跳到主要內容

臺灣博碩士論文加值系統

(3.215.79.68) 您好!臺灣時間:2022/07/04 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張婉琳
研究生(外文):Wan-Lin Chang
論文名稱:樟芝菌絲體醣蛋白之化學與免疫學的特性
論文名稱(外文):Chemical and Immunological Characterization of Glycoprotein from Antrodia cinnamomea mycelia
指導教授:喬長誠喬長誠引用關係
指導教授(外文):Charng-Cherng Chyau
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:116
中文關鍵詞:樟芝多醣體結構特性脂多醣發炎反應巨噬細胞肝臟組織
外文關鍵詞:Antrodia cinnamomeapolysaccharidestructure characterizationlipopolysaccharideinflammationmacrophargeliver tissue
相關次數:
  • 被引用被引用:1
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
樟芝(Antrodia cinnamomea)是台灣特有食藥用真菌,近年來已有多份研究報告指出樟芝具有提升免疫機能、抑制腫瘤細胞生長等功效。由於其子實體之生長緩慢,且栽培不易,應用液態大量培養菌絲體,是目前生技產業普遍採用之方式。菌絲體中以多醣體應用於炎症相關的疾病預防為主,在癌症治療及預防上亦備受關注。本研究藉由樟芝菌絲體存在豐富的多醣體中,製備並純化具活性之多醣體,探討其結構與組成,並分別應用至細胞與動物之研究,了解其抗發炎之功效。
樟芝菌絲體首先利用熱水萃取去除可溶性多醣後,繼續以鹼萃取再利用等電點沉澱方式而獲得鹼可溶粗多醣,再以Sepharose CL-6B樹脂進行膠體層析以純化多醣,將純化後的多醣體(AC-IIb)進行總醣、總蛋白、醛糖酸、-葡聚醣、單糖與胺基酸組成分析、分子量測定、紅外線光譜分析與核磁共振光譜分析。進一步以小鼠巨噬細胞RAW264.7進行AC-IIb之生物活性測試,探討AC-IIb預防脂多醣(lipopolysaccaride, LPS)誘發RAW 264.7細胞發炎之機制,以及透過大鼠之動物實驗確認AC-IIb在體內中抗發炎之效果。
結果顯示,菌絲體中多醣體AC-IIb之收率為 9.19 % (w/w, dw),其中主要為蛋白質(71%)之組成,醣類佔14.1%,屬於醣蛋白之結構,蛋白質中以leucine含量比例最高(18.49%),其次是valine (13.76%),單糖類中則以xylose為主(53%),其次是glucose (21%),因此純化之多醣體係屬於醣蛋白(glycoprotein)之一種,分子量為440 kDa 多醣結構中-葡聚醣佔14.20%,其鍵結結構包括-1,3- 與-1,4-糖苷鍵。
在保護巨噬細胞免於脂多醣誘發之發炎反應中,發現當AC-IIb處理24、48小時及濃度在18.75 g/ml以上時,有顯著的抑制脂多醣誘發一氧化氮生成之能力,而在72小時及濃度12.5 g/ml以上時,即有顯著抑制脂多醣誘發一氧化氮生成之能力,此結果顯示AC-IIb在脂多醣誘導巨噬細胞中具有抗發炎之效果,進一步以大鼠進行試驗,探討AC-IIb於體內活性表現之程度。
實驗以胃管灌食方式進行,探討AC-IIb於脂多醣所誘發雄性大鼠(Sprague-Dawley)急性肝損傷之保護能力,實驗共分五組,包括控制組(control)、樟芝醣蛋白組(AC-IIb, 40 mg/kg)、脂多醣組(lipopolysaccaride, LPS)、脂多醣暨樟芝醣蛋白組(低劑量組AC-IIb L: 40 mg/kg + LPS 與高劑量組AC-IIb H: 80 mg/kg + LPS),實驗為期一周,於第七天以腹腔注射方式施打脂多醣 (5 mg/kg B.W.),24小時後犧牲實驗動物進行分析,觀察大鼠血清中麩草酸轉氨基酶(GOT)、麩丙酮轉胺基酶(GPT)、一氧化氮(NO)及介白素-6(IL-6)之含量變化,以及肝臟組織中丙二醛(MDA)與抗氧化酵素之含量(SOD、CAT、GSH-Px),此外,以西方墨點法分析肝臟蛋白質中,相關發炎蛋白之表現程度。實驗結果發現,當與控制組相比,脂多醣組的發炎反應因子濃度皆顯著增加,一氧化氮濃度增加7.7倍、介白素-6濃度增加2.9倍、肝臟中脂質過氧化產物含量增加1.4倍,而抗氧化酵素之活性皆為下降 (SOD下降 2.8倍、CAT下降3.4倍、GSH-Px下降3.8倍),顯示經脂多醣處理會造成組織的傷害。在給予不同濃度之樟芝醣蛋白組(AC-IIb L and AC-IIb H)前處理,對脂多醣的傷害都有明顯的保護作用。在AC-IIb L組與AC-IIb H比LPS組GOT含量下降了1.5倍與1.6倍,在GPT含量下降了5.6倍與4.3倍,一氧化氮含量下降了5.3倍與3.9倍,介白素-6含量下降了2倍與1.3倍,脂質過氧化下降了1.2倍與1.8倍,在抗氧化酵素活性含量(SOD上升1.5倍與1.9倍、CAT上升了1.3倍與1倍、GSH-Px上升了1.3倍與0.9倍);此外,藉由肝組織內與發炎相關之蛋白質表現分析,包括NF-B, i-NOS等,顯示多醣體AC-IIb具有減緩脂多醣誘發之自由基與發炎因子對肝臟組織功能之影響。

The fruiting body of Antrodia cinnamomea, a rare and expensive medicinal fungus, is exclusively grown on the rotten wood Cinnamomun kaehirae in Taiwan. There have been many biological activities reported from the literatures, including immune modularity and tumor growth inhibition. Owing to the limited resources in nature, the submerged liquid fermentation of A. camphorata for producing the mycelium has been developed by local biotechnology industry. However, the polysaccharides are the major composition existed in the mycelium different from that of fruiting body with triterpenoids as the important composition. In recent years, the mycelium has been mostly used for the prevention of inflammation-related diseases. However, there is no report of anti-inflammatory effects of the purified polysaccharide or its biological mechanism from the fermented mycelial. In this study, we firstly purified and characterized the chemical composition of the mycelium of A. cinnamomea, and then investigated the anti-inflammatory effects of the polysaccharide and its biological mechanism in lipopolysaccharide (LPS)-induced inflammatory responses in macrophages and animals.
In the purification of polysaccharide, the soluble polysaccharides were removed from the mycelia of A. cinnamomea by using hot water before proceeding to purify the obtained polysaccharides. The alkaline extraction and acid precipitation were then used to isolate the polysaccharides for further purification by using gel filtration chromatography with Sepharose CL-6B to obtain the purified polysaccharide (AC-IIb). The chemical characterization including total sugar, total protein, uronic acid, β-glucan, monosaccharides and amino acids composition, molecular weight determination, FTIR and NMR analyses were investigated to determine the molecular structure of AC-IIb. Results showed that protein (71.0%) is the major composition higher than that of, carbohydrate (14.1% ) in AC-IIb being characterized as a glycoprotein. In amino acids composition, leucine (18.49%) was the highest content and valine (13.76%) was the second. In monosaccaride composition, xylose (53%) and glucose (21%) were the majors. The molecular structure of AC-IIb was determined as -1,3- and -1,4-linkages with the average molecular weight of 440 kDa.
In the prevention effect of AC-IIb from the lipopolysaccharide induced inflammatory responses on macrophages RAW 264.7, AC-IIb treatment (18.75 g/ml) could significantly reduced the nitrogen oxide production at 24 and 48 hours. While in the treatment of AC-IIb (12.5 g/ml) at 72 hours, the significant reduction of nitrogen oxide was showed in the LPS-induced macrophages.
This study suggests that AC-IIb exerts anti-inflammatory effects by down-regulating the production and expression of pro-inflammatory cytokines and mediators via inhibiting the NF-κB pathway in LPS-stimulated RAW 264.7 cells. The in vivo study was then forwarded to investigate the anti-inflammatory bioactivities of purified polysaccharide AC-IIb
Animal study were investigated with 7-day of short-term feeding experiments with AC-IIb on LPS-induced liver damage in male Sprague-Dawley rats. The studies were divided into five groups, including control group, AC-IIb group (40 mg/kg b.w.), LPS group (5 mg/kg b.w.), AC-IIb (40 mg/kg and 80 mg/kg b.w.) plus LPS groups for one week. LPS (5 mg/kg b.w.) was introduced intraperitoneally at the 7th day and animals were sacrificed 24 h post-LPS challenge for analysis. In hepatic damages analyses, serum glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) activities were significantly up-regulated by LPS treatment. The inflammatory factors of NO and IL-6 in serum and the levels of lipid peroxidation product (malondialdehyde) and the activities of antioxidant enzymes (SOD, CAT and GSH-Px) in the liver tissue, were also significant induced after the LPS treatment as evidenced by the activation of inflammatory responses (NO and IL-6 increased 7.7 and 2.9 fold, respectively); increasing in the level of lipid peroxidation product (hepatic MDA increased for 1.4 fold); decreasing in the activities of antioxidant enzymes (liver tissue SOD activities reduced for 2.8 fold, CAT activities reduced for 3.4 fold and GSH-Px activities reduced for 3.8 fold), as compared with control group, indicating that LPS could induce the acute inflammatory responses. Pre-treating the animals with different concentrations of AC-IIb (40 and 80 mg/Kg) before the challenges of LPS resulted in a significant protection against LPS-induced damage, AC-IIb prevention could reduce the LPS-induced tissue injuries (GOT content decreased 1.5 and 1.6 fold, GPT reduced 5.6 and 4.3 fold, NO decreased 5.3 and 3.9 fold, IL-6 decreased 2 and 1.3 fold, MDA decreased 1.2 and 1.8 fold, respectively in low, 40 and high, 80 mg/Kg dosages), and increase levels of antioxidant enzymes (SOD, 1.5 and 1.9 fold, CAT, 1.3 and 1 fold and GSH-Px, 1.3 and 0.9 fold, respectively in low and high dosages). In addition, the protein expressions of inflammatory relatives through the Western blot analysis, including i-NOS and NF-B, indicated that the AC-IIb prepared from A. cinnamomea mycelia could activate the antioxidant enzymes activities in liver tissue and reduce the inflammatory cytokines in serum for attenuating the LPS damages.

目錄.......................................................................................................I
圖目錄..................................................................................................V
表目錄..............................................................................................VIII
中文摘要.............................................................................................IX
英文摘要.............................................................................................XI
第一章 緒論……………………………………...……………………..1
第二章 文獻整理.............................................................................2
第一節、 樟芝(Antrodia cinnamomea)介紹……………….….……2
第二節、 多醣體(polysaccharide)……………………………...……..9
第三節、 -(1,3)-D-葡聚醣………………………..…….…………16
第四節、 醣蛋白(glycoprotein)…………………….…………......20
第五節、 醣類分析方法……………………………………………22
第六節、 巨噬細胞與免疫反應……………………………...……25
第七節、 抗氧化防禦系統…………………………………………31
第三章 實驗架構…………….........................................................34
第四章 材料與方法........................................................................35
第一節 實驗材料與試劑................................................................35
第二節 多醣體萃取製備................................................................38
第三節 多醣化學分析....................................................................40
第四節 細胞培養...........................................................................46
第五節 樟芝多醣AC-IIb抗發炎動物模式試驗..............................48
第六節 實驗動物血液生化值之測定.............................................49
第七節 一氧化氮(NO)濃度之分析................................................49
第八節 酵素免液分析法................................................................49
第九節 脂質過氧化之分析............................................................50
第十節 抗氧化酵素活性之測定.....................................................50
第十一節 西方墨點法.................................................................54
第十二節 組織切片.....................................................................56
第十三節 統計分析.....................................................................56
第五章 實驗結果.........................................................................57
第一節 菌絲體與市售產品Bio bran多醣體萃取率........................57
第二節 以Sephose CL-6B管柱純化樟芝多醣(AC-II)之層析圖.....58
第三節 純化之多醣體AC-IIb總醣與總蛋白之定量分析.............59
第四節 多醣體AC-IIb中醛醣酸之分析.......................................60
第五節 多醣體AC-IIb 單糖組成之氣相層析質譜分析...............61
第六節 多醣體AC-IIb之胺基酸組成分析....................................63
第七節 多醣體AC-IIb分子量之測定...........................................65
第八節 多醣體AC-IIb之-葡聚醣定量分析……………………...69
第九節 多醣體AC-IIb傅立葉轉換紅外線光譜分析….................71
第十節 多醣體AC-IIb核磁共振光譜分析....................................72
第十一節 脂多醣誘發RAW264.7細胞生成一氧化氮(NO)之分
析……………………………………………………......74
第十二節 DMSO對RAW264.7細胞生長影響之分析………..….75
第十三節 多醣體AC-IIb及Bio bran對RAW264.7細胞生長影響
之分析……………………………………………….....76
第十四節 多醣體AC-IIb及市售產品Bio bran多醣體抑制脂多醣
誘導RAW264.7細胞產生一氧化氮…………...……..77
第十五節 大鼠餵食多醣體AC-IIb七天後體重與器官組織重量之
變化….......................................................................80
第十六節 多醣體AC-IIb減緩脂多醣誘發大鼠血清中麩草酸轉胺
基酶(GOT)及麩胺酸丙酮酸轉胺酶(GPT)的上升.......81
第十七節 多醣體AC-IIb抑制脂多醣誘發大鼠血清中一氧化氮
(NO)之生成...............................................................83
第十八節 多醣體AC-IIb抑制脂多醣誘發大鼠血清中介白素-6
(IL-6)之生成..............................................................85
第十九節 多醣體AC-IIb抑制脂多醣誘發大鼠肝臟組織中
丙二醛(MDA)之生成...................................................87
第二十節 多醣體AC-IIb對脂多醣誘導大鼠肝臟組織中超氧岐化
酶(SOD)之影響.........................................................89
第二十一節 多醣體AC-IIb對脂多醣誘導大鼠肝臟組織中過氧化氫
酶(CAT)之影響..........................................................91
第二十二節 多醣體AC-IIb對脂多醣誘導大鼠肝臟組織中麩胱苷肽
過氧化酶(GSH-Px)之影響..........................................93
第二十三節 多醣體AC-IIb對脂多醣誘導大鼠肝臟中一氧化氮合成
酶(iNOS)及核轉錄因子(NF-kB)的蛋白質表現之影響.95
第二十四節 多醣體AC-IIb抑制脂多醣誘發大鼠肝臟組織型
態之變化…………………………………......................97
第六章 討論...................................................................................99
第七章 結論.................................................................................103
第八章 參考文獻.........................................................................104



圖 目 錄
圖一、以Sepharose CL-6B管柱分離樟芝多醣(AC-IIb)之層析圖.....58
圖二、氣相層析質譜儀分析AC-IIb中單糖組成之總離子層析圖....61
圖三、多醣體標準品pullulan分子量之線性回歸曲線..................65
圖四、多醣體之液相層析圖譜.........................................................66
圖五、多醣體AC-IIb之傅立葉轉換紅外光譜…............................71
圖六、多醣體之核磁共振光譜圖…………………….........................72
圖七、脂多醣對巨噬細胞RAW264.7生長之影響.......................73
圖八、脂多醣誘發巨噬細胞RAW264.7一氧化氮之生成….….....74
圖九、DMSO對RAW264.7 細胞生長之影響..............................75
圖十、多醣體AC-IIb及市售產品Bio bran多醣體對RAW264.7細胞生
長影響之分..…….....................................................................76
圖十一、多醣體AC-IIb與市售產品Bio bran多醣體對脂多醣誘發
RAW264.7細胞一氧化氮生成之影響...................................77
圖十二、多醣體AC-IIb減緩脂多醣誘發大鼠血清中麩草酸轉胺
基酶(GOT)及麩胺酸丙酮酸轉胺酶(GPT)活性的上升.......82
圖十三、多醣體AC-IIb抑制脂多醣誘導大鼠血清中亞硝酸鹽
(Nitrite)之生成................................................................84
圖十四、多醣體AC-IIb抑制脂多醣誘導大鼠血清中介白素-6(IL-6)
之生成..............................................................................86
圖十五、多醣體AC-IIb抑制脂多醣誘導大鼠肝臟組織中丙二醛
(MDA)之生成.……………….…….……………………….88
圖十六、多醣體AC-IIb減緩脂多醣誘發導大鼠肝臟組織中超氧岐化酶
(SOD)活性的改變………………………………………….....90
圖十七、多醣體AC-IIb減緩脂多醣誘導大鼠肝臟組織中過氧化氫酶
(CAT) 活性的改變................................................................92
圖十八、多醣體AC-IIb對脂多醣誘導大鼠肝臟組織中麩胱苷肽過氧
化氫酶(GSH-Px)活性的改變...............................................94
圖十九、多醣體AC-IIb對脂多醣誘導大鼠肝臟組織中誘導型一氧化氮
合成酶(iNOS)及核轉錄因子(NF-kB)蛋白質表現量之影響...96
圖二十、多醣體AC-IIb改善脂多醣誘導大鼠組織型態學的變化….....98

表 目 錄
表一、 樟芝生理活性論文之整理........................................................7
表二、 列出各種不同真菌之多糖的種類、來源其生理功能…...........12
表三、純化之多醣體AC-IIb總糖及總蛋白之含量…………………..59
表四、多醣體AC-IIb之醣醛酸含量…………………………….60
表五、多醣體AC-IIb之單糖組成……………………………..………..62
表六、多醣體AC-IIb之胺基酸組成分析….………………….………..63
表七、多醣體AC-IIb與Bio bran多醣體之平均分子量…….………..68
表八、多醣體AC-IIb之與-葡聚醣含量……………………….....69
表九、餵食多醣體AC-IIb對大鼠體重變化與組織重量變化之比值..80



附 圖 目 錄
附圖一、固態段木栽培牛樟芝...............................................................4
附圖二、樟芝菌絲體的態.......................................................................4
附圖三、牛樟樹之型態..........................................................................5
附圖四、多醣體破壞病源體激活免疫細胞的示意圖...........................10
附圖五、-glucan對人體免疫與癌細胞之影響…………………………14
附圖六、具抗腫瘤活性的-(1→6)分枝與-(1→3)-D-葡聚醣結...........15
附圖七、具抗腫瘤活性-(1→6)分枝與-(1→3)-D-葡聚醣三股螺旋結
晶構型............................................................................15
附圖八、-葡聚醣在巨噬細胞中之訊息傳遞路徑. .............................17
附圖九、-(1→3)-D-葡聚醣的三重螺旋結構示意圖..………….........19
附圖十、多醣體/蛋白質複合物的分子結構示意圖..............................20
附圖十一、醣蛋白中多醣與蛋白質鍵結方式.......................................21
附圖十二、脂多醣的化學結構.............................................................26
附圖十三、一氧化氮合成途徑.............................................................27
附圖十四、IL-6於急性及慢性發炎反應中扮演的角色........................30


水野卓和川合正允著,賴慶亮譯。1997。菇類的化學,生化學。國立
編譯館。
王渭賢。1996。 免疫促進物聚醣類在水生動物疾病防治之應用. 生命科學簡訊 13:1619。
張東柱。1997。牛樟之病害, 牛樟生物學及育林技術研討會論文集. 林業叢刊72, 127-131
許英欽。2002。麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣的
研究。中央大學化學工程研究所。
曾勝群。2002。利用丙烯酸電漿聚合法對雙軸延伸PTFE表面改質之研究。中原大學化學研究所碩士學位論文。
黃鈴娟 。2000。 樟芝與姬松茸之抗氧化性質及其多醣體的組成分析。
國立中興大學食品科學系碩士論文。
黃麗娜 (1996)。食用菇菌絲體深層培養在食品工業上的應用。食品工業
28(9): 20-26。
程美玲。2003。以FTIR-顯微鏡技術探討藥物於高分子模材內部之輸送機制。元智大學化學工程學所碩士論文。
Abdel Akher, M., Cadotte, J. E., Montgomery, R., Smith, F., Van Cleve, J. W., and Lewis, B. A. (1953) A new procedure for correlating the structure of glycosides. Nature.171: 474-475.
Aebi, H. (1984) Catalase in vitro. Methods Enzymol.105: 121-126.
Alderton, W. K., Cooper, C. E., and Knowles, R. G. (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J. 357: 593-615.
Anas AA, Wiersinga WJ, de Vos AF, van der Poll T (2010) Recent insights into the pathogenesis of bacterial sepsis. Neth J Med. 68: 147–152.
Beda, N., and Nedospasov, A. (2005) A spectrophotometric assay for nitrate in an excess of nitrite. Nitric Oxide.13: 93-97.
Bell, A. F., Hecht, H., &; Barron, L. D. (1994) Disaccharide solution stereochemistry from vibrational raman optical activity. J Am Chem Soc.116: 5155–5161.
Beyer, W., Imlay, J., and Fridovich, I. (1991) Superoxide dismutases. Prog Nucleic Acid Res Mol Biol. 40: 221-253.
Bubb, W. A. (2003) NMR spectroscopy in the study of carbohydrates:
Characterizing the structural complexity. Con Magn Reson PartA. 19A (1): 1–19.
Brosnan CF, Battistini L, Raine CS, Dickson DW, Casadevall A and Lee SC (1994) Reactive nitrogen intermediates in human neuropathology: an overview. Dev Neurosci.16:152-161.
Buege, J. A., and Aust, S. D. (1978) Microsomal lipid peroxidation. Methods Enzymol. 52: 302-310.
Chen, C.J., Su, C.H., Lan, M.H. (2001) Study on solid cultivation and bioactivity of Antrodia camphorata. Fung Sci. 16: 65–72.
Chen JC, Chen CN, Sheu SJ, Hu ML, Tsai CC, Dai YY. (2003) Liver-caring medicine containing Antrodia camphorate. US 0113297-2003-6-19.
Chihara, G., J. Hamuro, J., Maeda Y., Arai, Y., and Fukuoka, F. (1970) Fractionation and purification of the polysaccharides with marked antitumor avtivity, especially lentinan, from Lentinus edodes(Berk.)Sing.(an edible mushroom). Cancer Res. 30: 2776-2781.
Chang TT, Chou WN. (2004) Antrodia cinnamomea reconsidered and A.
salmonea sp. nov. on Cunninghamia konishii in Taiwan. Botanical
Bull Acad Sin. 45: 347-352.
Chang TT, Chou WN. (1995) Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycolog Res. 99: 756-758.
Chaudiere, J., and Ferrari-Iliou, R. (1999) Intracellular Antioxidants: from Chemical to Biochemical Mechanisms. Food Chem Toxicol. 37: 949-962.
Cheeseman, K. H. (1993) Mechanisms and effects of lipid peroxidation. Mol Aspects Med. 14: 191-197.
Chen, C. C., Liu, Y. W., Ker, Y. B., Wu, Y. Y., Lai, E. Y., Chyau, C. C., Hseu, T. H., and Peng, R. Y. (2007) Chemical characterization and anti-inflammatory effect of polysaccharides fractionated from submerge-cultured Antrodia camphorata mycelia. J Agric Food Chem. 55: 5007-5012.
Chen, Y. C., Shen, S. C., Chen, L. G., Lee, T. J., and Yang, L. L. (2001) Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem Pharmacol. 61: 1417-1427.
Datta, A. K., Basu, S., and Roy, N. (1999) Chemical and immunochemical studies of the O-antigen from enteropathogenic Escherichia coli O158 lipopolysaccharide. Carbohydr Res. 322: 219-227.
Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. (2007) Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 35: 1244–1250.
Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., and Smith, F. (1951) A colorimetric method for the determination of sugars. Nature. 168: 167.
Falch, B.H., Espevik, T., Ryan, L., and Stokke, B.T. (2000) The cyctokine stimulating activity of (1-->3)-beta-D-glucan is dependent on the triple helix conformation. Carbohydr Res. 329: 587-596.
Fita, I., and Rossmann, M. G. (1985) The active center of catalase. J Mol Biol. 185: 21-37.
Forstermann U and Kleinert H (1995) Nitric oxide synthase: expression and
expressional control of the three isoforms. Naunyn Schmiedebergs Arch
Pharmacol. 352: 351-364.
Gabay, C. (2006) Interleukin-6 and chronic inflammation. Arthritis Res Ther. 8 Suppl 2, S3.
Galambos, J. T. (1967) The reaction of carbazole with carbohydrates. II. Effect of borate and sulfamate on the ultraviolet absorption of sugars. Anal Biochem. 19: 133-143.
Geethangili, M., and Tzeng, Y. M. (2011) Review of Pharmacological Effects of Antrodia camphorata and its Bioactive Compounds. Evid Based Complement Alternat Med. 212641.
Glauser, M. P., Heumann, D., Baumgartner, J. D., and Cohen, J. (1994) Pathogenesis and potential strategies for prevention and treatment of septic shock: an update. Clin Infect Dis. 18 Suppl 2: S205-216.
Gordon S (1998) The role of the macrophage in immune regulation. Res. Immunol.149: 685-688.
Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., and Tannenbaum, S. R. (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 126: 131-138.
Grossniklaus, H. E., Waring, G. O. t., Akor, C., Castellano-Sanchez, A. A., and Bennett, K. (2003) Evaluation of hematoxylin and eosin and special stains for the detection of acanthamoeba keratitis in penetrating keratoplasties. Am J Ophthalmol. 136: 520-526.
Guo SQ. (2002) Ameliorative effects of Antrodia camphorata on liver fibrosis and gastrointestinal functions in rats. Taiwan: Master Thesis.China Medical College.
Halliwell, B., and Gutteridge, J. M. (1995) The definition and measurement of antioxidants in biological systems. Free Radic Biol Med. 18: 125-126.
Han, H. F., Nakamura, N., Zuo, F., Hirakawa, A., Yokozawa, T., and Hattori, M. (2006) Protective effects of a neutral polysaccharide isolated from the mycelium of Antrodia cinnamomea on Propionibacterium acnes and lipopolysaccharide induced hepatic injury in mice. Chem Pharm Bull (Tokyo) 54, 496-500.
Hassid WZ, (1969) Biosynthesis of oligosaccharides and polysaccharides in plant. Science. 165: 137-144.
Hillwell, B and Gutternidge, J. M. C. (1999) Free radical in biology and medicine. NY: Oxford University Press.
Hsu, D. Z., and Liu, M. Y. (2004) Sesame oil protects against lipopolysaccharide-stimulated oxidative stress in rats. Crit Care Med. 32: 227-231.
Hsu, Y. L., Kuo, P. L., Cho, C. Y., Ni, W. C., Tzeng, T. F., Ng, L. T., Kuo, Y. H., and Lin, C. C. (2007) Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor-kB pathway. Food Chem Toxicol. 45: 1249-1257.
Jones, D. P., Eklow, L., Thor, H., and Orrenius, S. (1981) Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch Biochem Biophys. 210: 505-516.
Karpuzoglu, E., and Ahmed, S. A. (2006) Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: implications for immunity, autoimmune diseases, and apoptosis. Nitric Oxide. 15: 177-186.
Khatami, M. (2009) Inflammation, aging, and cancer: tumoricidal versus tumorigenesis of immunity: a common denominator mapping chronic diseases. Cell Biochem Biophy. 55: 55-79.
Kim, G. Y., Park, H. S., Nam, B. H., Lee, S. J., and Lee, J. D. (2003) Purification and characterization of acidic proteo-heteroglycan from the fruiting body of Phellinus linteus (Berk. &; M.A. Curtis) Teng. Bioresour Technol. 89: 81-87.
Kim JS and Jobin C. (2005) The flavonoid luteolin prevents lipopolysaccharide-induced NF-κB signaling and gene expression by blocking IκB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology. 115: 375-387.
Kirkman, H. N., and Gaetani, G. F. (1984) Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci U S A. 81: 4343-4347.
Kollias, G. (2005) TNF pathophysiology in murine models of chronic inflammation and autoimmunity. Semin Arthritis Rheum. 34: 3-6.
Kishida, E., Sone, Y., and Misaki, A. (1992) Effects of branch distribution and chemical modification of antitumor (1-->3)-beta-D-glucan. Carbohydr. Res.17: 89-95.
Kotanidou, A., Xagorari, A., Bagli, E., Kitsanta, P., Fotsis, T., Papapetropoulos, A., and Roussos, C. (2002) Luteolin reduces lipopolysaccharide-induced lethal toxicity and expression of proinflammatory molecules in mice. Am J Respir Crit Care Med. 165: 818-823
Kulicke, W. M., Lettau, A. I., and Thielking, H. (1997) Correlation between immunological activity, molar mass, and molecular structure of different (1-->3)-beta-D-glucans. Carbohydr Res. 297: 135-143.
Lawrence, R. A., and Burk, R. F. (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 71: 952-958.
Lee, K. B., Loganathan, D., Merchant, Z. M., and Linhardt, R. J. (1990) Carbohydrate analysis of glycoproteins. A review. Appl Biochem Biotechnol. 23: 53-80
Leung, M. Y., Liu, C., Koon, J. C., and Fung, K. P. (2006) Polysaccharide biological response modifiers. Immunol Lett. 105: 101-114.
Liu DZ, Liang YC, Lin SY, Lin YS, Wu WC, Hou WC, Su CH. (2007) Antihypertensive activities of solid-state culture of Taiwanofungus camphoratus (Chang-chih) in spontaneously hypertensive rats. Biosci Biotechnol Biochem. 71: 23–30.
Liang CW, Lai YC, Chu YH.(2004) A study of the effects of nine chinese herbs on proinflammaitory cytokines production in two cell culture models. J Chin Med. 15: 293-304.
Lieu, C. W., Lee, S. S. and Wang, Y. (1992) The effect Ganderma lucidum on induction of differentation in leukemin U937 cells. Anticancer Res. 12: 1211-1216.
Lu, M. K., Cheng, J. J., Lai, W. L., Lin, Y. J., and Huang, N. K. (2008) Fermented Antrodia cinnamomea extract protects rat PC-12 cells from serum deprivation-induced apoptosis: the role of the MAPK family. J Agric Food Chem. 56: 865-874.
Maeda, H., and Ishida, N. (1967) Specificity of binding of hexopyranosyl polysaccharide with fluorescent brightener. J. Biochem. 62: 276-278.
Marklund, S., and Marklund, G. (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 47: 469-474.
Mates, J. M., Perez-Gomez, C., and Nunez de Castro, I. (1999) Antioxidant enzymes and human diseases. Clin Biochem. 32: 595-603
Mathlouthi, M., and Koenig, J. L. (1986) Vibrational spectra of carbohydrates. Adv Carbohydr Chem Biochem. 44: 7-89.
Michiels, C., Raes, M., Toussaint, O., and Remacle, J.(1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med. 17: 235-248.
Mills, G. C. (1960) Glutathione peroxidase and the destruction of hydrogen peroxide in animal tissues. Arch Biochem Biophys. 86: 1-5.
Moradali, M. F., Mostafavi, H., Ghods, S., and Hedjaroude, G. A. (2007) Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol.7: 701-724.
Moore, L. J., Moore, F. A., Todd, S. R., Jones, S. L., Turner, K. L., and Bass, B. L. (2010) Sepsis in general surgery: the 2005–2007 national surgical quality improvement program perspective. Arch Surg. 145: 695–700.
Nathan, C., and Xie, Q. W. (1994) Nitric oxide synthases: roles, tolls, and controls. Cell. 78: 915-918.

Palmer, R. M., Ferrige, A. G., and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 327: 524-526.
Pan M.H., Chiou Y.S., Tsai M.L., and Ho C.T.(2011) Anti-inflammatory activity of traditional Chinese medicinal herbs. J Trad Complemet Med. 8-24.
Paradis, V., Kollinger, M., Fabre, M., Holstege, A., Poynard, T., and Bedossa, P. (1997) In situ detection of lipid peroxidation by-products in chronic liver diseases. Hepatology. 26: 135-142.
Park, Y. M., Won, J. H., Yun, K. J., Ryu, J. H., Han, Y. N., Choi, S. K., and Lee, K. T. (2006) Preventive effect of Ginkgo biloba extract (GBB) on the lipopolysaccharide-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 via suppression of nuclear factor-kappaB in RAW 264.7 cells. Biol Pharm Bull. 29: 985-990.
Peberdy, J. F. Fungal cell walls review. In: Kuhn, P. J., Trinci, A. P. J., J., Jung,M. J., Goosey, M. W. and Copping, L. G.(Eds.) (1990) Biochemistry
of cell walls and membrane in fungi. Springer- Verlag press, Berlin. P. 5-30.
Raetz, C. R. (1990) Biochemistry of endotoxins. Annu Rev Biochem. 59: 129-170.
Rao YK, Fang SH, Tzeng YM. (2007) Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. J Ethnopharmacol. 114: 78–85.
Ridley, B. L., O'Neill, M. A., and Mohnen, D. (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry. 57: 929-967.
Rietschel, E. T., Kirikae, T., Schade, F. U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A. J., Zahringer, U., Seydel, U., Di Padova, F., and et al. (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 8: 217-225.
Rikans, L. E., Hornbrook, K. R. (1997) Lipid peroxidation, antioxidant protection and aging. Biochim Biophys Acta. 1362: 116-127.
Robbins RA, Hadeli K, Nelson D, Sato E and Hoyt JC(2000)Nitric oxide,
peroxynitrite, and low respiratory tract inflammation.Immunopharmacology 48: 217-221.
Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., and Hoekstra, W. G. (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science. 179: 588-590.
Sandstrom, J., Nilsson, P., Karlsson, K., and Marklund, S. L. (1994) 10-fold increase in human plasma extracellular superoxide dismutase content caused by a mutation in heparin-binding domain. J Biol Chem. 269: 19163-19166.
Schmidt H, Walter U (1994) NO at work. Cell. 78: 919-925.
Schwacha, M. G. (2003) Macrophages and post-burn immune dysfunction. Burns. 29: 1-14.
Sheng, H., Gagne, G. D., Matsumoto, T., Miller, M. F., Forstermann, U., and Murad, F. (1993) Nitric oxide synthase in bovine superior cervical ganglion. J Neurochem. 61: 1120-1126.
Shu CH, Lung MY. (2008) Effect of culture pH on the antioxidant properties of Antrodia camphorata in submerged culture. J Chin Inst Chem Eng. 39: 1–8.
Smith, P. J., Tappel, A. L., and Chow, C. K. (1974) Glutathione peroxidase activity as a function of dietary selenomethionine. Nature. 247: 392-393.
Song TY, Yen GC. (2003) Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against CCl4-induced hepatic toxicity in rats. J Agric Food Chem. 51: 1571–7.
Tabata K., Itoh W, Kojima T, Kawabate S, and Misaki A.(1981) Ultrasonic
degradation of schizophyllan, an antitumor polysaccharide produced by
schizophyllum commune FRIES. Carbohydr. Res. 89: 121-135.
Tamir, S., deRojas-Walker, T., Gal, A., Weller, A. H., Li, X., Fox, J. G., Wogan, G. N., and Tannenbaum, S. R.(1995) Nitric oxide production in relation to spontaneous B-cell lymphoma and myositis in SJL mice. Cancer Res. 55: 4391-4397.
Theorell H. and Ehrenberg A. (1952) The reaction between catalase, azide and hydrogen peroxide. Arch Biochem Biophys. 41: 442-474.
Tsai, Z.T., Liaw, S.L., (1985) The use and the effect of Ganoderma. San Yun Press, Taichung Taiwan. pp. 116–117.
van Leeuwen, S. S., Leeflang, B. R., Gerwig, G. J., and Kamerling, J. P. (2008) Development of a 1H NMR structural-reporter-group concept for the primary structural characterisation of a-D-glucans.Carbohydr Res. 343: 1114-1119.
Wang SC, Rossignol DP, Christ WJ, Geller DA, Freeswick PD, Thai NL, Su GL, Simmons RL.(1994) Suppression of lipopolysaccharide-induced macrophage nitric oxide and cytokine production in vitro by a novel lipopolysaccharide antagonist. Surgery. 116: 339-346.
Wu, S.H., Ryvarden, L., Chang T.T.(1997) Antrodia camphorata ("niu-chang-chih"), new combination of a medicinal fungus in Taiwan. Bot Bull Acade Sin. 38: 273-275.
Zakowski, J. J., and Tappel, A. L. (1978) Purification and properties of rat liver mitochondrial glutathione peroxidase. Biochim Biophys Acta 526: 65-76.
Zang, M., and C.H. Su. (1990) Ganoderma camphoratum, a new taxon in genus Ganoderma from Taiwan, China. Acta Bot. Yunnanica. 12: 395-396.
Zhang, W. (1994) Biochemical technology of carbohydrate complexes. Hangzhou: Zhejiang University Press. pp 193–200.
Zhang M., Cui S.W., Cheung P.C.K. and Wang Q. (2007) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol.18: 4-19.
Zhuang, C., Mizuno, T., Shimada, A., Ito, H., Suzuki, C., Mayuzumi, Y., Okamoto, H., Ma, Y., and Li, J. (1993) Antitumor protein-containing polysaccharides from a Chinese mushroom Fengweigu or Houbitake, Pleurotus sajor-caju (Fr.) Sings. Biosci Biotechnol Biochem. 57: 901-906.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top