跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/16 19:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳欣哲
研究生(外文):Hsin-Che Wu
論文名稱:牛樟芝甲醇萃取液誘導MCF-7乳癌細胞凋亡與生長抑制之研究
論文名稱(外文):Study on Growth Inhibition and Induction of Apoptosis by Methanol Extract of Antrodia Camphorata in MCF-7 Breast Cancer Cells
指導教授:姜泰安姜泰安引用關係
指導教授(外文):Tai-An Chiang
口試委員:吳佩芬林淑瑗
口試委員(外文):Pei-Fen WuShwu-Yuann Lin
口試日期:2013-06-18
學位類別:碩士
校院名稱:中華醫事科技大學
系所名稱:醫學檢驗生物技術系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:54
中文關鍵詞:牛樟芝MCF-7細胞細胞凋亡
外文關鍵詞:Antrodia camphorataMCF-7 cellsApoptosis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:690
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在台灣,牛樟芝是一種非常有名的中國傳統食用菌類藥物,近年來有研究指出,它具有抗氧化和抗癌功用。然而近幾年來台灣牛樟芝最近以來已經應用在中國傳統醫學上,以治療食物及藥物中毒,腹瀉,高血壓和肝癌等,但是目前卻很少有生物活性的試驗報告。再者,細胞凋亡和癌症之間的關係受到相當多的重視,有越來越多相關研究顯示腫瘤轉化、發展和轉移的相關過程涉及改變正常的細胞凋亡途徑。
  台灣的婦女中,乳癌是最常見的惡性腫瘤。在乳癌中大約有三分之一的患者發展轉移,最後進展為乳癌末期。儘管如此現在對於早期乳癌的治療還是使用化療的方式。乳癌就像其他癌症一樣,由於環境和有缺陷的基因之間的相互作用產生後,正常的細胞會受限於細胞週期,當細胞發生不正常時細胞會啟動修復及凋亡機制,但是癌症細胞不受到細胞週期的限制,不會啟動修復及凋亡機制,進而產生癌化細胞。在美國,有10%至20%乳癌和卵巢癌患者,其一級或二級親屬有這些疾病,這些癌症的家族遺傳傾向,被稱為遺傳性乳腺癌 - 卵巢癌綜合徵。
將培養的MCF-7乳癌細胞加入不同濃度的台灣牛樟芝萃取物(5-20 μg/ml),因此MCF-7細胞開始產生細胞凋亡,染色質濃縮, 甚至DNA序列片段. sub G1階段累積。此外,在MCF-7乳癌細胞凋亡的過程中,將伴隨著細胞色素c釋放,caspase 3 活化,和 PARP的裂解。研究顯示,牛樟芝萃取物透過誘導細胞凋亡,抑制MCF-7乳癌的細胞生長,它未來可能將具有抗癌藥物產品中的高度應用價值。

In Taiwan, Antrodia camphorata is a very famous Chinese traditional medicine, in recent years, studies have pointed out that it has antioxidant and anti-cancer function. Taiwan Antrodia camphorata, however, recently has been applied in traditional Chinese medicine and used to treat food poisoning, diarrhea, high blood pressure and liver cancer, but very few biological activity test report. In recent years, the relationship between apoptosis and cancer are quite a lot of attention, more and more studies have shown that tumor transformation, progression and metastasis process involves changing the normal apoptotic pathway.
Breast cancer is the most common malignancy in Taiwan women. Approximately one-third of all women with breast cancer develops metastases and ultimately expires due to the effects of the disease. Despite the fact that many tumors initially respond to chemotherapy, breast cancer cells can subsequently survive and gain resistance to the treatment. Breast cancer, like other cancers, occurs because of an interaction between the environment and a defective gene. Normal cells divide as many times as needed and stop. They attach to other cells and stay in place in tissues. Cells become cancerous when mutations destroy their ability to stop dividing, to attach to other cells and to stay where they belong. In the United States, 10-20% of breast and ovarian cancer patients, one or two relatives with these diseases, these cancers familial tendency, known as hereditary breast cancer - ovarian cancer syndrome.
Antrodia camphorata (5-20 μg / ml) the cultured MCF-7 breast cancer cells with different concentrations of the MCF-7 cells undergo apoptosis, chromatin condensation, and even DNA sequence fragment accumulation of sub G1 stage.Further, in the process of apoptosis in MCF-7 breast cancer cells, will be accompanied by cytochrome c activation Caspase 3 of release, and PARP degradation.Studies have shown that Antrodia camphorata through induction of apoptosis, inhibit the growth of MCF-7 breast cancer cells, it may be the high value products with anti-cancer drugs.

授權書.................................................................................................I
目錄....................................................................................................III
圖目錄................................................................................................V
致謝....................................................................................................VII
中文摘要.............................................................................................X
Abstract...............................................................................................XII
I.前言
1.1 背景資料......................................................................................1
1.1.1 乳癌的病理機制.......................................................................1
1.1.2 台灣牛樟芝...............................................................................4
1.1.3 細胞凋亡...................................................................................5
1.2 研究目的......................................................................................7
II.方法與材料
2.1 材料..............................................................................................8
2.2 台灣牛樟芝的萃取與製備..........................................................9
2.3 細胞培養和與細胞存活率分析.................................................10
2.3.1 人類乳癌細胞株......................................................................10
2.3.2 細胞冷凍與解凍......................................................................10
2.3.3 繼代培養..................................................................................11
2.3.4 細胞總蛋白萃取......................................................................11
2.3.5 細胞毒性試驗..........................................................................11
2.4 流式細胞技術試驗.....................................................................13
2.5 西方墨點分析法.........................................................................15
2.6 統計學分析................................................................................16
III.結果
3.1 牛樟芝萃取物對於MCF-7細胞的生長與存活力影響.............17
3.2 流式細胞技術測定MCF-7細胞的存活力.................................19
3.3 牛樟芝萃取物對於細胞色素c釋放,caspase 3 活化,和 PARP 裂解的響..............................................................................................20
3.4 牛樟芝萃取物對於Bcl-XL protein的影響...............................21
IV. 討論與結論......................................................................22
參考文獻.........................................................................................25
圖與表.............................................................................................30
附錄.................................................................................................38
1. Schafer, J. M., Lee, E. S., O'Regan, R. M., Yao, K., & Jordan, V. C. Rapid development of tamoxifen-stimulated mutant p53 breast tumors (T47D) in athymic mice. Clin. 44 Cancer Res., 6(11):4373-4380; 2000.
2. American Cancer Society (2007). "Cancer Facts & Figures 2007" (PDF). Archived from the original on 10 April 2007. Retrieved 2007-04-26.
3. Patel KJ, Yu VP, Lee H, et al. (February 1998). "Involvement of Brca2 in DNA repair". Mol. Cell1 (3): 347–57.
4. Patel KJ, Yu VP, Lee H, et al. (February 1998). "Involvement of Brca2 in DNA repair". Mol. Cell1 (3): 347–57.
5. Marietta C, Thompson LH, Lamerdin JE, Brooks PJ (May 2009). "Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: implications for alcohol-related carcinogenesis". Mutat. Res. 664 (1–2): 77–83.
6. Wooster R, Weber BL (June 2003). "Breast and ovarian cancer". N. Engl. J. Med. 348 (23): 2339–47.
7. Merck Manual, Professional Edition, Ch. 253, Breast Cancer.
8. Sotiriou C, Pusztai L (February 2009). "Gene-expression signatures in breast cancer". N. Engl. J. Med. 360 (8): 790–800.
9. Romond EH, Perez EA, Bryant J, et al. (October 2005). "Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer". N. Engl. J. Med. 353 (16): 1673–84.
10. Zang, M., Su, C.H., 1990. Ganoderma comphoratum, a new taxon ingenus Ganoderma from Taiwan, China. Acta Botanical Yunnanical
12, 395–396.
11. Wu, S.H., Ryvarden, L., Chang, T.T., 1997. Antrodia cinnamomea (‘‘niuchang-chih’’), new combination of a medicinal fungus in Taiwan.Botanical bulletin of Academia Sinica 38, 273–275.
12. Huang, C. H., Chang, Y. Y., Liu, C. W., Lin, Y. L., Chang, H. C., & Chen, Y. C. Fruiting body of Niuchangchih (Antrodia camphorata) protects livers against chronic alcohol consumption damage. J. Agric. Food Chem., 58(6):3859-3866; 2010.
13. Ao, Z. H., Xu, Z. H., Lu, Z. M., Xu, H. Y., Zhang, X. M., & Dou, W. F. Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. Journal of Ethnopharmacol., 121:194-212; 2009.
14. Geethangili, M., & Tzeng, Y. M. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid. Based Complement. Alternat. Med., 2011:1-17; 2011.
15. Food and Chemical Toxicology 45 (2007) 1107–1115
16. H.-L. Yang et al. / Cancer Letters 231 (2006) 215–227
17. Hsu, Y. L., Kuo, P. L., Cho, C. Y., Ni, W. C., Tzeng, T. F., Ng, L. T., Kuo, Y. H., & Lin, C. C. Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor kB pathway. Food Chem. Toxicol., 45:1249-1257; 2007.
18. Rao, Y. K., Fang, S. H., & Tzeng, Y. M. Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. Journal of Ethnopharmacol., 114(1):78-85; 2007
19. Hseu, Y. C., Yang, H. L., Lai, Y. C., Lin, J. G., Chen, G. W., & Chang, Y. H. Induction of Apoptosis by Antrodia camphorata in Human Premyelocytic Leukemia HL-60 Cells. Nutrition and Cancer, 48:189-197; 2004.
20. Yang, H. L., Kumar, K. J. S., & Hseu, Y. C. Multiple molecular targets of Antrodia camphorata: a suitable candidate for breast cancer chemoprevention, pp. 157-180 in Targeting New Pathways and Cell Death in Breast Cancer. Rebecca L. Aft. (ed.). InTech. 2012.
21. Tsai, Z.T., Liaw, S.L., 1985. The use and the effect of Ganoderma. Taichung, 116–117.
22. Bold, R.J., Termuhlen, P.M., McConkey, D.J., 1997. Apoptosis, cancer and cancer therapy. Surgical Oncology 6, 133–142.
23. H. Kamesaki, Mechanisms involved in chemotherapy-induced apoptosis and their implications in cancer chemotherapy, Int. J. Hematol. 68 (1998) 29–43.
24. C.B. Thompson, Apoptosis in the pathogenesis and treatment of disease, Science 267 (1995) 1456–1462.
25. A.H. Wyllie, J.F. Kerr, A.R. Currie, Cell death: the significance of apoptosis, Int. Rev. Cytol. 68 (1980) 251–306.
26. D.R. Green, J.C. Reed, Mitochondria and apoptosis, Science 281 (1998) 1309–1312.
27. Ashkenazi, A., Dixit, V.M., 1999. Apoptosis control by death and decoy receptors. Current Opinion in Cell Biology 11, 225–260.
28. Martinou, J.C., Desagher, S., Antonsson, B., 2000. Cytochrome c release from mitochondria: all or nothing. Nature Cell Biology 2, E41–E43.
29. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., Wang, X., 1997. Cytochrome c and dATP-dependent formation of Apaf-2/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489.
30. Ashkenazi, A., 1997. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818–821.
31. Ashkenazi, A., Dixit, V.M., 1999. Apoptosis control by death and decoy receptors. Current Opinion in Cell Biology 11, 225–260.
32. M. Tewari, L.T. Quan, K. O’Rourke, S. Desnoyers, Z. Zeng, D.R. Beidler, et al., Yama/CPP32 beta, a mammalian homolog
of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell 81 (1995) 801–809. [31] C. Rathakri
33. J. Yang, X. Liu, K. Bhalla, C.N. Kim, A.M. Ibrado, J. Cai, et al., Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked, Science 275 (1997) 1129–1132.
34. M. Tewari, L.T. Quan, K. O’Rourke, S. Desnoyers, Z. Zeng, D.R. Beidler, et al., Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell 81 (1995) 801–809.
35. D.W. Nicholson, A. Ali, N.A. Thornberry, J.P. Vaillancourt, C.K. Ding, M. Gallant, et al., Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis, Nature 376 (1995) 37–43.
36. M. Tewari, L.T. Quan, K. O’Rourke, S. Desnoyers, Z. Zeng, D.R. Beidler, et al., Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell 81 (1995) 801–809.
37. G.M. Cohen, X.M. Sun, R.T. Snowden, D. Dinsdale, D.N. Skilleter, Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation, Biochem. J. 286 (1992) 331–334.
38. K. Schulze-Osthoff, H. Walczak, W. Droge, P.H. Krammer, Cell nucleus and DNA fragmentation are not required for apoptosis, J. Cell Biol. 127 (1994) 15–20.
39. A.V. Rao, D.M. Gurfinkel, The bioactivity of saponins: triterpenoid and steroidal glycosides, Drug Metab. Drug Interact. 17 (2000) 211–235.
40. F. Liu, V.E. Ooi, S.T. Chang, Free radical scavenging activities of mushroom polysaccharide extracts, Life Sci. 60 (1997) 763–771.
41. S.P. Wasser, A.L. Weis, Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective, Crit. Rev. Immunol. 19 (1999) 65–96.
42. H. Itoh, H. Itoh, H. Noda, Inhibitory action of a (1/6)-beta- D-glucan-protein complex (F III-2-b) isolated from Agaricus
blazei Murill (‘himematsutake’) on Meth A fibrosarcomabearing mice and its antitumor mechanism, Jpn. J. Pharmacol.
66 (1994) 265–271.
43. T. Mizuno, T. Hagiwara, T. Nakamura, H. Ito, K. Shimurat, Antitumor activity and some properties of water-soluble polysaccharides from ‘Himematsutake’, the fruiting body of Agaricus blazei murill, Agric. Biol. Chem. 54 (1990) 2889–2896.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊