跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/10/02 12:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王明展
研究生(外文):Ming-Zhan Wang
論文名稱:氮化鎵高電子移動率場效電晶體功率半導體元件特性分析
論文名稱(外文):Characterization of Power Semiconductor Device: GaN High Electron Mobility Transistor (HEMT)
指導教授:廖裕評廖裕評引用關係
學位類別:碩士
校院名稱:健行科技大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:45
中文關鍵詞:氮化鎵高電子移動率
外文關鍵詞:GaNHigh Electron Mobility Transistor(HEMT)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用Stantaurus Workbench半導體元件電性及製程整合的模擬軟體來模擬GaN HEMT元件電性及分析,利用GaN基板上生長AlGaN作為阻擋層再以GaN覆蓋層相結合,再以SiN做鈍化處理完成了HEMT的基礎結構,以此結構在不同的摻雜濃度、金屬電極的長度、莫爾分數下做電性分析,發現到,在Gate與Drain的間距變大2um時,崩潰電壓相對提高近百伏特,而在改變摻雜濃度的情況下並沒有明顯的變化,反倒是稍有變差的跡象,說明了這個結構下主要影響耐電壓特性是在Gate與Drain的間距,間距越長相對耐電壓越高。最後在本研究中找出在Lsg = 2~3um, Lgd = 1~2um, doping濃度在1x1014 ~1x1015 cm-3的範圍內,元件崩潰電壓可以大於600V。

This research is make use of Stantaurus Workbench Integration of emiconductor device electrical and process simulation software to simulate GaN HEMT device electrical and analyze, Use GaN substrate grown on AlGaN as a barrier layer and then combining the GaN cap layer, and then to the SiN passivation treatment to complete the foundation structure of the HEMT, in this structure in a different dopant concentration, and the length of the metal electrode, electrical analysis Mohr fraction do. Discovery to the Gate and Drain spacing larger 2um, breakdown voltage relative increase nearly volts, and no obvious change in the case of changing the dopant concentration, contrary a slight deterioration of the signs, describes the this structure mainly affect the withstand voltage characteristics at the Gate and Drain spacing, The longer spacing relative higher the voltage resistance. last, in the research to identify Lsg = 2~3um, Lgd = 1~2um, the dopingdoping concentration range of 1x1014 ~1x1015 cm-3, the component breakdown voltage can be greater than 600V。

目錄
摘要.......................................................i
Abstract.................................................ii
誌 謝....................................................iii
目錄 .....................................................iv
表目錄 ....................................................vi
圖目錄 ...................................................vii
第一章 緒論 ................................................1
1.1 簡介 ..................................................1
1.2 AlGaN/GaN功率元件之應用..................................2
1.2.1 直流對直流升壓轉換器....................................2
1.2.2 高頻功率放大器 ........................................3
1.3 GaN異質結構材料..........................................4
1.4 材料及其異質結構特性 .....................................4
2.1.1 GaN材料的介紹.........................................4
1.4.2 GaN材料的缺陷.........................................5
1.4.3 GaN中的極化效應........................................6
1.5 論文架構 ...............................................6
第二章 研究背景 .............................................7
2.1 研究動機與目的 ..........................................7
2.2 實驗工具 ...............................................8
2.3 實驗方法 ...............................................9
第三章 氮化鎵高電子移動率電晶體之模擬分析 .......................12
3.1 GaN HEMT基板材料簡介....................................12
3.2 GaN HEMT原理簡介 ......................................12
3.3 氮化鎵高電子移動率電晶體模擬...............................14
3.3.1 GaN HEMT元件結構.....................................14
3.3.2 基本型GaN HEMT元件模擬結果.............................15
3.4 改變GaN HEMT元件結構中長度參數之效應.......................20
3.5 改變GaN HEMT元件結構中摻雜濃度之效應.......................25
3.5.1 元件的結構 ..........................................25
3.6 改變摻雜濃度對元件電性之趨勢 ..............................31
第四章 元件於不同通道厚度之電性分析 ............................37
4.1 前言: ................................................37
4.2 元件結構...............................................37
4.3 元件模擬結果............................................38
4.4 元件改變厚度之趨勢.......................................40
第五章 結論 ...............................................41
參考文獻 ..................................................42
簡歷 .....................................................45

[1]王雅萱,”異質接面雙極性電晶體VBIC模型建立及其在射頻電路之應用,”碩士論文,國立中央大學 ,(2003).
[2]張進城, 郝越, 王沖.基於藍寶石襯底的高性能A1GaN卅GaN二維電子氣材料與HEMT元件半導體學報。2004, 25(10): 1281 - 1284
[3]馮倩, 段猛, 郝越, SiC襯底上異質外延GaN薄膜結構缺陷對黃光輻射的影響,光子學報,2003, 32(11): 1340-1342
[4] B.J. Baliga, "Trends in power semiconductor devices," IEEE Transactions on Electron Devices, vol. 43, pp. 1717-1731,(1996).
[5] J.J. Wierer, D.A. Steigerwald, M.R. Krames, J.J. O''Shea,” High-power AlGaInN flip-chip light-emitting diodes”, Appl. Phys. Lett, vol. 78, pp. 3379 ,(2001).
[6] S.H. Baek, J.O. Kim, M.K. Kwon, I.K. Park, S.I. Na, J.Y. Kim,” Enhanced Carrier Confinement in AlInGaN–InGaN Quantum Wells in Near Ultraviolet Light-Emitting Diodes”,IEEE Photonics Technology Letters, vol.18, pp.11 (2006).
[7] T. Nishida,H. Saito,N Kobayashi,” Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN”, Appl. Phys. Lett, vol. 79,pp.711 ,(2001).
[8] N. Zhang,” High voltage GaN HEMTs with low on-resistance for switching applications”, Doctor of Philosophy in Electrical and Computer Engineering ,(2002).
[9] U.K. Mishra, L.S. Thomas, E. Kazior, and Y.F. Wu,” GaN-Based RF Power Devices and Amplifiers”, IEEE vol.96, pp. 2 ,(2008).
[10] O. Ambacher,” Growth and applications of group Ⅲ-nitrides”, Journal of Physics Vol.31, pp.2653-710 ,(1998).
[11] R.J. Campbell, K. Rajashekara,”Evaluation of Power Devices for Automotive Hybrid and 42V Based Systems”, 2004 SAE World Congress Detroit Michigan March 8-11 ,(2004).
43
[12] M. Ishico,”Recent R&D Activities of Power Devices for Hybrid Electric Vehicles”,R&D Review of Toyota CRDL vol.39 pp.4 ,(2004).
[13] H. Sano, N. Ui , S.S. Eudyna, K.Cho, S.Ku, Yokohama, Kanagawa,” A 40W GaN HEMT Doherty Power Amplifier with 48% Efficiency for WiMAX Applications”, pp.244-0845 ,(2007).
[14] T.Yamamoto, “High-Linearity 60W Doherty Amplifier for 1.8GHz W-CDMA”, IEEE MTT Microwave Symposium Digest, pp.1352-1355 ,(2006).
[15] I. Takenaka, K. Ishikura, H Takahashi, K Hasegawa, "A 330WDistortion-Cancelled Doherty 28V GaAs HJFET Amplifier with 42% Efficiency for W-CDMA Base Stations", 2006 IEEE MTT-S Microwave Symposium Digest, pp.1344-1347 ,(2006).
[16] U.K. Mishra , P. Parikh, Y.F. Wu,” AlGaN/GaN HEMTs: An overview of device operation and applications” Electrical & Computer Engineering Department, Engineering I, University of California, Santa Barbara .
[17]Gaska R.Electron mobility in modulation-doped A1GaN-GaN heterostructures.Appl Phys Lett,1 999,72(2):287-289
[18]Ambacher O, Foutz B, Smart J, et a1," Two dimensinal electron gases induced by spontaneous and piezoelectric polarizaton in undoped and doped A1GaN卅GaN heterostructures" J. Appl Phys, (2000), 87(1): 334-343
[19]. G. M. Dalpian and S.-H. Wei, Phys. Rev. Lett. 93, 216401 (2004).
[20] Synopsys, Inc.,"Sentaurus Workbench Comprehensive Framework Environment"(2005)
[21]Integrated Systems Engineering, ISE TCAD Release 10.0 User Guide, 15.6 (2004)
[22] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur,” Self-Heating in High-Power AlGaN-GaN HFET’s”, IEEE Electron Device Letters, vol.19, pp. 3, (1998).
[23] J.W. Johnson, J. Gao, K. Lucht, J. Williamson, “Material, Process, and Device Development of GaN-based HFETs on Silicon Substrates”, Nitronex Corporation, NC 27606.
[24] R. Behtash, H. Tobler, M. Neuburger, A. Schurr, H. Leier,Y. Cordier, E Semond, F.
44
Natali and J. Massies,” AIGaN/GaN HEMTs on Si(ll1) with6.6 W/mm output power density”, Electronics Letters, (2003)
[25] J.W. Johnson, E.L. Piner, A.Vescan, R. Therrien, P. Rajagopal,” 12 W/mm AlGaN/GaN HFETs on Silicon Substrates,”IEEE Electronics Letters, vol.25, pp. 7 ,(2004).
[26] O. Ambacher,B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu,” Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures”, Journal of Applied Physics,vol.85, pp. 3222 (2000).
[27] F. Sacconi, A.D. Carlo, P. Lugli, and Hadis Morkoc,” Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Transactions on Electron Devices, vol. 48, pp. 3, (2001).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top