1.Wen, D.Z., et al., Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry, 1987. 26(14): p. 4350-7.
2.Esmon, C.T., The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem, 1989. 264(9): p. 4743-6.
3.Suzuki, K., et al., Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J, 1987. 6(7): p. 1891-7.
4.Chay, C.H. and K.J. Pienta, Evidence for lectin signaling to the nuclear matrix: cellular interpretation of the glycocode. J Cell Biochem Suppl, 2000. Suppl 35: p. 123-9.
5.Huang, H.C., et al., Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem, 2003. 278(47): p. 46750-9.
6.Stearns, D.J., S. Kurosawa, and C.T. Esmon, Microthrombomodulin. Residues 310-486 from the epidermal growth factor precursor homology domain of thrombomodulin will accelerate protein C activation. J Biol Chem, 1989. 264(6): p. 3352-6.
7.Honda, G., et al., The roles played by the D2 and D3 domains of recombinant human thrombomodulin in its function. J Biochem, 1995. 118(5): p. 1030-6.
8.Koyama, T., et al., Relationship between post-translational glycosylation and anticoagulant function of secretable recombinant mutants of human thrombomodulin. Br J Haematol, 1991. 78(4): p. 515-22.
9.Conway, E.M., B. Nowakowski, and M. Steiner-Mosonyi, Thrombomodulin lacking the cytoplasmic domain efficiently internalizes thrombin via nonclathrin-coated, pit-mediated endocytosis. J Cell Physiol, 1994. 158(2): p. 285-98.
10.Raife, T.J., et al., Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. J Clin Invest, 1994. 93(4): p. 1846-51.
11.Conway, E.M., et al., Structure-function analyses of thrombomodulin by gene-targeting in mice: the cytoplasmic domain is not required for normal fetal development. Blood, 1999. 93(10): p. 3442-50.
12.Zhang, Y., et al., Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest, 1998. 101(7): p. 1301-9.
13.Grey, S.T. and W.W. Hancock, A physiologic anti-inflammatory pathway based on thrombomodulin expression and generation of activated protein C by human mononuclear phagocytes. J Immunol, 1996. 156(6): p. 2256-63.
14.McCachren, S.S., et al., Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood, 1991. 78(12): p. 3128-32.
15.Senet, P., et al., Thrombomodulin, a functional surface protein on human keratinocytes, is regulated by retinoic acid. Arch Dermatol Res, 1997. 289(3): p. 151-7.
16.Pindon, A., et al., Novel expression and localization of active thrombomodulin on the surface of mouse brain astrocytes. Glia, 1997. 19(3): p. 259-68.
17.Lafay, M., et al., Thrombomodulin modulates the mitogenic response to thrombin of human umbilical vein endothelial cells. Thromb Haemost, 1998. 79(4): p. 848-52.
18.Ogawa, H., et al., Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett, 2000. 149(1-2): p. 95-103.
19.Hamatake, M., et al., Prognostic value and clinicopathological correlation of thrombomodulin in squamous cell carcinoma of the human lung. Clin Cancer Res, 1996. 2(4): p. 763-6.
20.Tezuka, Y., et al., Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res, 1995. 55(18): p. 4196-200.
21.Jackson, D.E., et al., Immunohistochemical localization of thrombomodulin in normal human skin and skin tumours. J Pathol, 1995. 175(4): p. 421-32.
22.Le Flem, L., et al., Mutations in promoter region of thrombomodulin and venous thromboembolic disease. Arterioscler Thromb Vasc Biol, 1999. 19(4): p. 1098-104.
23.Fuchs, E., Epidermal differentiation: the bare essentials. J Cell Biol, 1990. 111(6 Pt 2): p. 2807-14.
24.Watt, F.M., P.W. Jordan, and C.H. O''Neill, Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc Natl Acad Sci U S A, 1988. 85(15): p. 5576-80.
25.Mizutani, H., et al., Functional thrombomodulin expression on epithelial skin tumours as a differentiation marker for suprabasal keratinocytes. Br J Dermatol, 1996. 135(2): p. 187-93.
26.Raife, T.J., et al., Keratinocyte-specific expression of human thrombomodulin in transgenic mice: effects on epidermal differentiation and cutaneous wound healing. J Investig Med, 1998. 46(4): p. 127-33.
27.Peterson, J.J., et al., Expression of thrombomodulin and consequences of thrombomodulin deficiency during healing of cutaneous wounds. Am J Pathol, 1999. 155(5): p. 1569-75.
28.Martin, N.P., et al., Intersectin regulates epidermal growth factor receptor endocytosis, ubiquitylation, and signaling. Mol Pharmacol, 2006. 70(5): p. 1643-53.
29.Yu, Y., et al., Mice deficient for the chromosome 21 ortholog Itsn1 exhibit vesicle-trafficking abnormalities. Hum Mol Genet, 2008. 17(21): p. 3281-90.
30.Ma, Y.J., et al., Neuronal distribution of EHSH1/intersectin: molecular linker between clathrin-mediated endocytosis and signaling pathways. J Neurosci Res, 2003. 71(4): p. 468-77.
31.Guipponi, M., et al., Two isoforms of a human intersectin (ITSN) protein are produced by brain-specific alternative splicing in a stop codon. Genomics, 1998. 53(3): p. 369-76.
32.Sengar, A.S., et al., The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J, 1999. 18(5): p. 1159-71.
33.Yamabhai, M., et al., Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J Biol Chem, 1998. 273(47): p. 31401-7.
34.Hussain, N.K., et al., Splice variants of intersectin are components of the endocytic machinery in neurons and nonneuronal cells. J Biol Chem, 1999. 274(22): p. 15671-7.
35.Martina, J.A., et al., Stonin 2: an adaptor-like protein that interacts with components of the endocytic machinery. J Cell Biol, 2001. 153(5): p. 1111-20.
36.Santolini, E., et al., The EH network. Exp Cell Res, 1999. 253(1): p. 186-209.
37.Adams, A., et al., Intersectin, an adaptor protein involved in clathrin-mediated endocytosis, activates mitogenic signaling pathways. J Biol Chem, 2000. 275(35): p. 27414-20.
38.Hussain, N.K., et al., Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol, 2001. 3(10): p. 927-32.
39.Vale, R.D., The molecular motor toolbox for intracellular transport. Cell, 2003. 112(4): p. 467-80.
40.Yamaguchi, H. and J. Condeelis, Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta, 2007. 1773(5): p. 642-52.
41.Burridge, K., et al., Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol, 1988. 4: p. 487-525.
42.Small, J.V., Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks. J Cell Biol, 1981. 91(3 Pt 1): p. 695-705.
43.O''Connor, T.P. and D. Bentley, Accumulation of actin in subsets of pioneer growth cone filopodia in response to neural and epithelial guidance cues in situ. J Cell Biol, 1993. 123(4): p. 935-48.
44.Ren, G., M.S. Crampton, and A.S. Yap, Cortactin: Coordinating adhesion and the actin cytoskeleton at cellular protrusions. Cell Motil Cytoskeleton, 2009. 66(10): p. 865-73.
45.Daly, R.J., Cortactin signalling and dynamic actin networks. Biochem J, 2004. 382(Pt 1): p. 13-25.
46.Ammer, A.G. and S.A. Weed, Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motil Cytoskeleton, 2008. 65(9): p. 687-707.
47.Nobes, C.D. and A. Hall, Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 1995. 81(1): p. 53-62.
48.Ridley, A.J. and A. Hall, The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 1992. 70(3): p. 389-99.
49.Adams, A.E., et al., CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J Cell Biol, 1990. 111(1): p. 131-42.
50.陳映荻, 凝血酶調節素調控角質細胞骨架之機制探討, in 醫學檢驗生物技術學系碩士班2010, 中國醫藥大學. p. 1-83.51.Syrigos, K.N., K.J. Harrington, and M. Pignatelli, Role of adhesion molecules in bladder cancer: an important part of the jigsaw. Urology, 1999. 53(2): p. 428-34.
52.Blaschuk, O.W., et al., Identification of a cadherin cell adhesion recognition sequence. Dev Biol, 1990. 139(1): p. 227-9.
53.Ozawa, M., M. Ringwald, and R. Kemler, Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci U S A, 1990. 87(11): p. 4246-50.
54.Hajra, K.M. and E.R. Fearon, Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer, 2002. 34(3): p. 255-68.
55.Wheelock, M.J. and K.R. Johnson, Cadherin-mediated cellular signaling. Curr Opin Cell Biol, 2003. 15(5): p. 509-14.
56.van Roy, F. and G. Berx, The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci, 2008. 65(23): p. 3756-88.
57.Shapiro, L., et al., Structural basis of cell-cell adhesion by cadherins. Nature, 1995. 374(6520): p. 327-37.
58.de Boer, C.J., et al., Changing roles of cadherins and catenins during progression of squamous intraepithelial lesions in the uterine cervix. Am J Pathol, 1999. 155(2): p. 505-15.
59.Hart, I.R. and A. Saini, Biology of tumour metastasis. Lancet, 1992. 339(8807): p. 1453-7.
60.Christofori, G. and H. Semb, The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci, 1999. 24(2): p. 73-6.
61.Akhtar, N. and N.A. Hotchin, RAC1 regulates adherens junctions through endocytosis of E-cadherin. Mol Biol Cell, 2001. 12(4): p. 847-62.