|
1.Texereau, J., et al., Importance of hemostatic gene polymorphisms for susceptibility to and outcome of severe sepsis. Crit Care Med, 2004. 32(5 Suppl): p. S313-9. 2.Clarke, S.H. and L.W. Arnold, B-1 cell development: evidence for an uncommitted immunoglobulin (Ig)M+ B cell precursor in B-1 cell differentiation. J Exp Med, 1998. 187(8): p. 1325-34. 3.Angus, D.C., et al., Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med, 2001. 29(7): p. 1303-10. 4.行政院衛生署, 行政院衛生署民國100年縣市別死因統計計結果.2012年6月19日取自http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=12333&class_no=440&level_no=3. 2012. 5.台灣醫學, 王淑惠、林中華、施炳霖,敗血症及器官失調,臺灣醫學,12(2):250-258,2005. 2005.6.American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med, 1992. 20(6): p. 864-74. 7.Rice, T.W. and G.R. Bernard, Therapeutic intervention and targets for sepsis. Annu Rev Med, 2005. 56: p. 225-48. 8.Minneci, P.C., et al., Meta-analysis: the effect of steroids on survival and shock during sepsis depends on the dose. Ann Intern Med, 2004. 141(1): p. 47-56. 9.van den Berghe, G., et al., Intensive insulin therapy in critically ill patients. N Engl J Med, 2001. 345(19): p. 1359-67. 10.Green, C., et al., Clinical effectiveness and cost-effectiveness of drotrecogin alfa (activated) (Xigris) for the treatment of severe sepsis in adults: a systematic review and economic evaluation. Health Technol Assess, 2005. 9(11): p. 1-126, iii-iv. 11.Bernard, G.R., et al., Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med, 2001. 344(10): p. 699-709. 12.Parrillo, J.E., Severe sepsis and therapy with activated protein C. N Engl J Med, 2005. 353(13): p. 1398-400. 13.Mitchell PF, a.A.G., Animal models of sepsis and septic shock. (1999). In: New Frontiers in Sepsis. pp: 596-613. 1999. 14.Piper, R.D., et al., Introducing Critical Appraisal to studies of animal models investigating novel therapies in sepsis. Crit Care Med, 1996. 24(12): p. 2059-70. 15.Dobrovolskaia, M.A. and S.N. Vogel, Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect, 2002. 4(9): p. 903-14. 16.Mayeux, P.R., Pathobiology of lipopolysaccharide. J Toxicol Environ Health, 1997. 51(5): p. 415-35. 17.Rank, N., et al., N-acetylcysteine increases liver blood flow and improves liver function in septic shock patients: results of a prospective, randomized, double-blind study. Crit Care Med, 2000. 28(12): p. 3799-807. 18.Haveman, J.W., et al., The central role of monocytes in the pathogenesis of sepsis: consequences for immunomonitoring and treatment. Neth J Med, 1999. 55(3): p. 132-41. 19.Philippart, F. and J.M. Cavaillon, Sepsis mediators. Curr Infect Dis Rep, 2007. 9(5): p. 358-65. 20.Payen, D., C. Bernard, and S. Beloucif, Nitric oxide in sepsis. Clin Chest Med, 1996. 17(2): p. 333-50. 21.Heumann, D. and T. Roger, Initial responses to endotoxins and Gram-negative bacteria. Clin Chim Acta, 2002. 323(1-2): p. 59-72. 22.Takeda, K., T. Kaisho, and S. Akira, Toll-like receptors. Annu Rev Immunol, 2003. 21: p. 335-76. 23.Kiyoshi Takeda, S.A., . 2005. 24.Akira, S., S. Uematsu, and O. Takeuchi, Pathogen recognition and innate immunity. Cell, 2006. 124(4): p. 783-801. 25.Beutler, B., Inferences, questions and possibilities in Toll-like receptor signalling. Nature, 2004. 430(6996): p. 257-63. 26.Uematsu, S. and S. Akira, Toll-like receptors and innate immunity. J Mol Med (Berl), 2006. 84(9): p. 712-25. 27.Poltorak, A., et al., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 1998. 282(5396): p. 2085-8. 28.Faure, E., et al., Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol, 2001. 166(3): p. 2018-24. 29.Song, M.J., et al., Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun, 2006. 346(3): p. 739-45. 30.Wang, Z. and T. Nakayama, Inflammation, a link between obesity and cardiovascular disease. Mediators Inflamm, 2010. 2010: p. 535918. 31.Wisse, B.E., The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol, 2004. 15(11): p. 2792-800. 32.Neels, J.G. and J.M. Olefsky, Inflamed fat: what starts the fire? J Clin Invest, 2006. 116(1): p. 33-5. 33.Lien, E. and R.R. Ingalls, Toll-like receptors. Crit Care Med, 2002. 30(1 Supp): p. S1-S11. 34.Henneke, P. and D.T. Golenbock, Innate immune recognition of lipopolysaccharide by endothelial cells. Crit Care Med, 2002. 30(5 Suppl): p. S207-13. 35.Arumugam, T.V., et al., Toll-like receptors in ischemia-reperfusion injury. Shock, 2009. 32(1): p. 4-16. 36.Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Surveillance of Cerebral Palsy in Europe (SCPE). Dev Med Child Neurol, 2000. 42(12): p. 816-24. 37.Huang, L., et al., MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. Cancer Biol Ther, 2003. 2(6): p. 702-6. 38.Huang, P.Y., et al., Affinity purification of von Willebrand factor using ligands derived from peptide libraries. Bioorg Med Chem, 1996. 4(5): p. 699-708. 39.Pearson, G., et al., Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev, 2001. 22(2): p. 153-83. 40.Arbabi, S. and R.V. Maier, Mitogen-activated protein kinases. Crit Care Med, 2002. 30(1 Supp): p. S74-S79. 41.Ajizian, S.J., B.K. English, and E.A. Meals, Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J Infect Dis, 1999. 179(4): p. 939-44. 42.Uto, T., M. Fujii, and D.X. Hou, 6-(Methylsulfinyl)hexyl isothiocyanate suppresses inducible nitric oxide synthase expression through the inhibition of Janus kinase 2-mediated JNK pathway in lipopolysaccharide-activated murine macrophages. Biochem Pharmacol, 2005. 70(8): p. 1211-21. 43.Carter, A.B., et al., The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). J Biol Chem, 1999. 274(43): p. 30858-63. 44.Nakano, H., et al., Differential regulation of IkappaB kinase alpha and beta by two upstream kinases, NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc Natl Acad Sci U S A, 1998. 95(7): p. 3537-42. 45.Pahl, H.L., Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 1999. 18(49): p. 6853-66. 46.Cogswell, J.P., et al., NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol, 1994. 153(2): p. 712-23. 47.Gray, J.G., et al., A CRE/ATF-like site in the upstream regulatory sequence of the human interleukin 1 beta gene is necessary for induction in U937 and THP-1 monocytic cell lines. Mol Cell Biol, 1993. 13(11): p. 6678-89. 48.Senftleben, U. and M. Karin, The IKK/NF-kappaB pathway. Crit Care Med, 2002. 30(1 Supp): p. S18-S26. 49.Zingarelli, B., M. Sheehan, and H.R. Wong, Nuclear factor-kappaB as a therapeutic target in critical care medicine. Crit Care Med, 2003. 31(1 Suppl): p. S105-11. 50.Karin, M., How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene, 1999. 18(49): p. 6867-74. 51.Israel, A., The IKK complex: an integrator of all signals that activate NF-kappaB? Trends Cell Biol, 2000. 10(4): p. 129-33. 52.van der Bruggen, T., et al., Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infect Immun, 1999. 67(8): p. 3824-9. 53.Means, T.K., et al., Activation of TNF-alpha transcription utilizes distinct MAP kinase pathways in different macrophage populations. J Leukoc Biol, 2000. 67(6): p. 885-93. 54.Favata, M.F., et al., Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem, 1998. 273(29): p. 18623-32. 55.Scherle, P.A., et al., Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. J Immunol, 1998. 161(10): p. 5681-6. 56.Chen, C.H., S.W. Yang, and Y.C. Shen, New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum. J Nat Prod, 1995. 58(11): p. 1655-61. 57.Sheng-Hua Wu, L.R.a.T.-T.C., . 1997. 58.Song, T.Y. and G.C. Yen, Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against CCl4-induced hepatic toxicity in rats. J Agric Food Chem, 2003. 51(6): p. 1571-7. 59.Ryhanen, L., et al., The effect of malotilate on type III and type IV collagen, laminin and fibronectin metabolism in dimethylnitrosamine-induced liver fibrosis in the rat. J Hepatol, 1996. 24(2): p. 238-45. 60.Hseu, Y.C., et al., Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sci, 2002. 71(4): p. 469-82. 61.Mizuno, T., “Bioactive biomolecules of mushrooms: food function and medicinal effect of mushroom fungi,” Food Rev.int, Vol. 11, pp. 7-21 (1995). 1995. 62.Huang, G.J., et al., Analgesic effects and the mechanisms of anti-inflammation of ergostatrien-3beta-ol from Antrodia camphorata submerged whole broth in mice. J Agric Food Chem, 2010. 58(12): p. 7445-52. 63.Song, T.Y. and G.C. Yen, Antioxidant properties of Antrodia camphorata in submerged culture. J Agric Food Chem, 2002. 50(11): p. 3322-7. 64.Tai, T., Akahori, A., and Shingu, T., “Triterpenes of Poria cocos,” Phytochemistry, Volume 32, Issue 5, March 1993, Pages 1239–1244. . 1993. 65.Lu, Z.M., et al., Protective effects of mycelia of Antrodia camphorata and Armillariella tabescens in submerged culture against ethanol-induced hepatic toxicity in rats. J Ethnopharmacol, 2007. 110(1): p. 160-4. 66.YU-YUN DAI, C.-H.C., CHIN-CHUAN TSAI, HOK-MAN SIO,SHI-CHENG HUANG, JIN-CHU CHEN AND MIAO-LIN HU, . 2003. 67.Hattori M , S.C., Compounds from Antrodia camphorate having anti-inflammatory and antitumor activity. US Patent 7109232 (2006). 2006. 68.Nakamura, N., et al., Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line. J Nat Prod, 2004. 67(1): p. 46-8. 69.Cheng, J.J., et al., Study for anti-angiogenic activities of polysaccharides isolated from Antrodia cinnamomea in endothelial cells. Life Sci, 2005. 76(26): p. 3029-42. 70.Geethangili, M. and Y.M. Tzeng, Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds. Evid Based Complement Alternat Med, 2011. 2011: p. 212641. 71.Wen, C.L., et al., Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo. J Ethnopharmacol, 2011. 137(1): p. 575-84. 72.Lee, T.H., et al., A new cytotoxic agent from solid-state fermented mycelium of Antrodia camphorata. Planta Med, 2007. 73(13): p. 1412-5. 73.Yang, S.S., et al., New constituents with iNOS inhibitory activity from mycelium of Antrodia camphorata. Planta Med, 2009. 75(5): p. 512-6. 74.Chiang, P.C., et al., Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways. Biochem Pharmacol, 2010. 79(2): p. 162-71. 75.Chen, C.C., et al., Chemical characterization and anti-inflammatory effect of polysaccharides fractionated from submerge-cultured Antrodia camphorata mycelia. J Agric Food Chem, 2007. 55(13): p. 5007-12. 76.Chang, J.M., et al., An Extract of Antrodia camphorata Mycelia Attenuates the Progression of Nephritis in Systemic Lupus Erythematosus-Prone NZB/W F1 Mice. Evid Based Complement Alternat Med, 2011. 2011: p. 465894. 77.Chen, C.C., Lin, W.H., Chen, C.N., Hsu, S.J., Huang, S.C., Chen, Y.L, . 2001. 78.Chen, T.I., et al., A 90-day subchronic toxicological assessment of Antrodia cinnamomea in Sprague-Dawley rats. Food Chem Toxicol, 2011. 49(2): p. 429-33. 79.Lin, Y.W., et al., The 4-acetylantroquinonol B isolated from mycelium of Antrodia cinnamomea inhibits proliferation of hepatoma cells. J Sci Food Agric, 2010. 90(10): p. 1739-44. 80.Lin, Y.W. and B.H. Chiang, 4-acetylantroquinonol B isolated from Antrodia cinnamomea arrests proliferation of human hepatocellular carcinoma HepG2 cell by affecting p53, p21 and p27 levels. J Agric Food Chem, 2011. 59(16): p. 8625-31. 81.Joh, E.H. and D.H. Kim, Kalopanaxsaponin A ameliorates experimental colitis in mice by inhibiting IRAK-1 activation in the NF-kappaB and MAPK pathways. Br J Pharmacol, 2011. 162(8): p. 1731-42. 82.Correa, G.T., et al., Cytotoxicity evaluation of two root canal sealers and a commercial calcium hydroxide paste on THP1 cell line by Trypan Blue assay. J Appl Oral Sci, 2009. 17(5): p. 457-61. 83.Su, C.C. and Y.H. Lin, Tanshinone IIA down-regulates the protein expression of ErbB-2 and up-regulates TNF-alpha in colon cancer cells in vitro and in vivo. Int J Mol Med, 2008. 22(6): p. 847-51. 84.Kim, K.N., et al., Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-kappaB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. Eur J Pharmacol, 2010. 649(1-3): p. 369-75. 85.Valarmathi, M.T., et al., BRCA1 germline mutations in Indian familial breast cancer. Hum Mutat, 2003. 21(1): p. 98-9. 86.Strasser, A., L. O'Connor, and V.M. Dixit, Apoptosis signaling. Annu Rev Biochem, 2000. 69: p. 217-45. 87.Vassalli, P., The pathophysiology of tumor necrosis factors. Annu Rev Immunol, 1992. 10: p. 411-52. 88.Trautwein, C., et al., Acute-phase response factor, increased binding, and target gene transcription during liver regeneration. Gastroenterology, 1996. 110(6): p. 1854-62. 89.Nagakawa, J., et al., Interleukin-1 alpha enhances hepatotoxicity of tumor necrosis factor-alpha in galactosamine-sensitized mice. Immunopharmacol Immunotoxicol, 1991. 13(4): p. 485-98. 90.Valente, A.J., et al., Purification of a monocyte chemotactic factor secreted by nonhuman primate vascular cells in culture. Biochemistry, 1988. 27(11): p. 4162-8. 91.Navab, M., et al., Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest, 1991. 88(6): p. 2039-46. 92.Cushing, S.D., et al., Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A, 1990. 87(13): p. 5134-8. 93.Strieter, R.M., et al., Monocyte chemotactic protein gene expression by cytokine-treated human fibroblasts and endothelial cells. Biochem Biophys Res Commun, 1989. 162(2): p. 694-700. 94.Rollins, B.J., et al., Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE. Am J Pathol, 1990. 136(6): p. 1229-33. 95.Wang, J.M., et al., Expression of monocyte chemotactic protein and interleukin-8 by cytokine-activated human vascular smooth muscle cells. Arterioscler Thromb, 1991. 11(5): p. 1166-74. 96.Prescott, S.M., et al., Inflammation as an early component of atherosclerosis and vascular damage--a role for P-selectin and platelet-activating factor. Jpn Circ J, 1996. 60(3): p. 137-41. 97.Frostegard, J., et al., Platelet-activating factor and oxidized LDL induce immune activation by a common mechanism. Arterioscler Thromb Vasc Biol, 1997. 17(5): p. 963-8. 98.Jordan, N.J., et al., Chemokine production by human vascular smooth muscle cells: modulation by IL-13. Br J Pharmacol, 1997. 122(4): p. 749-57. 99.Marumo, T., et al., Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappaB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation, 1997. 96(7): p. 2361-7. 100.Wempe, F., V. Lindner, and H.G. Augustin, Basic fibroblast growth factor (bFGF) regulates the expression of the CC chemokine monocyte chemoattractant protein-1 (MCP-1) in autocrine-activated endothelial cells. Arterioscler Thromb Vasc Biol, 1997. 17(11): p. 2471-8. 101.Yamboliev, I.A. and W.T. Gerthoffer, Modulatory role of ERK MAPK-caldesmon pathway in PDGF-stimulated migration of cultured pulmonary artery SMCs. Am J Physiol Cell Physiol, 2001. 280(6): p. C1680-8. 102.Nguyen, D.H., et al., Myosin light chain kinase functions downstream of Ras/ERK to promote migration of urokinase-type plasminogen activator-stimulated cells in an integrin-selective manner. J Cell Biol, 1999. 146(1): p. 149-64. 103.Ashida, N., et al., Distinct signaling pathways for MCP-1-dependent integrin activation and chemotaxis. J Biol Chem, 2001. 276(19): p. 16555-60. 104.Hedges, J.C., et al., A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem, 1999. 274(34): p. 24211-9. 105.Cambien, B., et al., Signal transduction involved in MCP-1-mediated monocytic transendothelial migration. Blood, 2001. 97(2): p. 359-66. 106.Yen, H., et al., MCP-1-mediated chemotaxis requires activation of non-overlapping signal transduction pathways. J Leukoc Biol, 1997. 61(4): p. 529-32. 107.Denes, L., et al., Pharmacologically activated migration of aortic endothelial cells is mediated through p38 SAPK. Br J Pharmacol, 2002. 136(4): p. 597-603. 108.Tangkijvanich, P., et al., p38 MAP kinase mediates platelet-derived growth factor-stimulated migration of hepatic myofibroblasts. J Cell Physiol, 2002. 191(3): p. 351-61. 109.Li, W., et al., The p38-MAPK/SAPK pathway is required for human keratinocyte migration on dermal collagen. J Invest Dermatol, 2001. 117(6): p. 1601-11. 110.Goncharova, E.A., et al., Activation of p38 MAP-kinase and caldesmon phosphorylation are essential for urokinase-induced human smooth muscle cell migration. Biol Chem, 2002. 383(1): p. 115-26. 111.Piotrowicz, R.S. and E.G. Levin, Basolateral membrane-associated 27-kDa heat shock protein and microfilament polymerization. J Biol Chem, 1997. 272(41): p. 25920-7. 112.Van der Goes, A., et al., Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. FASEB J, 2001. 15(10): p. 1852-4. 113.Wang, Z., M.R. Castresana, and W.H. Newman, Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem Biophys Res Commun, 2001. 285(3): p. 669-74. 114.Tamura, M., et al., Direct interaction of actin with p47(phox) of neutrophil NADPH oxidase. Biochem Biophys Res Commun, 2000. 276(3): p. 1186-90.
|
| |