|
1. Schafer, J. M., Lee, E. S., O'Regan, R. M., Yao, K., & Jordan, V. C. Rapid development of tamoxifen-stimulated mutant p53 breast tumors (T47D) in athymic mice. Clin. 44 Cancer Res., 6(11):4373-4380; 2000. 2. American Cancer Society (2007). "Cancer Facts & Figures 2007" (PDF). Archived from the original on 10 April 2007. Retrieved 2007-04-26. 3. Patel KJ, Yu VP, Lee H, et al. (February 1998). "Involvement of Brca2 in DNA repair". Mol. Cell1 (3): 347–57. 4. Patel KJ, Yu VP, Lee H, et al. (February 1998). "Involvement of Brca2 in DNA repair". Mol. Cell1 (3): 347–57. 5. Marietta C, Thompson LH, Lamerdin JE, Brooks PJ (May 2009). "Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: implications for alcohol-related carcinogenesis". Mutat. Res. 664 (1–2): 77–83. 6. Wooster R, Weber BL (June 2003). "Breast and ovarian cancer". N. Engl. J. Med. 348 (23): 2339–47. 7. Merck Manual, Professional Edition, Ch. 253, Breast Cancer. 8. Sotiriou C, Pusztai L (February 2009). "Gene-expression signatures in breast cancer". N. Engl. J. Med. 360 (8): 790–800. 9. Romond EH, Perez EA, Bryant J, et al. (October 2005). "Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer". N. Engl. J. Med. 353 (16): 1673–84. 10. Zang, M., Su, C.H., 1990. Ganoderma comphoratum, a new taxon ingenus Ganoderma from Taiwan, China. Acta Botanical Yunnanical 12, 395–396. 11. Wu, S.H., Ryvarden, L., Chang, T.T., 1997. Antrodia cinnamomea (‘‘niuchang-chih’’), new combination of a medicinal fungus in Taiwan.Botanical bulletin of Academia Sinica 38, 273–275. 12. Huang, C. H., Chang, Y. Y., Liu, C. W., Lin, Y. L., Chang, H. C., & Chen, Y. C. Fruiting body of Niuchangchih (Antrodia camphorata) protects livers against chronic alcohol consumption damage. J. Agric. Food Chem., 58(6):3859-3866; 2010. 13. Ao, Z. H., Xu, Z. H., Lu, Z. M., Xu, H. Y., Zhang, X. M., & Dou, W. F. Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. Journal of Ethnopharmacol., 121:194-212; 2009. 14. Geethangili, M., & Tzeng, Y. M. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid. Based Complement. Alternat. Med., 2011:1-17; 2011. 15. Food and Chemical Toxicology 45 (2007) 1107–1115 16. H.-L. Yang et al. / Cancer Letters 231 (2006) 215–227 17. Hsu, Y. L., Kuo, P. L., Cho, C. Y., Ni, W. C., Tzeng, T. F., Ng, L. T., Kuo, Y. H., & Lin, C. C. Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor kB pathway. Food Chem. Toxicol., 45:1249-1257; 2007. 18. Rao, Y. K., Fang, S. H., & Tzeng, Y. M. Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. Journal of Ethnopharmacol., 114(1):78-85; 2007 19. Hseu, Y. C., Yang, H. L., Lai, Y. C., Lin, J. G., Chen, G. W., & Chang, Y. H. Induction of Apoptosis by Antrodia camphorata in Human Premyelocytic Leukemia HL-60 Cells. Nutrition and Cancer, 48:189-197; 2004. 20. Yang, H. L., Kumar, K. J. S., & Hseu, Y. C. Multiple molecular targets of Antrodia camphorata: a suitable candidate for breast cancer chemoprevention, pp. 157-180 in Targeting New Pathways and Cell Death in Breast Cancer. Rebecca L. Aft. (ed.). InTech. 2012. 21. Tsai, Z.T., Liaw, S.L., 1985. The use and the effect of Ganoderma. Taichung, 116–117. 22. Bold, R.J., Termuhlen, P.M., McConkey, D.J., 1997. Apoptosis, cancer and cancer therapy. Surgical Oncology 6, 133–142. 23. H. Kamesaki, Mechanisms involved in chemotherapy-induced apoptosis and their implications in cancer chemotherapy, Int. J. Hematol. 68 (1998) 29–43. 24. C.B. Thompson, Apoptosis in the pathogenesis and treatment of disease, Science 267 (1995) 1456–1462. 25. A.H. Wyllie, J.F. Kerr, A.R. Currie, Cell death: the significance of apoptosis, Int. Rev. Cytol. 68 (1980) 251–306. 26. D.R. Green, J.C. Reed, Mitochondria and apoptosis, Science 281 (1998) 1309–1312. 27. Ashkenazi, A., Dixit, V.M., 1999. Apoptosis control by death and decoy receptors. Current Opinion in Cell Biology 11, 225–260. 28. Martinou, J.C., Desagher, S., Antonsson, B., 2000. Cytochrome c release from mitochondria: all or nothing. Nature Cell Biology 2, E41–E43. 29. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., Wang, X., 1997. Cytochrome c and dATP-dependent formation of Apaf-2/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489. 30. Ashkenazi, A., 1997. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818–821. 31. Ashkenazi, A., Dixit, V.M., 1999. Apoptosis control by death and decoy receptors. Current Opinion in Cell Biology 11, 225–260. 32. M. Tewari, L.T. Quan, K. O’Rourke, S. Desnoyers, Z. Zeng, D.R. Beidler, et al., Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell 81 (1995) 801–809. [31] C. Rathakri 33. J. Yang, X. Liu, K. Bhalla, C.N. Kim, A.M. Ibrado, J. Cai, et al., Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked, Science 275 (1997) 1129–1132. 34. M. Tewari, L.T. Quan, K. O’Rourke, S. Desnoyers, Z. Zeng, D.R. Beidler, et al., Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell 81 (1995) 801–809. 35. D.W. Nicholson, A. Ali, N.A. Thornberry, J.P. Vaillancourt, C.K. Ding, M. Gallant, et al., Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis, Nature 376 (1995) 37–43. 36. M. Tewari, L.T. Quan, K. O’Rourke, S. Desnoyers, Z. Zeng, D.R. Beidler, et al., Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell 81 (1995) 801–809. 37. G.M. Cohen, X.M. Sun, R.T. Snowden, D. Dinsdale, D.N. Skilleter, Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation, Biochem. J. 286 (1992) 331–334. 38. K. Schulze-Osthoff, H. Walczak, W. Droge, P.H. Krammer, Cell nucleus and DNA fragmentation are not required for apoptosis, J. Cell Biol. 127 (1994) 15–20. 39. A.V. Rao, D.M. Gurfinkel, The bioactivity of saponins: triterpenoid and steroidal glycosides, Drug Metab. Drug Interact. 17 (2000) 211–235. 40. F. Liu, V.E. Ooi, S.T. Chang, Free radical scavenging activities of mushroom polysaccharide extracts, Life Sci. 60 (1997) 763–771. 41. S.P. Wasser, A.L. Weis, Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective, Crit. Rev. Immunol. 19 (1999) 65–96. 42. H. Itoh, H. Itoh, H. Noda, Inhibitory action of a (1/6)-beta- D-glucan-protein complex (F III-2-b) isolated from Agaricus blazei Murill (‘himematsutake’) on Meth A fibrosarcomabearing mice and its antitumor mechanism, Jpn. J. Pharmacol. 66 (1994) 265–271. 43. T. Mizuno, T. Hagiwara, T. Nakamura, H. Ito, K. Shimurat, Antitumor activity and some properties of water-soluble polysaccharides from ‘Himematsutake’, the fruiting body of Agaricus blazei murill, Agric. Biol. Chem. 54 (1990) 2889–2896.
|