跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡芷圜
研究生(外文):Chih-Huan Tsai
論文名稱:CSC-3436 藉由 miR-1290 抑制 NAT2 表現進而抑制人類三陰性乳癌腫瘤生成之研究
論文名稱(外文):CSC-3436 suppresses human triple-negative breast cancer tumorigenesis via the miR-1290-mediated downregulation of N-acetyltransferase 2
指導教授:魏宗德
指導教授(外文):Tzong-Der Way
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生物科技學系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:100
中文關鍵詞:CSC-3436三陰性乳癌腫瘤生成NAT2miR-1290
外文關鍵詞:CSC-3436Triple-negative breast cancerN-acetyltransferase 2miR-1290
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,惡性腫瘤持續居十大死因之首,而乳癌為台灣女性第四常見的惡性腫瘤,乳癌在全世界發生率正持續上升。在所有乳癌中,三陰性乳癌約占 15 %,它被定義為缺少雌激素受體、黃體素受體與第二型人類表皮生長因子受體。三陰性乳癌預後極差;另外,典型三陰性乳癌擁有高復發率、高轉移與高死亡率的特性。本研究中使用 2-PN (2-phenylnaphthyridin-4-one) 衍生物藥物 CSC-3436探討對於三陰性乳癌細胞株 MDA-MB-231 的腫瘤生成與基因表現的影響。
實驗結果證實 CSC-3436 可以改變細胞型態、降低細胞存活率、抑制細胞增生、抑制細胞群聚形成能力、抑制細胞非貼附性生長能力與抑制細胞轉移能力。進一步結果表示 CSC-3436 抑制 MMP-2與 MMP-9 之表現。根據 gene expression array 與 microarray 的結果,我們進一步研究並證實 CSC-3436 會透過上調 miR-1290 的表現進而抑制 NAT2 的表現。此外,利用轉染 NAT2 shRNA 實驗,結果證實抑制 NAT2 表現可以抑制細胞增生、細胞非貼附性生長能力與細胞轉移能力並且使細胞型態轉型成類上皮細胞 (epithelial-like)。
綜合以上結果, CSC-3436 可藉由 miR-1290 抑制 NAT2 表現進而抑制人類三陰性乳癌的腫瘤生成能力。因此,CSC-3436可視為一有潛力之抗癌藥物。


Malignant neoplasms have continued to be the top leading cause of death. Recently, breast cancer is the most common malignancy among women, it is the fourth leading cause of cancer death among women in Taiwan, and its incidence is increasing worldwide. Triple-negative breast cancer (TNBC) accounts for approximately 15% of breast cancers, it is defined by a lack of expression of estrogen receptor (ER), progesterone receptor (PR), and HER2. Overall, TNBC is characteristically aggressive with poor prognosis, high recurrence, metastatic, and mortality rates. In this study, we used CSC-3436, a derivative of 2-phenylnaphthyridin-4-one (2-PN) to investigate the effects of CSC-3436 on TNBC MDA-MB-231 cell tumorigenesis and gene expression. We demonstrated that CSC-3436 could cause morphological change and suppressed cell viability, proliferation, colony forming ability, anchorage-independent growth and cell migration in MDA-MB-231 cells. Moreover, we showed that CSC-3436 reduced the expression of MMP-2 and MMP-9 in MDA-MB-231 cells. According to these results of gene expression array and microarray, our studies shown that CSC-3436 could down-regulate the expression of N-acetyltransferase 2 (NAT2) via up-regulating the expression of miR-1290. We next used shNAT2 to inhibit the expression of NAT2 and found that shNAT2 stable transfect could cause cell morphology become epithelial-like and suppress cell proliferation, anchorage-independent growth, and cell migration. Finally, our results showed that CSC-3436 could inhibit the expression of NAT2 and repress TNBCs cells tumorigenesis. These findings suggest that CSC-3436 will be a potential anticancer drug for TNBC.



考試委員審定書影本 I
中文摘要 II
英文摘要 III
縮寫表 IV
誌謝辭 V
目錄 VII
第一章 前言 1
第一節 研究動機與目的 1
第二章 文獻回顧 2
第一節 癌症 2
附圖一、台灣民國99至100年主要死因死亡人數統計圖 2
附圖二、癌症的六大特性 3
附圖三、新興的癌症特性與進行的特徵 4
第二節 乳癌 (Human breast cancer) 5
附圖四、台灣民國99至100年主要癌症死亡人數占率 5
第三節 三陰性乳癌 (Triple-negative breast cancer;TNBC) 8
第四節 CSC-3436藥物介紹 10
附圖五、化合物結構 (2-PN;2-phenylnaphthyridin-4-ones) 11
附圖六、CSC-3436選擇性毒殺惡性的腫瘤細胞 11
第五節 N-乙醯基轉移酶第二型 (arylamine N-acetyltransferase 2) 的介紹 12
第六節MicroRNAs (miRNAs;miRs)的介紹 14
附圖七、miRNAs的作用機制 16
第三章 研究材料與方法 17
第一節 材料來源 17
第二節 細胞培養 (Cell culture) 22
第三節 細胞型態觀察 (Cell morphology observation) 23
第四節 細胞增生速率分析 (Cell proliferation assay) 24
第五節 細胞存活率分析 (MTT assay) 24
第六節 西方墨點法 (Western blot) 25
第七節 即時定量聚合酶連鎖反應(quantitative real-time polymerase chain reaction;qPCR) 28
第八節 細胞聚落形成能力分析 (Colony formation assay) 35
第九節 軟瓊脂分析 (Soft-agar assay) 35
第十節 Gene expression array與microRNA Microarray analysis 36
第十一節 傷口癒合試驗 (Wound-healing assay) 36
第十二節 細胞轉染 (Transfection) 37
第十三節 明膠蛋白酵素電泳法 (Gelatin-Zymography) 39
第十四節 統計方法 (Statistical Analysis) 41
第四章 研究結果 42
第一節 探討 CSC-3436 對於不同乳癌細胞株之影響 42
第二節 觀察 CSC-3436 對於三陰性乳癌細胞株 MDA-MB-231 腫瘤生成 (tumorigenesis) 能力之影響 43
第三節 觀察 CSC-3436 對於三陰性乳癌細胞株 MDA-MB-231 基因表現 (gene expression) 之影響 (表一) 45
第四節 探討 CSC-3436 與 NAT2 之間的關係 46
第五節 探討 CSC-3436 是否透過抑制 NAT2 之表現進而影響三陰性乳癌細胞株 MDA-MB-231 腫瘤生成 (tumorigenesis) 之能力 48
第六節 探討 CSC-3436 對於三陰性乳癌細胞株 MDA-MB-231 microRNAs 表現之影響 (表二) 54
第五章 討論 60
第六章 結論 64
附圖八、CSC-3436 之作用機制 65
附表一、 SDS-PAGE 膠體製備之配方 66
附表二、 Gelatin-Zymography 膠體配方 67
附表三、 Gelatin-Zymography 之 5X loading dye 配方 68
附表四、 Gelatin-Zymography 之 10X Renature Buffer 配方 68
附表五、 Gelatin-Zymography 之 1X Developing Buffer 配方 68
附表六、 Gelatin-Zymography 之 MMP Staining solution 配方 69
附表七、 Gelatin-Zymography 之Destain solution 配方 69
圖目錄 70
圖一、 CSC-3436 對於不同乳癌細胞存活率 (cell viability) 之影響 70
圖二、 CSC-3436 對於不同類型乳癌細胞非貼附性生長之影響 71
圖三、 CSC-3436對 MDA-MB-231 細胞型態之影響 72
圖四、 CSC-3436 對於 MDA-MB-231 增生速率之影響 73
圖五、 CSC-3436 對於 MDA-MB-231 接觸性抑制生長能力之影響 74
圖六、 CSC-3436 對於 NAT2 mRNA 表現之影響 75
圖七、 CSC-3436 對於 NAT2 蛋白質表現之影響 76
圖八、 CSC-3436 對於 NAT1 蛋白質表現之影響 77
圖九、探討 CSC-3436 處理的時間長短是否會影響 NAT2 mRNA之表現 78
圖十、 不同 stable clone 抑制 (knock-down) NAT2 之效率 79
圖十一、 shNAT stable clones 之細胞型態 80
圖十二、 抑制 NAT2 表現對於 MDA-MB-231 細胞增生速率之影響 81
圖十三、 抑制 NAT2 表現對於 MDA-MB-231 細胞非貼附性生長能力之影響 82
圖十四、與圖十五、 探討 CSC-3436 對於 MDA-MB-231 細胞轉移能力之影響 83
圖十六、 CSC-3436 對於 MMP-2 與 MMP-9 活性之影響 84
圖十七、 探討 CSC-3436 對於 MDA-MB-231 細胞爬行 (migration) 能力之影響 85
圖十八、 抑制 NAT2 表現對於 MMP-2 與 MMP-9 蛋白質表現之影響 86
圖十九、抑制 NAT2 表現對於MDA-MB-231 細胞爬行 (migration) 能力之影響 87
圖二十、 miR-1290 與 NAT2 互補之序列圖 88
圖二十一、 CSC-3436對 miR-1290 表現之影響 89
圖二十二、 CSC-3436 與 miR-1290 抑制劑對於 miR-1290 表現量之影響 90
圖二十三、 CSC-3436 與 miR-1290 抑制劑對於 NAT2 mRNA 表現量之影響 91
圖二十四、CSC-3436 與 miR-1290 抑制劑對於 NAT2 蛋白質表現量之影響 92
圖二十五、 CSC-3436 與 miR-1290 抑制劑對於 MMP-2 與 MMP-9 蛋白質表現量之影響 93
圖二十六、 CSC-3436 與 miR-1290 抑制劑對於 MDA-MB-231 細胞爬行能力之影響 94
表目錄 95
表一、 Gene expression array 分析CSC-3436對MDA-MB-231 細胞基因表現 95
表二、 CSC-3436 對於三陰性乳癌細胞株 MDA-MB-231 microRNAs 表現之影響 96
第七章 參考文獻 97


Abdullah, N.M., Rosania, G.R., and Shedden, K. (2009). Selective targeting of tumorigenic cancer cell lines by microtubule inhibitors. PLoS One 4, e4470.
Aihara, T., Fujiwara, Y., Miyake, Y., Okami, J., Okada, Y., Iwao, K., Sugita, Y., Tomita, N., Sakon, M., Shiozaki, H., et al. (2000). Mammaglobin B gene as a novel marker for lymph node micrometastasis in patients with abdominal cancers. Cancer letters 150, 79-84.
Anders, C.K., and Carey, L.A. (2009). Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer 9 Suppl 2, S73-81.
Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.
Bellone, S., Tassi, R., Betti, M., English, D., Cocco, E., Gasparrini, S., Bortolomai, I., Black, J.D., Todeschini, P., Romani, C., et al. (2013). Mammaglobin B (SCGB2A1) is a novel tumour antigen highly differentially expressed in all major histological types of ovarian cancer: implications for ovarian cancer immunotherapy. British journal of cancer.
Bohnsack, M.T., Czaplinski, K., and Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185-191.
Butcher, N.J., Boukouvala, S., Sim, E., and Minchin, R.F. (2002). Pharmacogenetics of the arylamine N-acetyltransferases. Pharmacogenomics J 2, 30-42.
Butcher, N.J., and Minchin, R.F. (2012). Arylamine N-acetyltransferase 1: a novel drug target in cancer development. Pharmacol Rev 64, 147-165.
Calin, G.A., and Croce, C.M. (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6, 857-866.
Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99, 15524-15529.
Carey, L.A., Perou, C.M., Livasy, C.A., Dressler, L.G., Cowan, D., Conway, K., Karaca, G., Troester, M.A., Tse, C.K., Edmiston, S., et al. (2006). Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295, 2492-2502.
Chen, K., Kuo, S.C., Hsieh, M.C., Mauger, A., Lin, C.M., Hamel, E., and Lee, K.H. (1997). Antitumor agents. 174. 2'',3'',4'',5,6,7-Substituted 2-phenyl-1,8-naphthyridin-4-ones: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J Med Chem 40, 2266-2275.
Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F., and Hannon, G.J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235.
Dent, R., Hanna, W.M., Trudeau, M., Rawlinson, E., Sun, P., and Narod, S.A. (2009). Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res Treat 115, 423-428.
Department of Health, E.Y., R.O.C. (Taiwan) (2011). Deaths in Taiwan. .
Fang, J.H., Zhou, H.C., Zeng, C., Yang, J., Liu, Y., Huang, X., Zhang, J.P., Guan, X.Y., and Zhuang, S.M. (2011). MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology 54, 1729-1740.
Garofalo, M., and Croce, C.M. (2011). microRNAs: Master regulators as potential therapeutics in cancer. Annu Rev Pharmacol Toxicol 51, 25-43.
Gregory, R.I., Yan, K.P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-240.
Griffiths, C.L., and Olin, J.L. (2012). Triple negative breast cancer: a brief review of its characteristics and treatment options. J Pharm Pract 25, 319-323.
Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., and Kim, V.N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18, 3016-3027.
Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70.
Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.
Hein, D.W. (2002). Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res 506-507, 65-77.
Hickman, D., Risch, A., Buckle, V., Spurr, N.K., Jeremiah, S.J., McCarthy, A., and Sim, E. (1994). Chromosomal localization of human genes for arylamine N-acetyltransferase. Biochem J 297 ( Pt 3), 441-445.
Ismail-Khan, R., and Bui, M.M. (2010). A review of triple-negative breast cancer. Cancer Control 17, 173-176.
Lalloo, F., and Evans, D.G. (2012). Familial breast cancer. Clin Genet 82, 105-114.
Landthaler, M., Yalcin, A., and Tuschl, T. (2004). The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14, 2162-2167.
Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419.
Li, Y., Wang, H., Tao, K., Xiao, Q., Huang, Z., Zhong, L., Cao, W., Wen, J., and Feng, W. (2013). miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein. Experimental cell research 319, 1094-1101.
Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303, 95-98.
Negrini, M., and Calin, G.A. (2008). Breast cancer metastasis: a microRNA story. Breast Cancer Res 10, 203.
Nofech-Mozes, S., Trudeau, M., Kahn, H.K., Dent, R., Rawlinson, E., Sun, P., Narod, S.A., and Hanna, W.M. (2009). Patterns of recurrence in the basal and non-basal subtypes of triple-negative breast cancers. Breast Cancer Res Treat 118, 131-137.
Ochs-Balcom, H.M., Wiesner, G., and Elston, R.C. (2007). A meta-analysis of the association of N-acetyltransferase 2 gene (NAT2) variants with breast cancer. Am J Epidemiol 166, 246-254.
Perou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. (2000). Molecular portraits of human breast tumours. Nature 406, 747-752.
Rubovszky, G., Udvarhelyi, N., Horvath, Z., Lang, I., and Kasler, M. (2010). [Triple-negative breast carcinoma--rewiev of current literature]. Magy Onkol 54, 325-335.
Ruvkun, G. (2001). Molecular biology. Glimpses of a tiny RNA world. Science 294, 797-799.
Sambrook, J., and Russell, D.W. (2006). SDS-Polyacrylamide Gel Electrophoresis of Proteins. CSH Protoc 2006.
Sandy, J., Mushtaq, A., Holton, S.J., Schartau, P., Noble, M.E., and Sim, E. (2005). Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines. Biochem J 390, 115-123.
Shoemaker, R.H. (2006). The NCI60 human tumour cell line anticancer drug screen. Nature reviews Cancer 6, 813-823.
Sorlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98, 10869-10874.
Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J.S., Nobel, A., Deng, S., Johnsen, H., Pesich, R., Geisler, S., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100, 8418-8423.
Stanley, L.A., Coroneos, E., Cuff, R., Hickman, D., Ward, A., and Sim, E. (1996). Immunochemical detection of arylamine N-acetyltransferase in normal and neoplastic bladder. J Histochem Cytochem 44, 1059-1067.
Tassi, R.A., Bignotti, E., Rossi, E., Falchetti, M., Donzelli, C., Calza, S., Ravaggi, A., Bandiera, E., Pecorelli, S., and Santin, A.D. (2007). Overexpression of mammaglobin B in epithelial ovarian carcinomas. Gynecologic oncology 105, 578-585.
Tassi, R.A., Calza, S., Ravaggi, A., Bignotti, E., Odicino, F.E., Tognon, G., Donzelli, C., Falchetti, M., Rossi, E., Todeschini, P., et al. (2009). Mammaglobin B is an independent prognostic marker in epithelial ovarian cancer and its expression is associated with reduced risk of disease recurrence. BMC cancer 9, 253.
Tiang, J.M., Butcher, N.J., Cullinane, C., Humbert, P.O., and Minchin, R.F. (2011). RNAi-mediated knock-down of arylamine N-acetyltransferase-1 expression induces E-cadherin up-regulation and cell-cell contact growth inhibition. PLoS One 6, e17031.
Tzimas, C., Michailidou, G., Arsenakis, M., Kieff, E., Mosialos, G., and Hatzivassiliou, E.G. (2006). Human ubiquitin specific protease 31 is a deubiquitinating enzyme implicated in activation of nuclear factor-kappaB. Cellular signalling 18, 83-92.
Vogel, V.G. (2000). Breast cancer prevention: a review of current evidence. CA Cancer J Clin 50, 156-170.
Weber, W.W., and Hein, D.W. (1985). N-acetylation pharmacogenetics. Pharmacol Rev 37, 25-79.
Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011-3016.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top