跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 10:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馬德威
研究生(外文):Ma, Te-Wei
論文名稱:柑橘類果皮添加對樟芝代謝生理活性物質之影響
論文名稱(外文):Effect of citrus peel addition on the formation of bioactive metabolites of Antrodia cinnamomea
指導教授:楊芳鏘楊芳鏘引用關係
指導教授(外文):Yang, Fan-Chiang
口試委員:顧野松顏宏偉盧錫祺王敏盈林俊杰楊芳鏘
口試委員(外文):Gu, YesongYen, Hong-WeiLu, Hsi-ChiWang, Min-YingLin, Zun-JieYang, Fan-Chiang
口試日期:2012-06-12
學位類別:博士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:138
中文關鍵詞:樟芝三萜類平板式固態培養柑橘類果皮檸檬烯
外文關鍵詞:Antrodia cinnamomeatriterpenoidsplate solid state culturecitrus peellimonene
相關次數:
  • 被引用被引用:12
  • 點閱點閱:1759
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:0
樟芝已廣泛應用在台灣傳統醫藥,主要有效成份來自於大分子的多醣體、小分子的三萜類化合物、半萜內酯化合物及固醇類,樟芝的生理活性成分及功能仍是目前研究重點。除多醣體外,近年來最受重視的生理活性物質就是三萜類。本研究目的為評估樟芝深層培養添加柑橘類果皮精油及樟芝平板式固態培養添加柑橘類果皮粉末提高生理活性代謝產物的可行性。
兩階段溶氧培養(在第21天靜置)對樟芝菌絲體三萜類代謝有良好的促進功效,在培養28天後三萜類含量達22.30 mg/g DW,為控制組(10.48 mg/g DW)的2.13倍。橘子果皮精油添加對樟芝菌絲體形成生理活性代謝產物促進效果最佳,在第7天添加橘子果皮精油4% (v/v),三萜類含量和產量達到最高值,為117.17 mg/g DW和1417.77 mg/L,分別為控制組的11倍及14倍。檸檬烯為柑橘類果皮精油促進樟芝菌絲體生成三萜類的重要成分之ㄧ,檸檬烯進入細胞的質體內,抑制MCC路徑的單萜類生成,改由MVA路徑合成三萜類。
蕎麥平板式固態培養,菌絲體只能在基質表面上成長,因此取樣時可以將菌絲體與基質分離,完整分析菌絲體生理活性。葡萄柚果皮粉末添加能有效提升生理活性代謝物產量,當添加4 g/plate葡萄柚果皮粉末時,第30天三萜類的含量與產量分別為47.10 mg/g DW和166.68 mg/plate,為控制組(9.66 mg/g DW和32.26 mg /plate)的4.88倍與5.17倍。此外由HPLC圖譜中,發現經添加葡萄柚果皮粉末平板式固態培養的樟芝,含有代表子實體形成有關的5種麥角甾烷三萜類(ergostanes: antcins C and K, and zhankuic acids A, B, and C),因此可以證明,此種培養在短時間(30天)所得到的三萜類化合物與野生樟芝子實體成份大致相同,換句話說,此培養得到的應該為樟芝子實體。


Basidiomes of Antrodia cinnamomea are used as a traditional medicine in Taiwan. Bioactive compounds found in A. cinnamomea include: polysaccharide, triterpenoids, sesquiterpene lactone, and steroids. The bioactivity and efficacy of A. cinnamomea are still the main focus in many researches. In addition to polysaccharide, triterpenoids have recently been considered as the most biologically active components. The aim of this study was to evaluate the feasibility of adding citrus peel extract in the submerged culture or adding citrus peel powder on the plate solid state culture of A. cinnamomea to enhance the formation of bioactive metabolites.
A two-stage fermentation process was proposed to enhance triterpenoids content by combining the conventional shake-flask fermentation (on the 21th day) with static culture (on the 7th day). The content of triterpenoids rose from 10.48 mg/g DW of the control to 22.30 mg/g DW on the 28th day. Adding tangerine peel extract was the most effective way to enhance bioactive metabolite production. With an addition of 4% (v/v) on the seventh day, the content and production of triterpenoids were 117.17 mg/g DW and 1417.77 mg/L, which were 10-fold and 13-fold higher than the control, respectively, on the 28th day. Limonene was an important ingredient of citrus peel extract to enhance the formation of triterpenoids in the submerged culture of A. cinnamomea. When limonene entered the mitochondria, MCC pathway was inhibited which synthesizes monoterpenes in the mitochondria. Thus MVA pathway was then enhanced to synthesize triterpenes in the cytoplasm.
Mycelia of the plate solid state culture only grew on the substrate surface so that it was easy to separate mycelia from the substrate surface. Grapefruit was the most effective element in enhancing bioactive metabolite production. With an addition of 4 g powder/plate, the content and production of triterpenoids rose from 9.66 mg/g DW and 32.26 mg/plate of the control to 47.10 mg/g DW and 166.68 mg/plate, respectively, on the 30th day. Moreover, this study also demonstrates that the plate solid state culture with an additional grapefruit powder of A. cinnamomea could contain the 5 ergostanes (antcins C and K, and zhankuic acids A, B, and C). The production of ergostanes is related to basidiomatal formation of A. cinnamomea. This result indicates that mycelia of this culture could be basidiomes of A. cinnamomea.


目錄
中文摘要 ...........................................I
Abstract ........................................III
謝誌 ..............................................V
目錄 ............................................VII
表目錄 .........................................XIII
圖目錄 ...........................................XV
第一章 緒論 ........................................1
1-1前言 ...........................................1
1-2樟芝的介紹 ......................................2
1-2-1樟芝之命名 ....................................2
1-2-2樟芝的分類地位 ................................3
1-3樟芝生理活性成分 ................................5
1-3-1多醣體 .......................................5
1-3-2三萜類 .......................................7
1-3-3總多酚 ......................................10
第二章 樟芝兩階段深層培養 ...........................13
2-1前言 ..........................................13
2-1-1物理因素 .....................................14
2-1-2化學因素 .....................................16
2-1-3深層培養樟芝菌絲體功效 .........................18
2-2實驗材料與方法 ..................................19
2-2-1實驗藥品 .....................................20
2-2-2實驗儀器與設備 ................................21
2-2-3實驗方法 .....................................22
2-2-3-1菌種斜面試管保存 ............................22
2-2-3-2培養皿平面培養 ..............................23
2-2-3-3種菌的製備 .................................23
2-2-3-4三角瓶液態基礎培養試驗 .......................23
2-2-3-5兩階段培養溶氧變化試驗 .......................24
2-2-3-6兩階段培養溫度變化培養試驗 ....................25
2-2-3-7兩階段培養pH變化培養試驗 ......................25
2-2-4分析方法 ......................................26
2-2-4-1菌體濃度 ....................................26
2-2-4-2 pH值測定 .................................. 26
2-2-4-3 澱粉分析方法 ................................26
2-2-4-4胞內總多酚含量測定 ............................27
2-2-4-5胞內多醣濃度測定 ..............................27
2-2-4-6胞內三萜類含量測定 ............................28
2-3實驗結果與討論 ....................................29
2-3-1 樟芝液態基礎培養試驗 ............................29
2-3-2樟芝液態兩階段培養試驗 ...........................31
2-4結論 .............................................36
第三章 柑橘類果皮精油添加之樟芝深層培養 .................39
3-1前言 .............................................39
3-1-1萜類合成機制 ....................................39
3-1-2柑橘類果皮精油 ..................................44
3-1-3樟芝深層培養產三萜類 .............................46
3-2實驗材料與方法 ....................................47
3-2-2實驗儀器與設備 ..................................48
3-2-3實驗方法 .......................................48
3-2-3-1果皮精油製作及品質管控 .........................49
3-2-3-2不同時間添加各種果皮精油培養試驗 ................49
3-2-3-3不同濃度橘子果皮精油添加培養試驗 ................50
3-2-4分析方法 .......................................50
3-3實驗結果與討論 ....................................51
3-3-1不同時間添加各種果皮精油培養試驗 ..................52
3-3-2不同濃度橘子果皮精油添加培養試驗 ..................58
3-3-3果皮萃取液添加培養發酵動力參數之比較 ...............62
3-3-4樟芝菌絲體深層培養與野生樟芝子實體三萜類HPLC圖比較 ..64
3-4結論 .............................................66
第四章 單萜類添加之樟芝深層培養 ........................67
4-1前言 .............................................67
4-1-1乙醇效應 .......................................67
4-1-2柑橘類果皮單萜類簡介 ............................69
4-2實驗材料與方法 ....................................74
4-2-1實驗藥品 .......................................74
4-2-2實驗儀器與設備 ..................................74
4-2-3實驗方法 .......................................75
4-2-3-1不同時間添加乙醇液態培養 .......................75
4-2-3-2檸檬烯乙醇溶液與水溶液添加深層培養 ..............75
4-2-3-3不同單萜類添加深層培養 .........................76
4-2-3-4發酵液中檸檬烯濃度變化 .........................76
4-2-4分析方法 .......................................77
4-3實驗結果與討論 ....................................78
4-3-1檸檬烯乙醇溶液與水溶液添加深層培養 ................78
4-3-2不同單萜類添加液態培養 ...........................83
4-3-3發酵液中檸檬烯濃度變化 ...........................89
4-4結論 .............................................90
第五章 柑橘類果皮粉末添加之樟芝平板式固態培養 ............93
5-1前言 .............................................93
5-1-1固態培養之優缺點 .................................93
5-1-2固態發酵之應用 ...................................95
5-1-3柑橘類果皮性質與成份 ..............................95
5-1-4樟芝平板式固態培養 ................................96
5-2實驗材料與方法 ......................................99
5-2-1實驗藥品 .........................................99
5-2-2實驗儀器與設備 ...................................100
5-2-3實驗方法 ........................................100
5-2-3-1乾燥果皮粉末製作 ...............................101
5-2-3-2平板式固態培養基礎試驗 ..........................101
5-2-3-3添加不同果皮粉末平板式固態培養 ...................101
5-2-3-4添加不同重量葡萄柚果皮粉末平板式固態培養 ..........102
5-2-4分析方法 ........................................102
5-2-4-1菌體濃度 ......................................103
5-2-4-2 HPLC分析代謝產物三萜類含量 .....................103
5-3實驗結果與討論 .....................................104
5-3-1平板式固態培養基礎試驗 ............................105
5-3-2添加不同果皮粉末平板式固態培養 .....................107
5-3-3添加不同重量葡萄柚果皮粉末平板式固態培養 ............109
5-3-4果皮粉末添加平板式固態培養發酵動力參數 ..............112
5-3-5樟芝平板式固態培養與野生樟芝子實體三萜類HPLC圖比較 ...114
5-4結論 ..............................................115
第六章 結論與未來展望 ..................................117
6-1結論 ..............................................117
6-2未來展望 ...........................................118
參考文獻 ..............................................119
附錄 ..................................................133


表目錄
表1-1 樟芝子實體中所含三萜類Ergostane型化合物 .............9
表1-2 樟芝子實體中所含三萜類Lanostane型化合物 ............10
表2-1 靈芝液態培養產靈芝酸文獻整理 .......................16
表2-2 實驗藥品清單 .....................................20
表2-3 實驗儀器清單 .....................................21
表3-1 常見幾種柑橘皮精油之含量及主要成分...................45
表3-2 樟芝液態培養產三萜類文獻整理 .......................47
表3-3 新增實驗藥品清單 ..................................48
表3-4 新增實驗儀器清單 ..................................48
表3-5 不同果皮精油添加之樟芝液態培養動力學參數 .............63
表3-6 不同濃度橘子果皮精油添加之樟芝液態培養動力學參數 ......63
表3-7 樟芝深層培養三萜類主要滯留時間的HPLC圖譜面積比較 ......66
表4-1 常見幾種柑橘皮精油之含量及主要成分 ...................73
表4-2 新增實驗藥品清單 ...................................74
表4-3 新增實驗儀器清單 ...................................74
表5-1 柑橘類果皮物理性質 .................................96
表5-2 烘乾後果皮成份比例 .................................96
表5-3 新增實驗藥品清單 ..................................100
表5-4 新增實驗儀器清單 ..................................100
表5-5 不同果皮粉末添加之樟芝平板式固態培養動力學參數 ........113
表5-6 不同重量葡萄柚果皮粉末添加之樟芝平板式固態培養動力學參數 113

圖目錄
圖1-1 樟芝子實體 ..........................................3
圖1-2 樟芝平板培養 ........................................4
圖1-3 樟芝液態培養之菌絲球 .................................4
圖1-4 樟芝固態培養 ........................................4
圖2-1 樟芝菌絲體基礎培養生長曲線及生理活性產物 ...............30
圖2-2 不同天數靜置對樟芝菌絲體生長曲線及生理活性物質代謝影響 ...33
圖2-3 第21天改變溫度對菌絲體合成總多酚的影響 .................35
圖2-4 第21天改變溫度對菌絲體合成三萜類的影響 .................35
圖2-5 第21天改變pH值對菌絲體合成總多酚影響 .................. 37
圖2-6 第21天改變pH值對菌絲體合成三萜類影響 ...................37
圖3-1 萜類合成路徑 .........................................43
圖3-2 第7天添加2% (v/v)橘子精油樟芝菌絲體生長曲線及生理活性產物 .54
圖3-3 不同時間添加2% (v/v)橘子果皮精油對樟芝菌絲體代謝影響 .....55
圖3-4 各種果皮精油(2% (v/v)添加對樟芝菌絲體總多酚之比較 ........56
圖3-5 各種果皮精油(2% (v/v))添加對樟芝菌絲體三萜類之比較 .......57
圖3-6 橘子果皮精油添加量對樟芝菌絲體總多酚影響 .................60
圖3-7 橘子果皮精油添加量對樟芝菌絲體三萜類影響 .................61
圖3-8 樟芝深層培養三萜類化合物HPLC圖譜 .......................65
圖4-1 柑橘類果皮精油中常見單萜類的結構式 ......................70
圖4-2 微生物轉化檸檬烯途徑 ..................................72
圖4-3 不同時間添加乙醇對樟芝菌絲體代謝影響 ....................80
圖4-4 檸檬烯溶液添加對樟芝菌絲體合成總多酚影響 .................81
圖4-5 檸檬烯溶液添加對樟芝菌絲體合成三萜類影響 .................82
圖4-6 不同單萜類乙醇溶液添加對樟芝菌體濃度 .....................85
圖4-7 不同單萜類乙醇溶液添加對樟芝合成總多酚之影響 ..............86
圖4-8 不同單萜類乙醇溶液添加對樟芝合成三萜類之影響 ..............87
圖4-9 第7天添加單萜類乙醇溶液後發酵液之GC圖譜 ..................88
圖4-10 檸檬烯乙醇溶液添加之樟芝生長曲線、生理活性產物及檸檬烯含量 ..92
圖5-1 人工栽培子實體 ........................................98
圖5-2 平板式固態培養 .......................................104
圖5-3 樟芝平板式固態培養菌絲體生長曲線及生理活性物質代謝 ........106
圖5-4 不同果皮粉末(2 g)添加對樟芝平板式固態培養之影響 ..........108
圖5-5 不同葡萄柚果皮粉末添加量對樟芝菌絲體代謝影響 .............111
圖5-6 三萜類化合物HPLC圖譜 ..................................116


參考文獻
王伯徹 (2005)。菇類的應用研發與產業推動。食品工業,37:頁3-5。
水野卓、川合正允,賴慶亮譯 (1997)。菇類的化學,生化學。台北市:國立編譯館。
朱祐頡 (2008)。人工培養基栽培之樟芝的分子定性。國立東華大學生物技術研究所碩士論文。
朱燕華 (1995)。類黃酮之介紹。食品月刊,30:頁1-5。
李宛蓁 (2003)。樟菌絲體培養與生理活性成分生成之研究。 私立東海大學化學工程研究所碩士論文。
李厚金、藍文健 (2011)。天然單萜檸檬烯的微生物轉化。化學進展,23:頁2318-2325。
肖崇厚、陳蘊如 (1989)。中藥化學。上海: 科學技術出版社。頁323–360。
林馨怡 (2008)。樟芝液態培養應用於抗老化化妝品之研究。 私立東海大學化學工程研究所碩士論文。
柯銀府、郭尚鑫、楊芳鏘 (1998)。 脂肪酸添加對靈芝液體培養之影響,第三屆生化工程研討會論文集。頁121-124。
范念慈 (2001)。果樹。台北市:東大圖書公司。
莊雅婷 (2011)。培養基添加物對樟芝液態發酵菌絲體活性成分生成之影響。私立東海大學化學工程與材料工程研究所碩士論文。
陳吉村、陳哲民 (2003)。花蓮地區文旦果皮精油含量變化之研究。花蓮區研究彙報,21:頁49-58。
陳俊仁 (2009)。柳橙有效成分之提取及應用。國立成功大學化學研究所碩士論文。
陳啟楨、蘇慶華、藍明煌 (2001)。 樟芝固體栽培及其生物活性之研究。中華真菌學會會刊,16:頁65-72。
陳書豪 (2006)。探討樟芝的溫度變化對液態發酵與固態發酵生產三萜類與多醣體之影響。國立中央大學化學工程與材料工程研究所碩士論文。
張東柱、周文能 (2005)。野菇入門。台北: 遠流出版公司。
張怡潔 (2003)。樟屬植物之牛樟芝菌絲體生長促進因子。台北醫學大學生藥學研究所碩士論文。
張益軒 (2001)。牛樟芝分子生物鑑定系統之研究。國立台灣大學農業化學研究所碩士論文。
黃惠琴 (2001)。樟芝菌絲體深層培養之研究。私立東海大學化學工程研究所碩士論文。
賀元川、蒲薔、何開澤、譚健、李靜、趙宗杰 (2011)。均勻設計法優化樟芝產三萜類液體發酵條件。應用與環境生物學報,17,頁:901-906。
楊于萱 (2010)。培養條件對樟芝菌絲體抗氧化活性及抗腫瘤能力之影響。私立東海大學化學工程研究所碩士論文。
楊芳鏘、楊明哲 (2001)。菌絲狀真菌之深層培養技術。化工技術,9,頁:176-189。
賈德翠、涂洪強、王仁才、胡玲、卜范文 (2009)。椪柑果皮精油成分的GC-MS分析。湖南農業科學,2,頁:105-107。
廖信昌 (1998)。柑橘精油應用於環衛害蟲之防除。農業世界,178,頁:60-64。
蔡榮哲 (2005)。柑橘類果皮加工利用。台灣柑橘產業發展研討會,頁:249-257。
賴怡伶 (2008)。含纖維素之生物吸附劑對重金屬吸附之研究。國立中央大學環境工程研究所碩士論文。
Adam KP, Zapp J. (1998), Biosynthesis of the isoprene units of chamomile sesquiterpenes, Phytochemistry, 48, pp. 953-959.
Ahmad MM, Rehman SU, Anjum FM, Bajwa EE. (2006), Comparative physical examination of various citrus peel essential oils, International Journal of agriculture and biology, 8 pp. 186-190.
Botella C, Ory I, Webb C, Blandino A. (2005), Hydrolytic enzyme production by Aspergillus awamori on grape pomace, Biochemical Engineering Journa, 26, pp. 100-106.
Caccioni DRL, Guizzardi M, Biondi DM, Renda A, Ruberto G. (1998), Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum, International Journal of Food Microbiology, 43 pp. 73-79.
Carrau FM, Medina K, Boido E, Farina L, Gaggero C, Dellacassa E, Versini G, Henschke PA. (2005), De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts, FEMS Microbiology Letters, 243, pp. 107-115.
Chafer M, Gonzalez-Martınez C, Chiralt A, Fito P. (2003), Microstructure and vacuum impregnation response of citrus peels, Food Research International, 36, pp. 35-41.
Chang CY, Lee CL, Pan TM. (2006), Statistical optimization of medium components for the production of Antrodia cinnamomea AC0623 in submerged cultures, Applied Microbiology and Biotechnology, 72, pp. 654-661.
Chang TT, Chou WN. (1995), Antrodia cinnamomea sp. Nov. on Cinnamomum Kanehirai in Taiwan, Mycological Research, 99, pp. 756-758.
Chang TT, Wang WR. (2005), Basidiomatal formation of Antrodia cinnamomea on artificial agar media, Botanical Bulletin of Academia Sinica, 46, pp. 151-154.
Chang TT, Wang WR. (2008), The role of four essential oils on mycelial growth and basidiomatal formation of Antrodia cinnamomea, Taiwan Journal of Forest Science, 23, pp. 105-110.
Chang TT,Wang WR, Chou CJ. (2010), Method for determining fruiting body and mycelium of Antrodia cinnamomea and Antrodia aslmonea, US Patent, US2010/0304495.
Chang TT, Wang WR, Chou CJ. (2011), Differentiation of mycelia and basidiomes of Antrodia cinnamomea using certain chemical components, Taiwan Journal of Forest Science, 26, pp. 125-133.
Chaplin MF, Kennedy JF. (1994), Carbohydrate analysis-a practical approach, Oxford University Press Inc.
Chen CC, Liu YW, Ker YB, Wu YY, Lai EY, Chyau CC, Hseu TH, Peng RY. (2007), Chemical characterization and anti-inflammatory effect of polysaccharides fractionated from submerge-cultured antrodia camphorata mycelia, Journal of Agricultural and Food Chemistry, 55, pp. 5007-5012.
Chen CH, Yang SW. (1995), New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum, Journal of Natural Products, 58, pp. 1655-1661.
Chen YC, Liang YC, Lin-Shiau SY, Ho CT, Lin JK. (1999), Inhibition of TPA induced protein kinase C and transcriptionactivator protein-1 binding activities by theaflavin-3, 3’-diagallate from black tea in NIH3T3 cells, Journal of Agricultural and Food Chemistry, 47, pp. 1416-1421.
Cheng JJ, Huang NK, Chang TT, Wang DL, Lu MK. (2005), Study for anti- angiogenic activities of polysaccharides isolated from Antrodia cinnamomea in endothelial cells, Life Sciences, 76, pp. 3029-3042.
Cherng IH, Chiang HC. (1995), Three new triterpenoids form Antrodia cinnamomea, Journal of Natural Products, 58, pp. 365-371.
Cherng IH, Wu DP, Chiang HC. (1996), Triterpenoids form Antrodia cinnamomea, Phytochemistry, 41, pp. 263-267.
Chiang HC, Wu DP, Cherng IW, Ueng CH. (1995), A sesquiterpene lactone, phenyl and biphenyl compounds from Antrodia cinnamomea, phytochemistry, 39, pp. 613-616.
Chyau CC, Mau JL, Wu CM. (1996), Characteristics of the steam-distilled oil and carbon dioxide extract of Zanthoxylum simulans fruits, Journal of Agricultural and Food Chemistry, 44, pp. 1096-1099.
Dahiya N, Tewari R, Tiwar RP, Hoondal GS. (2005), Chitinase production in solid-state fermentation by Enterobacter sp. NRG4 using statistical experimental design, Cueeent Microbiology, 51, pp. 222–228.
Da Silva TL, Pinheiro HM, Roseiro JC. (2003), Stress-induced morphological and physiological changes in γ-linolenic acid production by Mucor fragilis in batch and continuous cultures, Enzyme and Microbial Technology, 32, pp. 880-888.
Dantigny P, Guilmart A, Radoi F, Bensoussan M, Zwietering M. (2005), Modelling the effect of ethanol on growth rate of food spoilage moulds, International Journal of Food Microbiology, 98, pp. 261-269.
Diaz S, Espinosa S, Brignole EA. (2005), Citrus peel oil deterpenation with supercritical fluids: optimal process and solvent cycle design, The Journal of Supercritical Fluids, 35, pp. 49-61.
Disch A, Rohmer M. (1998), On the absence of the glyceraldehyde 3-phosphate /pyruvate pathway for isoprenoid biosynthesis in fungi and yeasts, FEMS Microbiology Letters, 168, pp. 201-208.
Fang QH, Zhong JJ. (2002a), Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum, Process Biochemistry, 37, pp. 769-774.
Fang QH, Zhong JJ. (2002b), Two-stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum, Biotechnology Progress, 18, pp. 51-54.
Greuter W, Mcneill J, Barrie FR, Burdet HM, Demoulin V, Filgueiras TS, Nicolson DH, Silva PC, Skog JE, Trehane P, Turland NJ, Hawksworth DL. (2000), International code of botanical nomenclature (St Louis Code), Regnum Vegetable 138, Konigstein: Koelts Scientific Books.
Hallworth JE. (1998), Ethanol-induced water stress in yeast, Jourmal of Fermentation and Bioengineering, 85, pp. 125-137.
Heipiepera HJ, Iskenb S, Sali M. (2000), Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis, Research in Microbiology, 151, pp. 777-784.
Hsiao G, Shen MY, Lin KH, Lan MH, Wu LY, Chou DS, Lin CH, Su CH, Sheu JR. (2003), Antioxidative and hepatoprotective effects of Antrodia camphorata extract, Journal of Agricultural and Food Chemistry, 51, pp. 3302-3308.
Hseu YC, Chen CS, Chen HC, Liao JW, Yang HL. (2008), Antrodia camphorata inhibits proliferation of human breast cancer cells in vitro and in vivo. Food and Chemical Toxicology, 46, pp. 2680-2688.
Ibeas JI, Jimenez J. (1997), Mitochondrial DNA loss caused by ethanol in Saccharo- myces floc yeasts, Applied and Enviromental Microbiology, 63, pp. 7-12.
Ingram LO. (1986), Microbial tolerance to alcohols: role of the cell membrane, Trends in Biotechnology, 40, pp. 40-44.
Kunamneni A, Permaul K, Singh S. (2005), Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus, Journal of Bioscience Bioengineering, 2, pp. 168-171.
Laoteng K, Jitsue S, Dandusitapunth Y. (2008), Ethanol-induced changes in expression profiles of cell growth, fatty acid and desaturase genes of Mucor rouxii, Fungal Genetics and Biology, 45, pp. 61-67.
Lee IH, Huang RL, Chen CT, Chen HC, Hsu WC, Lu MK. (2002), Antrodia camphorata polysaccharides exhibit antihepatitis B virus effects, FEMS Microbiol. Letters, 209, pp. 63-67.
Liang YC, Chen YC, Lin YL, Lin-Shiau SY, Lin JK. (1999), Inhibition of EGF kinase activity by theaflavin-3, 3’-digallate from black tea. Carcinogen, 20, pp. 733-736.
Lin JY, Wu TZ, Chou JC. (2006), In vitro induction of fruiting body in Antrodia cinnamomea - a medicinally important fungus, Botanical Studies, 47, pp. 267-272.
Liu DZ, Liang HJ, Chen CH, Su CH, Lee TH, Huang CT, Hou WC, Lin SY, Zhong WB, Lin PJ, Hung LF, Liang YC. (2007), Comparative anti-inflammatory characterization of wild fruiting body, liquid-state fermentation,and solid-state culture of Taiwanofungus camphoratus in microglia and themechanism, Journal of Ethnopharmacology, 113, pp. 45-53.
Lu S, Xu R, Jia JW, Pang J, Matsuda SPT, Chen XY. (2002), Cloning and functional characterization of a β-pinene synthase from Artemisia annua that shows a circadian pattern of expression, Plant Physiology, 130, pp. 477-486.
Lu ZM, Lei JY, Xu HY, Shi JS, Xu ZH. (2011), Optimization of fermentation medium for triterpenoids production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques, Applied Microbiology and Biotechnology, 92, pp. 371-379.
Manitto P, Sammes PG. (1981), Biosynthesis of natural products. Wiley, New York.
Mariadason JM, Corner GA, Augenlicht LH. (2000), Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac and curcumin and implication for chemoprevention of colon cancer, Cancer Research, 60, pp. 4561-4572.
Miquel M, James D, Dooner H, Browse J. (1993), Arabidopsis requires polyunsaturated lipids for low temperature survival, Proceedings of the National Academy of Sciences USA, 90, pp. 6208-6212.
Nhu-Trang TT, Casabianca H, Grenier-Loustalot MF. (2006), Deuterium/hydrogen ratio analysis of thymol, carvacrol, -terpinene and p-cymene in thyme, savory and oregano essential oils by gas chromatography-pyrolysis-isotope ratio mass spectrometry, Journal of Chromatography A, 1132, pp. 219-227.
Papagianni M. (2004), Fungal morphology and metabolite production in submerged mycelia process, Biotechnology Advances, 22, pp. 189-259.
Ratledge C, Evans CT. (1989), The Yeasts: metabolism and physiology of yeasts, Academic Press, 3, pp. 367-455.
Sato K, Sudo S. (1999), Small-scale solid-state fermentations, Journal of Industrial Microbiology and Biotechnology, 2, pp. 61-63.
Shahidi F, Wanasundara PKJPD. (1992), Phenolic antioxidants, Critical Reviews in Food Science and Nutrition, 32, pp. 67-103.
Shih IL, Pan K, Hsieh C. (2006), Influence of nutritional components and oxygen supply on the mycelia growth and bioactive metabolites production in submerged culture of Antrodia cinnamomea, Process Biochemistry, 41, pp. 1129-1135.
Shuler ML, Kargi F. (2002), Bioprocess enginnering basic copcepts. , Prentice Hall PTR.
Singleton VL, Rossi JA. (1965), Colorimetry of total phenolics with phosphomolybic -phosphotungstic acid reagents, American Journal of Enology and Viticulture, 16, pp. 144-158.
Smith DC, Forland S, Bachanos E, Matejka M, Barrett V. (2001), Qualitative analysis of citrus fruit extracts by GC/MS: an undergraduate experiment, Chemical Educator, 6, pp. 28-31.
Song TY, Yen GC. (2002), Antioxidant properties of Antrodia camphorata in submerged culture, Journal of Agricultural and Food Chemistry, 50, pp. 3322-3327.
Stasinopoulos SJ, Seviour RJ. (1990), Stimulation of exopolysaccharide production in the fungus Acremonium pericinum with fatty acids, Biotechnology and Bioengineering, 36, pp. 78-782.
Summons RE, Bradley AS, Jahnke LL, Waldbauer JR. (2006), Steroids, triterpenoids and molecular oxygen, Philosophical Transactions of the Royal Society B, 361, pp. 951-968.
Tanaka M, Kuei CW, Nagashima Y, Taguchi T. (1998), Application of antioxidative maillrad reaction products from histidine and glucose to sardine products, Nippon Suisan Gakkaishi, 54, pp. 1409-1414.
Tang YJ, Zhang W, Zhong JJ. (2009), Performance analyses of a pH-shift and DOT- shift integrated fed-batch fermentation process for the production of ganoderic acid and Ganoderma polysaccharides by medicinal mushroom Ganoderma lucidum, Bioresource Technology, 100, pp. 1852-1859.
Tang YJ, Zhong JJ. (2003), Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid, Enzyme and Microbial Technology, 32, pp. 478-484.
Tholl D. (2006), Terpene synthases and the regulation, diversity and biological roles of terpene metabolism, Current Opinion in Plant Biology, 9, pp. 297-304.
Tsujikura Y, Higuchi T, Miyamoto Y, Sato S. (1992), Manufacture of ganoderic acid by fermentation of Ganoderma lucidum, Japanese Kokai Tokkyo Koho, JP04304890.
Van Der Werf MJ, Swarts HJ, De Bont JAM. (1999), Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene, Applied and environmental microbilogy, 65, pp. 2092-2102.
Viniegra-González G, Favela-Torres E, Aguilar CN, Romero-Gómez SJ, Díaz-Godínez G, Augur C. (2003), Advantages of fungal enzyme production in solid state over liquid fermentation systems, Biochemical Engineering Journal, 13, pp. 157-167.
Wenzel U, Kuntz S, Brendel MD, Daniel H. (2000), Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells. Cancer Research, 60, pp. 3823-3831.
Wu SH, Leif R, Chang TT. (1997), Antrodia camphorata (“niu-chang-chih”), new combination of a medicinal fungus in Taiwan, Botanical Bulletin Academia Sinica, 38, pp. 273-275.
Wu SH, Yu ZH, Dai YC, Chen CT, Su CH, Chen LC, Hsu WC, Hwang GY. (2004), Taiwanofungus, a polypore new genus, Fungal Science, 19, pp. 109-116.
Yang CM, Zhou YJ, Wang RJ, Hu ML. (2009), Anti-angiogenic effects and mechanisms of polysaccharides from Antrodia cinnamomea with different molecular weights, Journal of Ethnopharmacology, 123, pp. 407-412.
Yang HL, Chen CS, Chang WH, Lu FJ, Lai YC, Chen CC, Hseu TH, Kuo CT, Hseu YC. (2006), Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by antrodia camphorate, Cancer Letters, 231, pp. 215-227.
Yang HL, Kuo YH, Tsai CT, Huang YT, Chen CS, Chang WH, Lin E, Lin WH, Hseu YC. (2011), Anti-metastatic activities of Antrodia camphorata against human breast cancer cells mediated through suppression of the MAPK signaling pathway, Food and Chemical Toxicology, 49, pp. 290-298.
Yang SW, Shen YC, Chen CH. (1996), Steroids and triterpenoids of Antrodia cinnamomea-A fungus parasitic on Cinnamomum micranthum, Phytochemistry, 41, pp. 1389-1392.
Yang, F.C., Huang, H.C., Yang, M.J. (2003), The influence of environmental conditions on the mycelial growth of Antrodia cinnamomea in submerged cultures, Enzyme and Microbial Technology, 33, pp. 395-402.
Yeh CT, Rao YK, Yao CJ, Yeh CF, Li CH, Chuang SE, Luong JHT, Lai GM, Tzeng YM. (2009), Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells, Cancer Letters, 285, pp. 73-79.
Yen GC, Duh PD, Tsai CL. (1993), Relationship between antioxidant activity and maturity of peanut hulls, Journal of Agricultural and Food Chemistry, 41, pp. 67-70.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top