跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝奕蓉
研究生(外文):Yi-Jung Hsieh
論文名稱:紫檀芪加強TRAIL誘導抗TRAIL之三陰性乳癌細胞產生細胞凋亡之研究
論文名稱(外文):Pterostilbene enhances TRAIL-induced apoptosis in TRAIL-resistant triple negative breast cancer cells
指導教授:魏宗德
指導教授(外文):Tzong-Der Way
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生物科技學系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:79
中文關鍵詞:紫檀芪三陰性乳癌細胞凋亡
外文關鍵詞:pterostilbeneTRAILtriple negative breast cancerapoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
三陰性乳癌 (TNBC) 使用一般常用之化療藥物難以治癒,且預後較差。腫瘤壞死因子相關細胞凋亡配體 (TRAIL) 在目前臨床試驗是用於癌症的治療。不幸的是,臨床上病患對TRAIL會產生抵抗性。因此,目前迫切需要找尋能使細胞對TRAIL敏感的藥物。紫檀芪 (pterostilbene, PTER) 屬於白藜蘆醇 (resveratrol) 的天然甲氧基類似物 (methoxylated analogue),具有多種藥理活性。本研究探討紫檀芪是否能夠影響TRAIL誘導具有TRAIL抵抗性的三陰性乳癌細胞產生細胞凋亡。結果顯示PTER可以誘導具有TRAIL抵抗性的三陰性乳癌BT-20 細胞產生細胞凋亡並能有效增強TRAIL誘導BT-20和MDA-MB-468細胞產生細胞凋亡。進一步探討其機制,證明紫檀芪能減少BT-20 細胞的抗凋亡蛋白質survivin, Bcl-xL 和c-FLIPS/L ,但是不影響Bcl-2;也能使Bid蛋白質被剪切活化並且增強促凋亡蛋白質Bax的表現。紫檀芪能誘導細胞表現死亡受體DR5和DR4、減少BT-20細胞誘導受體DcR2的表現,但不影響DcR1的表現。本研究也證明紫檀芪透過活性氧 (ROS) 引起ERK 1/2和p38蛋白激酶的活化進而誘導DR4和DR5的表現,並且證實活性氧對紫檀芪加強TRAIL誘導細胞凋亡的重要性。總結,我們的研究結果證明,紫檀芪加強TRAIL誘導細胞凋亡可以透過活性氧引起ERK 1/2和p38的活化誘導DR4和DR5的表現、減少抗凋亡蛋白質的表現和增加促凋亡蛋白質的表達。

Triple-negative breast cancer (TNBC) is refractory to commonly used chemotherapeutic agents, as a result it leads to relatively poor prognosis. TNF-related apoptosis-inducing ligand (TRAIL) is currently in clinical trials as a treatment for cancer. Unfortunately, patients develop resistance to the TRAIL, therefore, agents that can sensitize cells to TRAIL are urgently needed. Pterostilbene (PTER), a natural dimethylated analog of resveratrol, is known to have diverse pharmacologic activities. In the present study, we investigated whether PTER affect TRAIL-induced apoptosis and its mechanism in TRAIL-resistant TNBC cells. First, our results indicated that PTER induced apoptosis in TNBC BT-20 cells. Next, we found that PTER enhanced TRAIL-induced apoptosis in TRAIL-resistant TNBC BT20 and MDA-MB-468 cells. We demonstrated that PTER induced both death receptor 5 (DR5), DR4 and decreased decoy receptor 2 (DcR2) expression. PTER also decreased the expression of anti-apoptotic proteins survivin, Bcl-xL and c-FLIPS/L, but had minimal effect on the expression of Bcl-2. PTER caused the cleavage of bid protein and enhanced the expression of pro-apoptotic Bax. Moreover, we found that PTER induced DR4 and DR5 expression through the reactive oxygen species (ROS) –mediated activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and p38 mitogen activated protein kinase (p38 MAPK). Overall, our results show that PTER can potentiate TRAIL-induced apoptosis through the ROS–mediated activation of ERK 1/2 and p38 MAPK leading to DR4 and DR5 induction and down-regulation of anti-apoptotic proteins.

考試委員審定書影本 ............................................................................. I
中文摘要 ......................................................................................II
英文摘要 ..................................................................................... III
誌謝 ........................................................................................ IV
目錄 ......................................................................................... V
圖表目錄 ..................................................................................... IX
附圖 ........................................................................................ IX
附表 ......................................................................................... X
結果圖 ....................................................................................... X
第一章 緒論 ................................................................................... 1
第一節 癌症 (Cancer) .......................................................................... 1
第二節 乳癌 (Breast cancer) ................................................................... 4
第三節 乳癌種類與三陰性乳癌 (Triple negative breast cancer) ...................................... 6
第四節 細胞凋亡 (Apoptosis) .................................................................... 8
一、 細胞凋亡之介紹 ............................................................................. 8
二、 Caspases (Cysteine-aspartic specific protease) ......................................... 10
三、 細胞凋亡之途徑 ............................................................................ 13
(1) 內在路徑 (Intrinsic apoptotic pathway) ................................................... 13
(2) 外在路徑 (Extrinsic apoptotic pathway) ................................................... 14
第五節 TRAIL與TRAIL receptor誘導細胞凋亡之介紹 ................................................... 17
第六節 細胞抵抗TRAIL誘導細胞凋亡之機制 ............................................................ 21
第七節 紫檀芪 (Pterostilbene, PTER) ........................................................... 22
第八節 研究動機 ................................................................................ 24
第二章 材料與方法 .............................................................................. 25
第一節 材料來源 ................................................................................ 25
一、 細胞來源 ................................................................................. 25
二、 實驗藥物來源 .............................................................................. 25
三、 藥品試劑 ................................................................................. 25
四、 抗體 (Antibody) .......................................................................... 27
五、 主要儀器耗材 .............................................................................. 28
第二節 實驗方法 ................................................................................ 30
一、 細胞繼代培養 .............................................................................. 30
二、 細胞冷凍保存 .............................................................................. 30
三、 細胞活化 ................................................................................. 31
四、 細胞存活率分析 (MTT assay) ................................................................ 31
五、 流式細胞儀分析 (Flow cytometry) ........................................................... 32
六、 西方墨點法 (Western blot) ................................................................ 32
(1) 蛋白質萃取 (Protein extraction) ........................................................... 32
(2) 蛋白質定量分析 ............................................................................. 33
(3) 蛋白質之電泳分析 (SDS-PAGE) ................................................................ 34
(4) 轉漬與影像呈現 ............................................................................. 34
七、 細胞群落試驗 (Clonogenic assay) ............................................................ 36
八、 胞內ROS的測定 ............................................................................. 36
九、 統計分析 .................................................................................. 37
第三章 研究結果 ................................................................................ 38
第一節 PTER對TRAIL抵抗性之三陰性乳癌細胞的影響 ..................................................... 38
第二節 PTER增強TRAIL誘導BT-20和MDA-MB-468細胞產生細胞凋亡 .......................................... 43
第三節 PTER影響抗凋亡蛋白質 (anti-apoptotic protein) 和促凋亡蛋白質的表現 (pro-apoptotic protein) .... 48
第四節 PTER影響BT-20細胞表現TRAIL receptor,並探討在其他細胞的作用 ................................... 51
第五節 ROS對PTER誘導BT-20細胞表現DR4、DR5的影響以及對細胞凋亡之影響 .................................... 54
第六節 PTER影響MAPK (mitogen-activated protein kinase) 路徑 ..................................... 57
第七節 MAPKs對PTER誘導DR4、DR5表現的影響 .......................................................... 59
第八節 探討MAPKs與ROS之間的關係 ................................................................... 61
第四章 討論 ..................................................................................... 63
第五章 結論 ..................................................................................... 69
第六章 參考文獻 .................................................................................. 71

圖表目錄
附圖
附圖一、台灣歷年惡性腫瘤死亡率與死亡人數趨勢圖 ......................................................... 3
附圖二、癌細胞轉移 ................................................................................ 3
附圖三、細胞凋亡與細胞壞死之示意圖 ................................................................... 9
附圖四、Caspase之結構 ............................................................................ 11
附圖五、Caspase proenzyme 之結構 ................................................................. 11
附圖六、細胞凋亡的內在路徑和外在路徑 ................................................................. 15
附圖七、細胞凋亡的內在路徑和外在路徑相互連結 ........................................................... 16
附圖八、TRAIL和DR5的立體結構 ...................................................................... 17
附圖九、TRAIL receptor 的結構 .................................................................... 18
附圖十、細胞凋亡的訊息傳遞路徑 ...................................................................... 19
附圖十一、Pro-apoptotic receptor agonists ....................................................... 20
附圖十二、TRAIL-resistant 的機制 ................................................................. 21
附圖十三、 Pterostilbene的化學結構 ................................................................ 23
附圖十四、ROS造成細胞癌化之原因 ..................................................................... 66
附圖十五、Cancer redox biology: a biological basis for therapeutic selectivity.................... 67
附表
附表一、台灣地區100年國人癌症標準化死亡率比較表 ......................................................... 4
附表二、乳癌分期表 ................................................................................. 5
附表三、Caspase 的分類 ............................................................................ 12
結果圖
圖一、PTER對TRAIL抵抗性之三陰性乳癌細胞的影響 ......................................................... 40
圖二、PTER增強TRAIL誘導BT-20和MDA-MD-468細胞產生細胞凋亡 ............................................. 45
圖三、PTER 對BT-20細胞表現抗凋亡蛋白質和促凋亡蛋白質的影響............................................... 49
圖四、PTER影響不同癌細胞表現TRAIL receptor .......................................................... 52
圖五、ROS對PTER誘導BT-20細胞表現DR4、DR5的影響 ....................................................... 55
圖六、PTER對BT-20細胞的MAPK路徑之影響 ............................................................... 58
圖七、MAPK對PTER誘導DR4、DR5表現的影響 .............................................................. 60
圖八、探討MAPKs與ROS之間的關係 ...................................................................... 62
圖九、PTER增強TRAIL誘導細胞凋亡之機制 ................................................................ 70

1.Gabriel, C.A. and S.M. Domchek, Breast cancer in young women. Breast Cancer Res, 2010. 12(5): p. 212.
2.DeSantis, C., R. Siegel, and A. Jemal, Breast Cancer Facts & Figures 2011-2012. The American Cancer Society, 2012.
3.Society, A.C., Breast Cancer Staging. American Joint Committee on Cancer, 2009. 7th Edition: p. 1-2.
4.Tada, K., et al., Ductal carcinoma in situ and sentinel lymph node metastasis in breast cancer. World J Surg Oncol, 2010. 8: p. 6.
5.Liu, Y., et al., A longitudinal study of factors associated with perceived risk of recurrence in women with ductal carcinoma in situ and early-stage invasive breast cancer. Breast Cancer Res Treat, 2010. 124(3): p. 835-844.
6.Aubele, M., et al., Extensive ductal carcinoma in situ with small foci of invasive ductal carcinoma: evidence of genetic resemblance by CGH. Int. J. Cancer, 2000. 85: p. 82–86.
7.Haagensen, C., et al., Lobular neoplasia (so-called lobular carcinoma in situ) of the breast. Cancer, 1978. 42(2): p. 737-769.
8.Fisher, E. and B. Fisher, Lobular carcinoma of the breast: an overview. Ann Surg, 1977. 185(4): p. 377-385.
9.Arpino, G., et al., Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res, 2004. 6(3): p. R149-56.
10.Pasta, V., et al., Inflammatory breast cancer. Ann Ital Chir, 2006. 77(3).
11.Sharma, S., et al., Mucinous carcinoma of breast: Cytodiagnosis of a case. J Cytol, 2011. 8(1): p. 42-44.
12.Yerushalmi, R., M.M. Hayes, and K.A. Gelmon, Breast carcinoma--rare types: review of the literature. Ann Oncol, 2009. 20(11): p. 1763-1770.
13.Komaki, K., et al., Mucinous carcinoma of the breast in Japan. A prognostic analysis based on morphologic features. Cancer, 1988. 61(5): p. 989-996.
14.Bae, S.Y., et al., Mucinous carcinoma of the breast in comparison with invasive ductal carcinoma: clinicopathologic characteristics and prognosis. J Breast Cancer, 2011. 14(4): p. 308-313.
15.de Ruijter, T.C., et al., Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol, 2011. 137(2): p. 183-192.
16.Pal, S.K., B.H. Childs, and M. Pegram, Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat, 2011. 125(3): p. 627-636.
17.Amos, K.D., B. Adamo, and C.K. Anders, Triple-negative breast cancer: an update on neoadjuvant clinical trials. Int J Breast Cancer, 2012. 2012: p. 7.
18.Minami, C.A., D.U. Chung, and H.R. Chang, Management options in triple-negative breast cancer. Breast Cancer (Auckl), 2011. 5: p. 175-199.
19.Lincz, L.F., Deciphering the apoptotic pathway: all roads lead to death. Immunol Cell Biol, 1998. 76(1): p. 1-19.
20.Israels, L.G. and E.D. Israels, Apoptosis. Oncologist, 1999. 4(4): p. 332-339.
21.Degterev, A. and J. Yuan, Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol, 2008. 9(5): p. 378-390.
22.Tait, S.W. and D.R. Green, Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol, 2010. 11(9): p. 621-632.
23.Nicholson, D.W., Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ, 1999. 6(11): p. 1028-1042.
24.Fan, T.J., et al., Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai), 2005. 37(11): p. 719-727.
25.Carlo-Stella, C., et al., Targeting TRAIL agonistic receptors for cancer therapy. Clin Cancer Res, 2007. 13(8): p. 2313-2317.
26.Purring-Koch, C. and G. McLendon, Cytochrome c binding to Apaf-1: the effects of dATP and ionic strength. Proc Natl Acad Sci U S A, 2000. 97(22): p. 11928-11931.
27.Ow, Y.P., et al., Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol, 2008. 9(7): p. 532-542.
28.Adrain, C., E.M. Creagh, and S.J. Martin, Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J, 2001. 20(23): p. 6627-6636.
29.Du, C., et al., Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 2000. 102(1): p. 33-42.
30.Arnoult, D., et al., Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J, 2003. 22(17): p. 4385-4399.
31.Cande, C., et al., Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie, 2002. 84(2-3): p. 215-222.
32.Breckenridge, D.G., et al., Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene, 2003. 22(53): p. 8608-8618.
33.Paschen, W. and T. Mengesdorf, Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium, 2005. 38(3-4): p. 409-415.
34.Shiraishi, H., et al., ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci, 2006. 119(Pt 19): p. 3958-3966.
35.Szegezdi, E., et al., Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep, 2006. 7(9): p. 880-885.
36.MacFarlane, M. and A.C. Williams, Apoptosis and disease: a life or death decision. EMBO Rep, 2004. 5(7): p. 674-678.
37.Mellier, G., et al., TRAILing death in cancer. Mol Aspects Med, 2010. 31(1): p. 93-112.
38.Shirley, S., A. Morizot, and O. Micheau, Regulating TRAIL receptor-induced cell death at the membrane : a deadly discussion. Recent Pat Anticancer Drug Discov, 2011. 6(3): p. 311-323.
39.Lin, T., et al., Seleno-cyclodextrin sensitises human breast cancer cells to TRAIL-induced apoptosis through DR5 induction and NF-kappaB suppression. Eur J Cancer, 2011. 47(12): p. 1890-1907.
40.Johnstone, R.W., A.J. Frew, and M.J. Smyth, The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer, 2008. 8(10): p. 782-798.
41.Holland, P.M., Targeting Apo2L/TRAIL receptors by soluble Apo2L/TRAIL. Cancer Lett, 2013. 332(2): p. 156-162.
42.Huang, Y. and M.S. Sheikh, TRAIL death receptors and cancer therapeutics. Toxicol Appl Pharmacol, 2007. 224(3): p. 284-289.
43.LeBlanc, H.N. and A. Ashkenazi, Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ, 2003. 10(1): p. 66-75.
44.Bellail, A.C., et al., TRAIL agonists on clinical trials for cancer therapy: the promises and the challenges. Rev Recent Clin Trials, 2009. 4(1): p. 34-41.
45.Trarbach, T., et al., Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer, 2010. 102(3): p. 506-512.
46.Wiezorek, J., P. Holland, and J. Graves, Death receptor agonists as a targeted therapy for cancer. Clin Cancer Res, 2010. 16(6): p. 1701-1708.
47.Cretney, E., et al., TNF-related apoptosis-inducing ligand as a therapeutic agent in autoimmunity and cancer. Immunol Cell Biol, 2006. 84(1): p. 87-98.
48.Zhang, L. and B. Fang, Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther, 2005. 12(3): p. 228-37.
49.Tolomeo, M., et al., Pterostilbene and 3''-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int J Biochem Cell Biol, 2005. 37(8): p. 1709-1726.
50.Rimando, A.M., et al., Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J Agric Food Chem, 2002. 50(12): p. 3453-3457.
51.Rimando, A.M., et al., Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem, 2004. 52(15): p. 4713-4719.
52.Hougee, S., et al., Selective COX-2 inhibition by a Pterocarpus marsupium extract characterized by pterostilbene, and its activity in healthy human volunteers. Planta Med, 2005. 71(5): p. 387-392.
53.Stivala, L.A., et al., Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J Biol Chem, 2001. 276(25): p. 22586-22594.
54.Macickova, T., et al., Effect of stilbene derivative on superoxide generation and enzyme release from human neutrophils in vitro. Interdiscip Toxicol, 2012. 5(2): p. 71-75.
55.Rimando, A.M., et al., Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor alpha-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J Agric Food Chem, 2005. 53(9): p. 3403-3407.
56.Pari, L. and M.A. Satheesh, Effect of pterostilbene on hepatic key enzymes of glucose metabolism in streptozotocin- and nicotinamide-induced diabetic rats. Life Sci, 2006. 79(7): p. 641-645.
57.McCormack, D. and D. McFadden, Pterostilbene and cancer: current review. J Surg Res, 2012. 173(2): p. e53-61.
58.Pan, M.H., et al., Pterostilbene induces apoptosis and cell cycle arrest in human gastric carcinoma cells. J Agric Food Chem, 2007. 55(19): p. 7777-7785.
59.Mannal, P.W., et al., Pterostilbene inhibits pancreatic cancer in vitro. J Gastrointest Surg, 2010. 14(5): p. 873-879.
60.Wang, Y., et al., Pterostilbene simultaneously induces apoptosis, cell cycle arrest and cyto-protective autophagy in breast cancer cells. Am J Transl Res, 2012. 4(1): p. 44-51.
61.Rahman, M., et al., TRAIL induces apoptosis in triple-negative breast cancer cells with a mesenchymal phenotype. Breast Cancer Res Treat, 2009. 113(2): p. 217-230.
62.Zhang, Y. and B. Zhang, TRAIL resistance of breast cancer cells is associated with constitutive endocytosis of death receptors 4 and 5. Mol Cancer Res, 2008. 6(12): p. 1861-1871.
63.Li, L.C., et al., Knockdown of MADD and c-FLIP overcomes resistance to TRAIL-induced apoptosis in ovarian cancer cells. Am J Obstet Gynecol, 2011. 205(4): p. 362 e12-25.
64.Nam, S.Y., et al., Upregulation of FLIP(S) by Akt, a possible inhibition mechanism of TRAIL-induced apoptosis in human gastric cancers. Cancer Sci, 2003. 94(12): p. 1066-1073.
65.Jin, C.Y., et al., Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Mol Nutr Food Res, 2011. 55(2): p. 300-309.
66.Khanbolooki, S., et al., Nuclear factor-kappaB maintains TRAIL resistance in human pancreatic cancer cells. Mol Cancer Ther, 2006. 5(9): p. 2251-2260.
67.Gupta, S.C., et al., Nimbolide sensitizes human colon cancer cells to TRAIL through reactive oxygen species- and ERK-dependent up-regulation of death receptors, p53, and Bax. J Biol Chem, 2011. 286(2): p. 1134-1146.
68.Kapetanovic, I.M., et al., Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother Pharmacol, 2011. 68(3): p. 593-601.
69.Lin, H.S., B.D. Yue, and P.C. Ho, Determination of pterostilbene in rat plasma by a simple HPLC-UV method and its application in pre-clinical pharmacokinetic study. Biomed Chromatogr, 2009. 23(12): p. 1308-15.
70.van Delft, M.F. and D.C. Huang, How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res, 2006. 16(2): p. 203-213.
71.Yodkeeree, S., et al., Zerumbone enhances TRAIL-induced apoptosis through the induction of death receptors in human colon cancer cells: Evidence for an essential role of reactive oxygen species. Cancer Res, 2009. 69(16): p. 6581-6589.
72.Prasad, S., et al., ROS and CHOP are critical for dibenzylideneacetone to sensitize tumor cells to TRAIL through induction of death receptors and downregulation of cell survival proteins. Cancer Res, 2011. 71(2): p. 538-549.
73.Yadav, V.R., S. Prasad, and B.B. Aggarwal, Cardamonin sensitizes tumour cells to TRAIL through ROS- and CHOP-mediated up-regulation of death receptors and down-regulation of survival proteins. Br J Pharmacol, 2012. 165(3): p. 741-753.
74.Lee, M.W., et al., The involvement of reactive oxygen species (ROS) and p38 mitogen-activated protein (MAP) kinase in TRAIL/Apo2L-induced apoptosis. FEBS Lett, 2002. 512(1-3): p. 313-318.
75.Huang, J., et al., Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK, and mitochondrial signaling pathways. J Pharmacol Sci, 2008. 107(4): p. 370-379.
76.Shenoy, K., Y. Wu, and S. Pervaiz, LY303511 enhances TRAIL sensitivity of SHEP-1 neuroblastoma cells via hydrogen peroxide-mediated mitogen-activated protein kinase activation and up-regulation of death receptors. Cancer Res, 2009. 69(5): p. 1941-1950.
77.Torres, M. and H.J. Forman, Redox signaling and the MAP kinase pathways. Biofactors, 2003. 17(1-4): p. 287-296.
78.Pelicano, H., D. Carney, and P. Huang, ROS stress in cancer cells and therapeutic implications. Drug Resist Updat, 2004. 7(2): p. 97-110.
79.Lu, W., M.A. Ogasawara, and P. Huang, Models of reactive oxygen species in cancer. Drug Discov Today Dis Models, 2007. 4(2): p. 67-73.
80.Trachootham, D., J. Alexandre, and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov, 2009. 8(7): p. 579-591.
81.Drosopoulos, K.G., et al., Transformation by oncogenic RAS sensitizes human colon cells to TRAIL-induced apoptosis by up-regulating death receptor 4 and death receptor 5 through a MEK-dependent pathway. J Biol Chem, 2005. 280(24): p. 22856-22867.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊