跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/14 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佩鍶
研究生(外文):Pei-Ssu Wu
論文名稱:滲透壓調控策略對Marinococcus sp.合成Ectoine之影響
論文名稱(外文):Effects of osmolarity regulating on compatible solute- ectoine synthesis in Marinococcus sp.
指導教授:魏毓宏
口試委員:張嘉修陳博彥楊芳鏘徐敬衡
口試日期:2012-6-4
學位類別:碩士
校院名稱:元智大學
系所名稱:生物科技與工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:66
中文關鍵詞:EctoineMarinococcus sp.滲透壓培養基
外文關鍵詞:EctoineMarinococcus sp.Osmotic pressuremedium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:658
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Ectoine為許多嗜鹽菌或耐鹽菌在高鹽環境下,為維持及平衡細胞內外滲透壓所合成的一種相容性溶質(compatible solute)。研究顯示ectoine為兼具抗紫外線輻射、抗皮膚老化、保濕、治療阿茲海默症(Alzheimer’s disease)等多功能之天然細胞保護劑,屬於多功能之全方位生技化妝品。基於ectoine生產菌株主要為嗜鹽菌或耐鹽菌,必須在高鹽 (高滲透壓)之培養基進行培養以生產ectoine。因此,預期調控培養基質之滲透壓,將有效影響微生物代謝合成ectoine之程度與機制。因此本研究擬自高鹽環境所獲得之ectoine優質化生產菌Marinococcus sp.進行最適化培養,並觀察及評估不同培養基所產生之滲透壓及營養度對Marinococcus sp.合成ectoine能力之影響。首先藉由調整培養基之鹽份(salinity)濃度來調控其滲透壓,以觀察其對ectoine產能之影響。研究證實當YAMS(Yeast extract-Ammonium acetate Mineral Salts)及YTMS(Yeast extract-Tryptone Mineral Salts)培養基中,鹽份(sodium chloride,NaCl)濃度分別為3M及2.5M時,ectoine合成達最高產量分別為23及27 mg/L,此時相對應之滲透壓分別為7025及6010 mmol/kg,菌體生長分別為0.74及1.24 g/L,另LBMS(Luria-Bertani Mineral Salts)培養基中,NaCl濃度為2M時,ectoine產量高達574 mg/L,相對應之滲透壓為5240 mmol/kg,菌體生長為9.34 g/L,由上述結論顯示:低滲透壓,不利於菌體合成ectoine;反之,當高滲透壓之環境,卻有助於產物ectoine之生合成。
本研究同時測定不同培養基之間的滲透壓下降速率,實驗證實在滲透壓、ectoine之生合成與營養度三者之間,唯一具高度相關性之參數為滲透壓下降速率與ectoine之生合成,而不同培養基具不同之滲透壓下降速率,但具有共同之趨勢,當滲透壓下降速率高達一定值,ectoine產率便開始趨於平穩下降,此時便出現對應於ectoine產量下之最佳滲透壓下降速率數值,當YAMS、LBMS及YTMS培養基中,ectoine產量之最大值,分別為23、27及574 mg/L,此時對應滲透壓下降速率之最佳值分別為234、200及174 mmol/kg/min,最終將選擇ectoine產量具最大值之LBMS培養基進行探討。接著以LBMS培養基,培養完之菌體放置不同種類及濃度之滲透壓誘導劑-蔗糖(sucrose)、葡萄糖(glucose)、甘露醣醇(mannitol)、氯化鈉(NaCl)、谷氨酸(glutamate)中,探討ectoine之釋放量,發現添加sucrose、glucose、mannitol之釋放溶液其滲透壓較低,與培養基中所產生之滲透壓差大,所以ectoine的釋放量明顯較NaCl及glutamate高。另外,分別添加不同種類之滲透保護劑,其添加ectoine保護劑於培養基中,可促進菌體生長及ectoine產量,分別高達8.26 g/L及1706 mg/L,且明顯高於控制組。最後,本研究以5L醱酵槽進行製程放大,同時添加滲透保護劑ectoine,並結合pH與DO作為yeast extract饋料時機之饋料批次醱酵策略,ectoine產量於Marinococcus sp.培養44小時後更高達2528 mg/L,ectoine產率則有1379 mg/L/Day之多。
To master the osmotic stress of saline environments, halophilic bacterium accumulate highly water-soluble organic osmolytes, so-called compatible solutes. Ectoine, the compatible solute that was first discovered in Ectothiorhodospira halochloris, is one of the most commonly found osmolytes in nature. Ectoine is a natural cell protective agent that it can against UV radiation, protect skin from wrinkle, moisture and treatment of Alzheimer's disease. Therefore ectoine is widely used in cosmetic biotechnology. A large amount of salts (High osmotic pressure) must be added to the medium for the production of ectoine in the current process. Therefore, the expected regulation of culture substrates osmotic pressure will affect the extent and mechanism of the microbial metabolic synthesis of ectoine. This study was obtained from high salt environment of ectoine production of quality strains Marinococcus sp. for optimal culture, and evaluation of different medium by osmolarity and nutrition synthesis of ectoine abilities in Marinococcus sp. First by the adjustment of medium concentration of salt (salinity) to regulate their osmotic pressure, to observe the effects of its ectoine production. In YAMS (Yeast the extract-Ammonium acetate, Mineral Salts) and YTMS (Yeast the extract-tryptone Mineral Salts) medium, the concentration of salt (sodium chloride, NaCl) 3M and 2.5M, respectively, ectoine synthesis highest yields were 23 and 27 ppm, that corresponds to the osmotic pressure of 7025 and 6010 mmol/kg, cell growth were 0.74 and 1.24 g/L, another LBMS (Luria,-Bertani Mineral Salts) medium, NaCl concentration of 2M, ectoine yield reach to 574 ppm, corresponding to the osmotic pressure of 5240 mmol/kg, cell dry weight can reach to 9.34 g / L, Shown by the above conclusions: the low osmotic pressure, contribute to cell growth, but is not conducive to bacterial synthesis of ectoine. In contrast, high osmotic pressure of the environment, detrimental to cell growth, but it helps the product of ectoine biosynthesis.
In this study, determination of osmolality decreasing rate between the different medium, the experiments confirmed that in the osmolality, ectoine the biosynthesis and nutrition among, only with a high degree of correlation parameters for the osmolality decreasing rate and ectoine biosynthesis different medium with different osmolality decreasing rate, but have a common trend when the osmolality decreasing rate reach a critical value, ectoine production began to tend to a steady decrease at this time, the osmolality decreasing rate of the optimal value corresponds to ectoine production,when YAMS、LBMS and YTMS medium, ectoine yield the maximum value, respectively, 23,27 and 574 ppm, the corresponding osmolality decreasing rate of the optimal value were 234,200 and 174 mmol / kg / min, will eventually choose the ectoine yield a maximum LBMS medium. Then, the LBMS medium, cultured bacteria into the osmolality of different types and concentrations of inducer (sucrose, glucose, mannitol, NaCl, glutamate) in the explore the release of ectoine, found that adding the release of sucrose, glucose, mannitol solution, its osmolality low and medium osmolality difference between the ectoine the release was significantly higher than NaCl and glutamate. In addition,different types of medium were added osmoprotectant ectoine add protective agent in the medium to promote cell growth and ectoine production, reach to 8.26 g/L and 1706 ppm respectively, and significantly higher than the control group.
Finally, to achieve a large scale of supply for ectoine in compliance with the demands, the 5 L fermentor has been used. The results show that ectoine concentration and productivity even reach to 2528 mg/L and 1379 mg/L/Day via the fed-batch fermentation strategy, which the feed timing of yeast extract was depended on pH and DO factors.
中文摘要 iv
英文摘要 vii
誌謝 ix
表目錄 xiv
圖目錄 xv
附錄 xvii
第一章 前言 1
1.1 微生物調控滲透壓機制 1
1.2 Marinococcus sp.菌種介紹 3
1.3 Ectoine簡介 4
1.3.1 生合成途徑 4
1.4 Ectoines的生產 7
1.5 Ectoine的應用 8
1.5.1 保溼 8
1.5.2 抗UV照射並防止肌膚老化 9
1.6 鹽度對電導度及滲透壓之影響 10
1.7 研究目的與策略 10
第二章 材料與方法 12
2.1 實驗材料 12
2.1.1 實驗菌株 12
2.1.2 實驗藥品 12
2.1.3 實驗儀器 13
2.1.4 培養基 14
2.2 實驗方法 15
2.2.1 批次醱酵實驗 15
2.2.1.1 菌株之保存 15
2.2.1.2 菌株之培養 15
2.2.2 水之萃取對於ectoine之釋放實驗 [ bacteria milking (Sauer and Galinski, 1998) ] 16
2.2.3 饋料批次醱酵策略-結合pH和DO之特性 (Wei, Yuan et al., 2011) 16
2.3 分析方法 17
2.3.1 測定培養基之電導度與滲透壓 17
2.3.2 菌體乾重之測定 17
2.3.3 ectoine之濃度分析 18
第三章 結果與討論 21
3.1 論文研究架構 21
3.2 培養基中電導度對 Marinococcus sp.代謝ectoine之影響 22
3.2.1 培養基中添加不同濃度之 NaCl 22
3.2.2 培養基中個別添加主培養基成份中之離子 23
3.3 不同培養基中滲透壓對 Marinococcus sp.代謝ectoine之影響 25
3.3.1 培養基中個別添加主培養基成份中之離子 25
3.3.2 YAMS培養基中添加不同濃度之 NaCl 27
3.3.3 YTMS培養基中添加不同濃度之 NaCl 27
3.3.4 LBMS培養基中添加不同濃度之 NaCl 28
3.3.5 菌體經osmotic downshock過程後,胞內所含之殘留量 29
3.4 不同培養基中Ectoine釋放過程滲透壓之變化 34
3.5 不同培養基之滲透壓、Ectoine生合成及營養度之相互關係 35
3.5.1 YAMS培養基 35
3.5.2 YTMS培養基 36
3.5.3 LBMS培養基 36
3.5.4 三種不同培養基間之相關性 37
3.6 Ectoine釋放過程中,添加不同滲透誘導劑之影響性 41
3.7 培養基中添加不同滲透誘導劑,對胞內Ectoine累積之影響 45
3.8培養基中,添加不同種類之滲透保護劑 48
3.9 醱酵槽之應用 49
3.9.1 批次醱酵 (Batch) 49
3.9.2 饋料批次醱酵-結合pH與DO之特性 (Fed-batch) 50
第四章 結論與未來展望 53
4.1 培養基中電導度之探討 53
4.2 培養基中滲透壓之研究 54
4.3 滲透壓之調控策略 54
4.4 醱酵槽之應用 56
4.5 未來展望 56
第五章 參考文獻 58
Ben-Gal, A., H. Borochov-Neori, et al. (2009). "Is osmotic potential a more appropriate property than electrical conductivity for evaluating whole-plant response to salinity?" Environmental and Experimental Botany 65(2–3): 232-237.

Blount, P. and P. C. Moe (1999). "Bacterial mechanosensitive channels: integrating physiology, structure and function." Trends in Microbiology 7(10): 420-424.

Botta, C., C. Di Giorgio, et al. (2008). "Genotoxicity of visible light (400–800 nm) and photoprotection assessment of ectoin, l-ergothioneine and mannitol and four sunscreens." Journal of Photochemistry and Photobiology B: Biology 91(1): 24-34.

Brown, A. D. and J. R. Simpson (1972). "Water relations of sugar-tolerant yeasts: the role of intracellular polyols." Journal of General Microbiology 72(3): 589-591.

Buenger, J. and H. Driller (2004). "Ectoin: An effective natural substance to prevent UVA-induced premature photoaging." Skin Pharmacology and Physiology 17(5): 232-237.

Buommino, E., C. Schiraldi, et al. (2005). "Ectoine from halophilic microorganisms induces the expression of hsp70 and hsp70B′ in human keratinocytes modulating the proinflammatory response." Cell Stress and Chaperones 10(3): 197-203.

Edwards, M. D., I. R. Booth, et al. (2004). "Gating the bacterial mechanosensitive channels: MscS a new paradigm?" Current Opinion in Microbiology 7(2): 163-167.


Eisenberg, H. and E. J. Wachtel (1987). "Structural studies of halophilic proteins, ribosomes, and organelles of bacteria adapted to extreme salt concentrations." Annual review of biophysics and biophysical chemistry 16: 69-92.

Farwick, M., R. M. Siewe, et al. (1995). "Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum." Journal of bacteriology 177(16): 4690-4695.

Fischel, U. and A. Oren (1993). "Fate of compatible solutes during dilution stress in Ectothiorhodospira marismortui." FEMS microbiology letters 113(1): 113-118.

Galinski, E. A., H. P. Pfeiffer, et al. (1985). "1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira." European Journal of Biochemistry 149(1): 135-139.

Galinski, E. A. and H. G. Trüper (1994). "Microbial behaviour in salt-stressed ecosystems." FEMS Microbiology Reviews 15(2-3): 95-108.

García-Estepa, R., M. Argandoña, et al. (2006). "The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens." Journal of Bacteriology 188(11): 3774-3784.

García-Estepa, R., D. Cánovas, et al. (2006). "Osmoprotection of Salmonella enterica serovar Typhimurium by Nγ-acetyldiaminobutyrate, the precursor of the compatible solute ectoine." Systematic and Applied Microbiology 29(8): 626-633.

Gouesbet, G., A. Trautwetter, et al. (1996). "Characterization of the Erwinia chrysanthemi osmoprotectant transporter gene ousA." Journal of bacteriology 178(2): 447-455.


Graf, R., S. Anzali, et al. (2008). "The multifunctional role of ectoine as a natural cell protectant." Clinics in Dermatology 26(4): 326-333.

Grewe, M. (2001). "Chronological ageing and photoageing of dendritic cells." Clinical and Experimental Dermatology 26(7): 608-612.

Igo, M. M., A. J. Ninfa, et al. (1989). "Phosphorylation and dephosphorylation of a bacterial transcriptional activator by a transmembrane receptor." Genes &; Development 3(11): 1725-1734.
Jebbar, M., R. Talibart, et al. (1992). "Osmoprotection of Escherichia coli by ectoine: Uptake and accumulation characteristics." Journal of bacteriology 174(15): 5027-5035.

Jewell, J. B. and E. R. Kashket (1991). "Osmotically regulated transport of proline by Lactobacillus acidophilus IFO 3532." Applied and environmental microbiology 57(10): 2829-2833.

Kanapathipillai, M., G. Lentzen, et al. (2005). "Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer's β-amyloid." FEBS Letters 579(21): 4775-4780.

Kraegeloh, A. and H. J. Kunte (2002). "Novel insights into the role of potassium for osmoregulation in Halomonas elongata." Extremophiles : life under extreme conditions 6(6): 453-462.

Kuhlmann, A. U. and E. Bremer (2002). "Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp." Applied and Environmental Microbiology 68(2): 772-783.

Lai, M. C., K. R. Sowers, et al. (1991). "Distribution of compatible solutes in the halophilic methanogenic archaebacteria." Journal of bacteriology 173(17): 5352-5358.

Lamark, T., O. B. Styrvold, et al. (1992). "Efflux of choline and glycine betaine from osmoregulating cells of Escherichia coli." FEMS microbiology letters 96(2-3): 149-154.

Larsen, H. (1973). "The halobacteria's confusion to biology." Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 39(3): 383-396.

Lentzen, G. and T. Schwarz (2006). "Extremolytes: Natural compounds from extremophiles for versatile applications." Applied Microbiology and Biotechnology 72(4): 623-634.

Lippert, K. and E. A. Galinski (1992). "Enzyme stabilization be ectoine-type compatible solutes: protection against heating, freezing and drying." Applied microbiology and biotechnology 37(1): 61-65.

Louis, P., H. G. Truper, et al. (1994). "Survival of Escherichia coli during drying and storage in the presence of compatible solutes." Applied microbiology and biotechnology 41(6): 684-688.

Malin, G. and A. Lapidot (1996). "Induction of synthesis of tetrahydropyrimidine derivatives in Streptomyces strains and their effect on Escherichia coli in response to osmotic and heat stress." Journal of Bacteriology 178(2): 385-395.

Nagata, S. and C. Wang (2005). "Efficient utilization of ectoine by halophilic Brevibacterium species and Escherichia coli subjected to osmotic downshock." Journal of Bioscience and Bioengineering 99(1): 61-67.

Nagata, S. and C. Wang (2006). "Effect of duration of osmotic downshock and coexisting glutamate on survival and uptake of ectoine in halotolerant Brevibacterium sp. JCM 6894." Journal of Bioscience and Bioengineering 101(1): 57-62.

Nagata, S., Y. Wang, et al. (2008). "Efficient cyclic system to yield ectoine using Brevibacterium sp. JCM 6894 subjected to osmotic downshock." Biotechnology and Bioengineering 99(4): 941-948.

Nagata, S. and Y. B. Wang (2001). "Accumulation of ectoine in the halotolerant Brevibacterium sp. JCM 6894." Journal of Bioscience and Bioengineering 91(3): 288-293.

Nagata, S. and Y. B. Wang (2001). "Interrelation between synthesis and uptake of ectoine for the growth of the halotolerant Brevibacterium species JCM 6894 at high osmolarity." Microbios 104(407): 7-15.

Nakayama, H., K. Yoshida, et al. (2000). "Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells." Plant Physiology 122(4): 1239-1247.

Nau-Wagner, G., J. Boch, et al. (1999). "High-affinity transport of choline-O-sulfate and its use as a compatible solute in Bacillus subtilis." Applied and Environmental Microbiology 65(2): 560-568.

Ono, H., M. Okuda, et al. (1998). "Accumulation of compatible solutes, ectoine and hydroxyectoine, in a moderate halophile, Halomonas elongata KS3 isolated from dry salty land in Thailand." Journal of Fermentation and Bioengineering 85(4): 362-368.

Ono, H., K. Sawada, et al. (1999). "Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata." Journal of Bacteriology 181(1): 91-99.

Onraedt, A., C. De Muynck, et al. (2004). "Ectoine accumulation in Brevibacterium epidermis." Biotechnology Letters 26(19): 1481-1485.

Onraedt, A. E., B. A. Walcarius, et al. (2005). "Optimization of ectoine synthesis through fed-batch fermentation of Brevibacterium epidermis." Biotechnology Progress 21(4): 1206-1212.

Perlman, D. F. and L. Goldstein (1999). "Organic osmolyte channels in cell volume regulation in vertebrates." Journal of Experimental Zoology 283(7): 725-733.

Peters, P., E. A. Galinski, et al. (1990). "The biosynthesis of ectoine." FEMS microbiology letters 71(1-2): 157-162.

Pflughoeft, K. J., K. Kierek, et al. (2003). "Role of Ectoine in Vibrio cholerae Osmoadaptation." Applied and Environmental Microbiology 69(10): 5919-5927.

Reshetnikov, A. S., V. N. Khmelenina, et al. (2006). "Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph "Methylomicrobium alcaliphilum 20Z"." Archives of Microbiology 184(5): 286-297.

Roberts, M. F. (2005). "Organic compatible solutes of halotolerant and halophilic microorganisms." Saline systems 1: 5.

Sauer, T. and E. A. Galinski (1998). "Bacterial milking: A novel bioprocess for production of compatible solutes." Biotechnology and Bioengineering 57(3): 306-313.

Talibart, R., M. Jebbar, et al. (1994). "Osmoadaptation in rhizobia: Ectoine-induced salt tolerance." Journal of bacteriology 176(17): 5210-5217.

Toyoda, M. and J. Bhawan (1997). "Ultrastructural evidence for the participation of Langerhans cells in cutaneous photoaging processes: A quantitative comparative study." Journal of Dermatological Science 14(2): 87-100.

Ventosa, A., J. J. Nieto, et al. (1998). "Biology of moderately halophilic aerobic bacteria." Microbiology and Molecular Biology Reviews 62(2): 504-544.

Wang, Y. B., T. Ikeuchi, et al. (2002). "Uptake and utilization of ectoine by halotolerant Brevibacterium sp. JCM 6894 subjected to osmotic downshock." Journal of Bioscience and Bioengineering 94(5): 440-446.

Wei, Y. H., F. W. Yuan, et al. (2011). "Production and characterization of ectoine by Marinococcus sp. ECT1 isolated from a high-salinity environment." Journal of Bioscience and Bioengineering 111(3): 336-342.

Wohlfarth, A., J. Severin, et al. (1990). "The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae." Journal of General Microbiology 136(4): 705-712.

Wondrak, G. T., M. K. Jacobson, et al. (2006). "Endogenous UVA-photosensitizers: Mediators of skin photodamage and novel targets for skin photoprotection." Photochemical and Photobiological Sciences 5(2): 215-237.

Zhang, L., Y. Lang, et al. (2008). "Promoting effect of compatible solute ectoine on the ethanol fermentation by Zymomonas mobilis CICC10232." Process Biochemistry 43(6): 642-646.

林冠穎。2007。海洋分離之Oceanicola marinus 新種與ectoine生產之Marinococcus菌株特性研究。國立高雄海洋科技大學水產食品科學所碩士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊