913-922.
Xu, G. B. and Yu, C. P. (1985). Theoretical lung deposition of hygroscopic NaCl aerosols. Aerosol Sci Tech 4:455-461.
Zhang, G. F., David, A. and Wiedmann, T. S. (2007). Performance of the vibrating membrane aerosol generation device: Aeroneb micropump nebulizerTM. J Aerosol Med 20:408-416.
行政院衛生署 (2012). Icd-10全國主要死亡原因, 民國100年死因統計摘要表, 台北, 台灣, 2 2.
陳文賓. (2003). 水霧激發器之構合形態. 台灣 Patent No. 203923. 中華民國專利


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔