跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 08:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張巧霖
研究生(外文):Ciao-Lin Zhang
論文名稱:凝血酶調節素於角質細胞HaCaT 黏附及分化功能之探討
論文名稱(外文):Study on the function of thrombomodulin in cell-cell adhesion and differentiation of human HaCaT cells
指導教授:黃蕙君黃蕙君引用關係
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:醫學檢驗生物技術學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:55
中文關鍵詞:人類凝血酶調節ITSN
外文關鍵詞:Thrombomodulinintersectin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:491
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
人類凝血酶調節素 ( Thrombomodulin, TM ) 為已知的抗凝血因子及鈣離子依賴性細胞黏附因子,於角質細胞中高度表現。我們先前研究結果顯示,靜默TM 表現會造成細胞偽足產生,進一步的蛋白質體學研究發現TM 結合蛋白包括有α- tubulin﹐β-tubulin, actin,及intersectin (ITSN),並發現TM 藉由和ITSN 結合,調控角質細胞骨架,而細胞型態的改變會進一步的影響細胞間黏附能力,由於TM 在細胞黏附或調控細胞型態功能都類似於E-cadherin,且ITSN 已知可以調控細胞內吞噬作用,我們推測TM 可以藉由ITSN 之內吞噬作用來調控表皮黏附因子E-cadherin 的細胞胞噬及黏附功能。本論文中,靜默TM 及ITSN,發現細胞膜上E-cadherin會胞噬進入細胞質,並觀察到細胞周圍產生明顯的細胞偽足,而在鈣離子置換實驗當中,發現到靜默TM 及ITSN 細胞之E-cadherin 回復能力有降低,證實TM 及ITSN 有調控E-cadherin 的作用。最後在擬態肌膚實驗中發現, 靜默TM 及ITSN 角質細胞後,E-cadherin 表現下降,證實E-cadherin 功能有受TM 和ITSN 調控而進一步影響細胞分化的能力。由實驗結果顯示,TM 和ITSN 可以調控角質細胞的E-cadherin 的表現,並影響表皮分化能力

Thrombomodulin (TM), a calcium-dependent cell-cell adhesion molecule, is expressed in human keratinocytes and served as a differential biomarker for the clinical stages of skin cancers. Our previous study show that TM knockdown can induced lamellipodia formation, the proteomic analysis identified the interacting partners of TM including α-tubulin, β-tubulin, actin and ITSN. We also provided that TM regulats actin cytoskeleton via interaction with ITSN. Since TM is comparable to E-cadherin in adhesion and
morphoregulatory activities and ITSN is a modular scaffolding protein regulating the formation of endocytotic vesicles. We hypothesized that the TM may modulate the assembly of E-cadherin junctions by interplay with ITSN. Our results showed that si -RNA knockdown TM or ITSN increased the endocytosis of E-cadherin in HaCaT cells. The knockdown of TM or ITSN increased the lamellipodia formation whereas delayed the E-cadherin junction rebuilding by calcium switch assay. This implies that TM and ITSN play a role in forming E-cadherin-based adherens junctions. Besides, HaCaT cells downregulation of TM or ITSN were poorly differentiation by using organotypic cultures assay. These results suggest that TM and ITSN could modulate the functional of E-cadherin-mediated cell-cell adhesion and epithelial differentiation.

目錄

中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
第一章 前言 1
第一節 研究背景 1
一、 人類凝血酶調節素(Thrombomodulin; TM) 1
二、 凝血酶調節素與人類表皮角質細胞 3
三、 Intersectin (ITSN) 5
四、 細胞骨架actin之調控 6
五、 TM與ITSN 調控角質細胞actin骨架 8
六、 鈣黏著素E ( E-cadherin ) 9
第二節 研究目的 11
第二章 研究方法 12
第一節 研究設計 12
第二節 研究材料 13
一、細胞株 13
二、實驗藥劑 13
三、抗體 15
四、實驗室耗材 16
五、實驗儀器 17
第三節 實驗方法 19
一、 細胞培養 19
二、 細胞計數 20
三、 細胞繼代培養 21
四、 細胞冷凍儲存 22
五、 蛋白質萃取 22
六、 蛋白質定量 23
七、 蛋白質電泳 24
八、 西方墨點法 26
九、 免疫螢光染色 27
十、 雷射共軛焦顯微鏡 29
十一、 核糖核酸干擾技術 29
十二、 擬態皮膚培養模組 30
十三、 鈣離子置換實驗 32
第三章 研究結果 34
第一節 TM、ITSN及E-cadherin細胞內的分佈 34
第二節 靜默TM及ITSN表現影響HaCaT細胞型態 34
第三節 靜默TM或ITSN表現影響HaCaT細胞E-cadherin分佈 35
第四節 靜默TM或ITSN表現影響E-cadherin回復能力 35
第五節 靜默後的HaCaT細胞其細胞分化能力有受影響 35
第四章 討論 37
第一節 結論 39
第二節 建議 39
參考文獻 46
附錄 51

圖表目錄
圖一、TM、ITSN及E-cadherin於HaCaT細胞中的分佈 40
圖二、利用西方墨點法偵測HaCaT細胞與靜默TM、 ITSN及TM合併ITSN細胞中TM, ITSN及E-cadherin之表現量 41
圖三、HaCaT細胞與靜默TM或 ITSN後之細胞型態 42
圖四、免疫螢光染色分析HaCaT細胞及HaCaT-siRNA細胞E-cadherin之分布(A)。將胞噬之量化後分析如圖(B)。 43
圖五 calcium switch 實驗,及利用免疫螢光染色分析HaCaT細胞及HaCaT靜默TM、 ITSN﹐及TM合併ITSN 細胞中E-cadherin之分佈。 44
圖六、培養模組切片染色觀察細胞分化情形 45


1.Wen, D.Z., et al., Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry, 1987. 26(14): p. 4350-7.
2.Esmon, C.T., The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem, 1989. 264(9): p. 4743-6.
3.Suzuki, K., et al., Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J, 1987. 6(7): p. 1891-7.
4.Chay, C.H. and K.J. Pienta, Evidence for lectin signaling to the nuclear matrix: cellular interpretation of the glycocode. J Cell Biochem Suppl, 2000. Suppl 35: p. 123-9.
5.Huang, H.C., et al., Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem, 2003. 278(47): p. 46750-9.
6.Stearns, D.J., S. Kurosawa, and C.T. Esmon, Microthrombomodulin. Residues 310-486 from the epidermal growth factor precursor homology domain of thrombomodulin will accelerate protein C activation. J Biol Chem, 1989. 264(6): p. 3352-6.
7.Honda, G., et al., The roles played by the D2 and D3 domains of recombinant human thrombomodulin in its function. J Biochem, 1995. 118(5): p. 1030-6.
8.Koyama, T., et al., Relationship between post-translational glycosylation and anticoagulant function of secretable recombinant mutants of human thrombomodulin. Br J Haematol, 1991. 78(4): p. 515-22.
9.Conway, E.M., B. Nowakowski, and M. Steiner-Mosonyi, Thrombomodulin lacking the cytoplasmic domain efficiently internalizes thrombin via nonclathrin-coated, pit-mediated endocytosis. J Cell Physiol, 1994. 158(2): p. 285-98.
10.Raife, T.J., et al., Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. J Clin Invest, 1994. 93(4): p. 1846-51.
11.Conway, E.M., et al., Structure-function analyses of thrombomodulin by gene-targeting in mice: the cytoplasmic domain is not required for normal fetal development. Blood, 1999. 93(10): p. 3442-50.
12.Zhang, Y., et al., Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest, 1998. 101(7): p. 1301-9.
13.Grey, S.T. and W.W. Hancock, A physiologic anti-inflammatory pathway based on thrombomodulin expression and generation of activated protein C by human mononuclear phagocytes. J Immunol, 1996. 156(6): p. 2256-63.
14.McCachren, S.S., et al., Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood, 1991. 78(12): p. 3128-32.
15.Senet, P., et al., Thrombomodulin, a functional surface protein on human keratinocytes, is regulated by retinoic acid. Arch Dermatol Res, 1997. 289(3): p. 151-7.
16.Pindon, A., et al., Novel expression and localization of active thrombomodulin on the surface of mouse brain astrocytes. Glia, 1997. 19(3): p. 259-68.
17.Lafay, M., et al., Thrombomodulin modulates the mitogenic response to thrombin of human umbilical vein endothelial cells. Thromb Haemost, 1998. 79(4): p. 848-52.
18.Ogawa, H., et al., Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett, 2000. 149(1-2): p. 95-103.
19.Hamatake, M., et al., Prognostic value and clinicopathological correlation of thrombomodulin in squamous cell carcinoma of the human lung. Clin Cancer Res, 1996. 2(4): p. 763-6.
20.Tezuka, Y., et al., Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res, 1995. 55(18): p. 4196-200.
21.Jackson, D.E., et al., Immunohistochemical localization of thrombomodulin in normal human skin and skin tumours. J Pathol, 1995. 175(4): p. 421-32.
22.Le Flem, L., et al., Mutations in promoter region of thrombomodulin and venous thromboembolic disease. Arterioscler Thromb Vasc Biol, 1999. 19(4): p. 1098-104.
23.Fuchs, E., Epidermal differentiation: the bare essentials. J Cell Biol, 1990. 111(6 Pt 2): p. 2807-14.
24.Watt, F.M., P.W. Jordan, and C.H. O''Neill, Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc Natl Acad Sci U S A, 1988. 85(15): p. 5576-80.
25.Mizutani, H., et al., Functional thrombomodulin expression on epithelial skin tumours as a differentiation marker for suprabasal keratinocytes. Br J Dermatol, 1996. 135(2): p. 187-93.
26.Raife, T.J., et al., Keratinocyte-specific expression of human thrombomodulin in transgenic mice: effects on epidermal differentiation and cutaneous wound healing. J Investig Med, 1998. 46(4): p. 127-33.
27.Peterson, J.J., et al., Expression of thrombomodulin and consequences of thrombomodulin deficiency during healing of cutaneous wounds. Am J Pathol, 1999. 155(5): p. 1569-75.
28.Martin, N.P., et al., Intersectin regulates epidermal growth factor receptor endocytosis, ubiquitylation, and signaling. Mol Pharmacol, 2006. 70(5): p. 1643-53.
29.Yu, Y., et al., Mice deficient for the chromosome 21 ortholog Itsn1 exhibit vesicle-trafficking abnormalities. Hum Mol Genet, 2008. 17(21): p. 3281-90.
30.Ma, Y.J., et al., Neuronal distribution of EHSH1/intersectin: molecular linker between clathrin-mediated endocytosis and signaling pathways. J Neurosci Res, 2003. 71(4): p. 468-77.
31.Guipponi, M., et al., Two isoforms of a human intersectin (ITSN) protein are produced by brain-specific alternative splicing in a stop codon. Genomics, 1998. 53(3): p. 369-76.
32.Sengar, A.S., et al., The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J, 1999. 18(5): p. 1159-71.
33.Yamabhai, M., et al., Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J Biol Chem, 1998. 273(47): p. 31401-7.
34.Hussain, N.K., et al., Splice variants of intersectin are components of the endocytic machinery in neurons and nonneuronal cells. J Biol Chem, 1999. 274(22): p. 15671-7.
35.Martina, J.A., et al., Stonin 2: an adaptor-like protein that interacts with components of the endocytic machinery. J Cell Biol, 2001. 153(5): p. 1111-20.
36.Santolini, E., et al., The EH network. Exp Cell Res, 1999. 253(1): p. 186-209.
37.Adams, A., et al., Intersectin, an adaptor protein involved in clathrin-mediated endocytosis, activates mitogenic signaling pathways. J Biol Chem, 2000. 275(35): p. 27414-20.
38.Hussain, N.K., et al., Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol, 2001. 3(10): p. 927-32.
39.Vale, R.D., The molecular motor toolbox for intracellular transport. Cell, 2003. 112(4): p. 467-80.
40.Yamaguchi, H. and J. Condeelis, Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta, 2007. 1773(5): p. 642-52.
41.Burridge, K., et al., Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol, 1988. 4: p. 487-525.
42.Small, J.V., Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks. J Cell Biol, 1981. 91(3 Pt 1): p. 695-705.
43.O''Connor, T.P. and D. Bentley, Accumulation of actin in subsets of pioneer growth cone filopodia in response to neural and epithelial guidance cues in situ. J Cell Biol, 1993. 123(4): p. 935-48.
44.Ren, G., M.S. Crampton, and A.S. Yap, Cortactin: Coordinating adhesion and the actin cytoskeleton at cellular protrusions. Cell Motil Cytoskeleton, 2009. 66(10): p. 865-73.
45.Daly, R.J., Cortactin signalling and dynamic actin networks. Biochem J, 2004. 382(Pt 1): p. 13-25.
46.Ammer, A.G. and S.A. Weed, Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motil Cytoskeleton, 2008. 65(9): p. 687-707.
47.Nobes, C.D. and A. Hall, Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 1995. 81(1): p. 53-62.
48.Ridley, A.J. and A. Hall, The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 1992. 70(3): p. 389-99.
49.Adams, A.E., et al., CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J Cell Biol, 1990. 111(1): p. 131-42.
50.陳映荻, 凝血酶調節素調控角質細胞骨架之機制探討, in 醫學檢驗生物技術學系碩士班2010, 中國醫藥大學. p. 1-83.
51.Syrigos, K.N., K.J. Harrington, and M. Pignatelli, Role of adhesion molecules in bladder cancer: an important part of the jigsaw. Urology, 1999. 53(2): p. 428-34.
52.Blaschuk, O.W., et al., Identification of a cadherin cell adhesion recognition sequence. Dev Biol, 1990. 139(1): p. 227-9.
53.Ozawa, M., M. Ringwald, and R. Kemler, Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci U S A, 1990. 87(11): p. 4246-50.
54.Hajra, K.M. and E.R. Fearon, Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer, 2002. 34(3): p. 255-68.
55.Wheelock, M.J. and K.R. Johnson, Cadherin-mediated cellular signaling. Curr Opin Cell Biol, 2003. 15(5): p. 509-14.
56.van Roy, F. and G. Berx, The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci, 2008. 65(23): p. 3756-88.
57.Shapiro, L., et al., Structural basis of cell-cell adhesion by cadherins. Nature, 1995. 374(6520): p. 327-37.
58.de Boer, C.J., et al., Changing roles of cadherins and catenins during progression of squamous intraepithelial lesions in the uterine cervix. Am J Pathol, 1999. 155(2): p. 505-15.
59.Hart, I.R. and A. Saini, Biology of tumour metastasis. Lancet, 1992. 339(8807): p. 1453-7.
60.Christofori, G. and H. Semb, The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci, 1999. 24(2): p. 73-6.
61.Akhtar, N. and N.A. Hotchin, RAC1 regulates adherens junctions through endocytosis of E-cadherin. Mol Biol Cell, 2001. 12(4): p. 847-62.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top