|
1.Gabriel, C.A. and S.M. Domchek, Breast cancer in young women. Breast Cancer Res, 2010. 12(5): p. 212. 2.DeSantis, C., R. Siegel, and A. Jemal, Breast Cancer Facts & Figures 2011-2012. The American Cancer Society, 2012. 3.Society, A.C., Breast Cancer Staging. American Joint Committee on Cancer, 2009. 7th Edition: p. 1-2. 4.Tada, K., et al., Ductal carcinoma in situ and sentinel lymph node metastasis in breast cancer. World J Surg Oncol, 2010. 8: p. 6. 5.Liu, Y., et al., A longitudinal study of factors associated with perceived risk of recurrence in women with ductal carcinoma in situ and early-stage invasive breast cancer. Breast Cancer Res Treat, 2010. 124(3): p. 835-844. 6.Aubele, M., et al., Extensive ductal carcinoma in situ with small foci of invasive ductal carcinoma: evidence of genetic resemblance by CGH. Int. J. Cancer, 2000. 85: p. 82–86. 7.Haagensen, C., et al., Lobular neoplasia (so-called lobular carcinoma in situ) of the breast. Cancer, 1978. 42(2): p. 737-769. 8.Fisher, E. and B. Fisher, Lobular carcinoma of the breast: an overview. Ann Surg, 1977. 185(4): p. 377-385. 9.Arpino, G., et al., Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res, 2004. 6(3): p. R149-56. 10.Pasta, V., et al., Inflammatory breast cancer. Ann Ital Chir, 2006. 77(3). 11.Sharma, S., et al., Mucinous carcinoma of breast: Cytodiagnosis of a case. J Cytol, 2011. 8(1): p. 42-44. 12.Yerushalmi, R., M.M. Hayes, and K.A. Gelmon, Breast carcinoma--rare types: review of the literature. Ann Oncol, 2009. 20(11): p. 1763-1770. 13.Komaki, K., et al., Mucinous carcinoma of the breast in Japan. A prognostic analysis based on morphologic features. Cancer, 1988. 61(5): p. 989-996. 14.Bae, S.Y., et al., Mucinous carcinoma of the breast in comparison with invasive ductal carcinoma: clinicopathologic characteristics and prognosis. J Breast Cancer, 2011. 14(4): p. 308-313. 15.de Ruijter, T.C., et al., Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol, 2011. 137(2): p. 183-192. 16.Pal, S.K., B.H. Childs, and M. Pegram, Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat, 2011. 125(3): p. 627-636. 17.Amos, K.D., B. Adamo, and C.K. Anders, Triple-negative breast cancer: an update on neoadjuvant clinical trials. Int J Breast Cancer, 2012. 2012: p. 7. 18.Minami, C.A., D.U. Chung, and H.R. Chang, Management options in triple-negative breast cancer. Breast Cancer (Auckl), 2011. 5: p. 175-199. 19.Lincz, L.F., Deciphering the apoptotic pathway: all roads lead to death. Immunol Cell Biol, 1998. 76(1): p. 1-19. 20.Israels, L.G. and E.D. Israels, Apoptosis. Oncologist, 1999. 4(4): p. 332-339. 21.Degterev, A. and J. Yuan, Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol, 2008. 9(5): p. 378-390. 22.Tait, S.W. and D.R. Green, Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol, 2010. 11(9): p. 621-632. 23.Nicholson, D.W., Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ, 1999. 6(11): p. 1028-1042. 24.Fan, T.J., et al., Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai), 2005. 37(11): p. 719-727. 25.Carlo-Stella, C., et al., Targeting TRAIL agonistic receptors for cancer therapy. Clin Cancer Res, 2007. 13(8): p. 2313-2317. 26.Purring-Koch, C. and G. McLendon, Cytochrome c binding to Apaf-1: the effects of dATP and ionic strength. Proc Natl Acad Sci U S A, 2000. 97(22): p. 11928-11931. 27.Ow, Y.P., et al., Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol, 2008. 9(7): p. 532-542. 28.Adrain, C., E.M. Creagh, and S.J. Martin, Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J, 2001. 20(23): p. 6627-6636. 29.Du, C., et al., Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 2000. 102(1): p. 33-42. 30.Arnoult, D., et al., Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J, 2003. 22(17): p. 4385-4399. 31.Cande, C., et al., Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie, 2002. 84(2-3): p. 215-222. 32.Breckenridge, D.G., et al., Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene, 2003. 22(53): p. 8608-8618. 33.Paschen, W. and T. Mengesdorf, Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium, 2005. 38(3-4): p. 409-415. 34.Shiraishi, H., et al., ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci, 2006. 119(Pt 19): p. 3958-3966. 35.Szegezdi, E., et al., Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep, 2006. 7(9): p. 880-885. 36.MacFarlane, M. and A.C. Williams, Apoptosis and disease: a life or death decision. EMBO Rep, 2004. 5(7): p. 674-678. 37.Mellier, G., et al., TRAILing death in cancer. Mol Aspects Med, 2010. 31(1): p. 93-112. 38.Shirley, S., A. Morizot, and O. Micheau, Regulating TRAIL receptor-induced cell death at the membrane : a deadly discussion. Recent Pat Anticancer Drug Discov, 2011. 6(3): p. 311-323. 39.Lin, T., et al., Seleno-cyclodextrin sensitises human breast cancer cells to TRAIL-induced apoptosis through DR5 induction and NF-kappaB suppression. Eur J Cancer, 2011. 47(12): p. 1890-1907. 40.Johnstone, R.W., A.J. Frew, and M.J. Smyth, The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer, 2008. 8(10): p. 782-798. 41.Holland, P.M., Targeting Apo2L/TRAIL receptors by soluble Apo2L/TRAIL. Cancer Lett, 2013. 332(2): p. 156-162. 42.Huang, Y. and M.S. Sheikh, TRAIL death receptors and cancer therapeutics. Toxicol Appl Pharmacol, 2007. 224(3): p. 284-289. 43.LeBlanc, H.N. and A. Ashkenazi, Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ, 2003. 10(1): p. 66-75. 44.Bellail, A.C., et al., TRAIL agonists on clinical trials for cancer therapy: the promises and the challenges. Rev Recent Clin Trials, 2009. 4(1): p. 34-41. 45.Trarbach, T., et al., Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer, 2010. 102(3): p. 506-512. 46.Wiezorek, J., P. Holland, and J. Graves, Death receptor agonists as a targeted therapy for cancer. Clin Cancer Res, 2010. 16(6): p. 1701-1708. 47.Cretney, E., et al., TNF-related apoptosis-inducing ligand as a therapeutic agent in autoimmunity and cancer. Immunol Cell Biol, 2006. 84(1): p. 87-98. 48.Zhang, L. and B. Fang, Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther, 2005. 12(3): p. 228-37. 49.Tolomeo, M., et al., Pterostilbene and 3''-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int J Biochem Cell Biol, 2005. 37(8): p. 1709-1726. 50.Rimando, A.M., et al., Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J Agric Food Chem, 2002. 50(12): p. 3453-3457. 51.Rimando, A.M., et al., Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem, 2004. 52(15): p. 4713-4719. 52.Hougee, S., et al., Selective COX-2 inhibition by a Pterocarpus marsupium extract characterized by pterostilbene, and its activity in healthy human volunteers. Planta Med, 2005. 71(5): p. 387-392. 53.Stivala, L.A., et al., Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J Biol Chem, 2001. 276(25): p. 22586-22594. 54.Macickova, T., et al., Effect of stilbene derivative on superoxide generation and enzyme release from human neutrophils in vitro. Interdiscip Toxicol, 2012. 5(2): p. 71-75. 55.Rimando, A.M., et al., Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor alpha-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J Agric Food Chem, 2005. 53(9): p. 3403-3407. 56.Pari, L. and M.A. Satheesh, Effect of pterostilbene on hepatic key enzymes of glucose metabolism in streptozotocin- and nicotinamide-induced diabetic rats. Life Sci, 2006. 79(7): p. 641-645. 57.McCormack, D. and D. McFadden, Pterostilbene and cancer: current review. J Surg Res, 2012. 173(2): p. e53-61. 58.Pan, M.H., et al., Pterostilbene induces apoptosis and cell cycle arrest in human gastric carcinoma cells. J Agric Food Chem, 2007. 55(19): p. 7777-7785. 59.Mannal, P.W., et al., Pterostilbene inhibits pancreatic cancer in vitro. J Gastrointest Surg, 2010. 14(5): p. 873-879. 60.Wang, Y., et al., Pterostilbene simultaneously induces apoptosis, cell cycle arrest and cyto-protective autophagy in breast cancer cells. Am J Transl Res, 2012. 4(1): p. 44-51. 61.Rahman, M., et al., TRAIL induces apoptosis in triple-negative breast cancer cells with a mesenchymal phenotype. Breast Cancer Res Treat, 2009. 113(2): p. 217-230. 62.Zhang, Y. and B. Zhang, TRAIL resistance of breast cancer cells is associated with constitutive endocytosis of death receptors 4 and 5. Mol Cancer Res, 2008. 6(12): p. 1861-1871. 63.Li, L.C., et al., Knockdown of MADD and c-FLIP overcomes resistance to TRAIL-induced apoptosis in ovarian cancer cells. Am J Obstet Gynecol, 2011. 205(4): p. 362 e12-25. 64.Nam, S.Y., et al., Upregulation of FLIP(S) by Akt, a possible inhibition mechanism of TRAIL-induced apoptosis in human gastric cancers. Cancer Sci, 2003. 94(12): p. 1066-1073. 65.Jin, C.Y., et al., Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Mol Nutr Food Res, 2011. 55(2): p. 300-309. 66.Khanbolooki, S., et al., Nuclear factor-kappaB maintains TRAIL resistance in human pancreatic cancer cells. Mol Cancer Ther, 2006. 5(9): p. 2251-2260. 67.Gupta, S.C., et al., Nimbolide sensitizes human colon cancer cells to TRAIL through reactive oxygen species- and ERK-dependent up-regulation of death receptors, p53, and Bax. J Biol Chem, 2011. 286(2): p. 1134-1146. 68.Kapetanovic, I.M., et al., Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother Pharmacol, 2011. 68(3): p. 593-601. 69.Lin, H.S., B.D. Yue, and P.C. Ho, Determination of pterostilbene in rat plasma by a simple HPLC-UV method and its application in pre-clinical pharmacokinetic study. Biomed Chromatogr, 2009. 23(12): p. 1308-15. 70.van Delft, M.F. and D.C. Huang, How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res, 2006. 16(2): p. 203-213. 71.Yodkeeree, S., et al., Zerumbone enhances TRAIL-induced apoptosis through the induction of death receptors in human colon cancer cells: Evidence for an essential role of reactive oxygen species. Cancer Res, 2009. 69(16): p. 6581-6589. 72.Prasad, S., et al., ROS and CHOP are critical for dibenzylideneacetone to sensitize tumor cells to TRAIL through induction of death receptors and downregulation of cell survival proteins. Cancer Res, 2011. 71(2): p. 538-549. 73.Yadav, V.R., S. Prasad, and B.B. Aggarwal, Cardamonin sensitizes tumour cells to TRAIL through ROS- and CHOP-mediated up-regulation of death receptors and down-regulation of survival proteins. Br J Pharmacol, 2012. 165(3): p. 741-753. 74.Lee, M.W., et al., The involvement of reactive oxygen species (ROS) and p38 mitogen-activated protein (MAP) kinase in TRAIL/Apo2L-induced apoptosis. FEBS Lett, 2002. 512(1-3): p. 313-318. 75.Huang, J., et al., Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK, and mitochondrial signaling pathways. J Pharmacol Sci, 2008. 107(4): p. 370-379. 76.Shenoy, K., Y. Wu, and S. Pervaiz, LY303511 enhances TRAIL sensitivity of SHEP-1 neuroblastoma cells via hydrogen peroxide-mediated mitogen-activated protein kinase activation and up-regulation of death receptors. Cancer Res, 2009. 69(5): p. 1941-1950. 77.Torres, M. and H.J. Forman, Redox signaling and the MAP kinase pathways. Biofactors, 2003. 17(1-4): p. 287-296. 78.Pelicano, H., D. Carney, and P. Huang, ROS stress in cancer cells and therapeutic implications. Drug Resist Updat, 2004. 7(2): p. 97-110. 79.Lu, W., M.A. Ogasawara, and P. Huang, Models of reactive oxygen species in cancer. Drug Discov Today Dis Models, 2007. 4(2): p. 67-73. 80.Trachootham, D., J. Alexandre, and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov, 2009. 8(7): p. 579-591. 81.Drosopoulos, K.G., et al., Transformation by oncogenic RAS sensitizes human colon cells to TRAIL-induced apoptosis by up-regulating death receptor 4 and death receptor 5 through a MEK-dependent pathway. J Biol Chem, 2005. 280(24): p. 22856-22867.
|