跳到主要內容

臺灣博碩士論文加值系統

(3.215.79.68) 您好!臺灣時間:2022/07/04 04:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇文毅
研究生(外文):Wen-YiSu
論文名稱:網路RTK應用於GPS正高測量之精度分析-以恆春半島為例
論文名稱(外文):Accuracy analysis of GPS heighting with network RTK observations: a case study in Hengchun Peninsula
指導教授:楊名楊名引用關係
指導教授(外文):Ming Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系碩博士班
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:84
中文關鍵詞:全球定位系統網路即時動態定位正高
外文關鍵詞:GPSnetwork RTKorthometric height
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1921
  • 評分評分:
  • 下載下載:154
  • 收藏至我的研究室書目清單書目收藏:1
正高為一般工程、地形圖、物理大地等所使用之高程,傳統上使用水準測量獲得,費時費力。隨著全球定位系統(GPS)的發展成熟,使用GPS聯合區域性大地起伏模型測量正高較有效率,稱為GPS正高測量。GPS正高測量一般使用GPS靜態測量來獲得橢球高及位置資訊。近年來,使用GPS的網路RTK技術已成為趨勢,具有即時之優勢,且台灣已有網路RTK系統,簡稱為e-GPS。利用e-GPS進行GPS正高測量可進一步提升效率,因此,本研究的主軸為探討e-GPS觀測量用於GPS正高測量之方法與精度分析。
將e-GPS觀測量用於GPS正高測量中,本研究分別使用差分法及修正面法兩種方法,並且在恆春半島區域進行測試。在差分法方面,為了瞭解差分效果和距離的關係,本研究選擇離各測點平均距離最近及最遠的兩個測點,分別作為差分點,其成果精度說明差分距離越遠,精度越低,且差分距離在50公里內的成果精度約為7~8公分。而在修正面法方面,利用e-GPS基準站所建置之GPS正高測量修正面與e-GPS正高測量修正面,其精度分別為8.2公分與6.0公分,而造成上述結果是因e-GPS坐標框架有較佳之相對精度,此也說明了e-GPS正高測量修正面之精度不劣於GPS正高測量修正面之精度,足以因應製圖需求。當使用e-GPS得到正高資訊時,本研究推薦使用修正面法,一方面精度較高,另一方面沒有精度隨差分距離下降的問題。

Orthometric height is an elevation which is generally applyied in engineering, topographic maps, physical earth, etc. Traditionally, we can obtain orthometric height from spirit leveling. However, spirit leveling is a very time-consuming operation. Along with the growing of Global Positioning System (GPS), we can obtain orthometric height from GPS measurement with local geoidal model which called GPS leveling. By using this method, it will be more efficient. GPS leveling mostly use static GPS measurements to obtain ellipsoidal height and location information. In recent years, network-RTK is an efficient method of obtaining ellipsoidal height and location information. Taiwan has built up a network-RTK system, which is called e-GPS. GPS leveling derived from e-GPS measurement can be further improved with efficiency; however, its accuracy is slightly lower than static GPS measurement. Therefore, this study aim at accuracy analysis of orthometric height derived from e-GPS.
Differential method and corrector surface method are adopted to GPS leveling, which is derived from e-GPS measurement. Study area is located on Hengchun Peninsula. In differential method, this study chooses average nearest and farthest point as two differential points in order to understand the relationship between efficiency and differential distance. The results show that we have lower accuracy as differential distance is further. When differential distance is within 50 km, the accuracy is about 7-8 cm. In corrector surface method, we use GPS and e-GPS leveling corrector surface, individually, which are established based on e-GPS reference stations. Because e-GPS coordinate frame can provide better relative positioning accuracy, the accuracy of GPS and e-GPS leveling corrector surface is 8.2 and 6.0 cm, respectively. The results show that using e-GPS leveling corrector surface can provide the accuracy no worse than using GPS leveling corrector surface. Thus, e-GPS leveling corrector surface is sufficient for mapping requirements. If applying e-GPS measurement in GPS leveling, the study recommends using corrector surface method. This method has higher accuracy, besides, there is no accuracy trouble in differential distance.

摘要 I
Abstract II
致謝 IV
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究動機與目的 4
1.4 研究方法 4
第二章 高程系統 6
2.1 大地位數與高程系統定義 6
2.1.1 大地位數概念 6
2.1.2 正高系統 7
2.1.3 橢球高系統 9
2.2 台灣坐標基準 9
2.2.1 台灣大地基準 10
2.2.2 台灣高程基準 11
2.3 水準測量 13
2.4 台灣重力法大地起伏模型 14
2.4.1 重力法大地起伏模型使用之資料 14
2.4.1.1 陸測重力資料 14
2.4.1.2 船載重力資料 15
2.4.1.3 測高重力資料 16
2.4.1.4 空載重力資料 17
2.4.1.5 全球重力模型 18
2.4.1.6 台灣DEM模型 19
2.4.2 重力法大地起伏模型之計算概念及性質 19
第三章 全球定位系統即時動態定位 21
3.1 GPS基本定位原理 21
3.1.1 GPS觀測量 21
3.1.2 GPS誤差來源 22
3.1.2.1和衛星有關的誤差 22
3.1.2.2和訊號有關的誤差 23
3.1.2.3和接收儀有關的誤差 25
3.1.3 GPS定位方法 25
3.1.3.1 絕對定位 25
3.1.3.2 相對定位 26
3.2 單一基準站即時動態定位 27
3.3 多基準站即時動態定位 27
3.4 台灣網路RTK系統 (e-GPS) 29
3.4.1 台灣網路RTK系統(e-GPS)的組成架構 30
3.4.1.1衛星定位基準網 30
3.4.1.2控制計算中心 31
3.4.1.3移動站使用者 32
3.4.2 VRS-RTK原理 33
3.4.3 台灣網路RTK坐標系統(e-GPS坐標系統) 35
3.5 GPS正高測量 38
第四章 GPS正高測量方法 40
4.1 GPS正高測量的問題 40
4.1 e-GPS坐標轉換至TWD97坐標之必要性 42
4.2 差分法 45
4.3 修正面法 47
4.3.1修正面之建置 48
4.3.2修正面之使用 50
第五章 實驗與成果分析 52
5.1 實驗資料 52
5.2 實驗設計 53
5.2.1 實驗一:利用差分法進行e-GPS正高測量 54
5.2.2 實驗二:利用修正面法進行e-GPS正高測量 56
5.3 實驗成果與分析 58
5.3.1實驗一 58
5.3.2實驗二 62
5.3.2.1 e-GPS與GPS觀測量建置修正面之比較 62
5.3.2.2 e-GPS正高測量修正面法的誤差來源影響量分析 64
5.3.2.3 e-GPS觀測量建置修正面之特性與建議 65
5.3.2.3.1大地起伏模型的變化率 66
5.3.2.3.2比較d_ex2^eGPS與大地起伏模型變化率之關係 68
5.3.2.3.3修正面的特質與建議 70
第六章 結論與建議 72
參考文獻 74
附錄一:一千分之一數值航測地形圖測製作業規定 81
附錄二:高精度及高解析度數值地形模型測製規範(草案) 82
附錄三:LiDAR測製數值高程模型及數值地表模型標準作業程序(草案) 83

內政部土地測量局 (2006) e-GPS衛星基準站即時動態定位系統VBS-RTK定位測試成果報告,台中。
內政部國土測繪中心 (2007) 臺灣本島與離島高程連測計畫95年度連測作業期末報告,台中。
內政部國土測繪中心 (2009) 97年度三等精度控制點速度場測量及管理維護作業工作總報告,台中。
內政部國土測繪中心 (2010) 臺灣本島與離島高程連測計畫97年度連測作業期末報告,台中。
內政部國土測繪中心 (2012) e-GPS即時動態定位系統100年度營運報告,台中。
王敏雄, 劉至忠, 劉正倫, 蕭輔導 (2006) e-GPS衛星基準網之VBS-RTK即時動態定位系統測量成果分析,地籍測量,第25卷,第2期,1-21頁。
徐博賢, 張仁均, 朱森 (1998) GPS精密定位時接收儀天線相位中心之校正,第二屆兩岸測繪學術研討會暨第十七屆測量學術及應用研討會,台南, 77-86頁。
陳春盛 (2003) 一等二級水準點上實施重力測量工作報告書,台中。
曾清涼, 余致義, 林宏麟 (1988) 公分級精度GPS衛星測量研究(I),台南。
曾清涼, 余致義, 楊名, 羅正方, 林漢良 (2004) 台灣e-GPS系統建置理論與實務,地籍測量,第23卷,第2期,13-31頁。
黃玉婷, 陳國華, 楊名 (2010) 利用TWVD2001水準資料推估臺灣地區高程變動速度場之研究,台灣土地研究,第13卷,第1期,25-52頁。
黃金維 (2001) 一等一級水準點上實施重力測量工作報告書,新竹。
黃金維, 王成機 (2002) 台灣新自由空間異常網格,測量工程,第44卷,第2期,1-22頁。
黃金維, 許宏銳, 黃啟訓 (2013) 新一代台灣大地水準面模式:防災、監測、高程現代化之應用,國土測繪與空間資訊,第1卷,第1期,57-81頁。
黃金維, 郭重言, 儲慶美, 甯方璽 (1998) 台灣重力網平差及重力資料整合,測量工程,第40卷,第3期,71-82頁。
楊名, 余致義 (1997) 即時動態GPS應用於控制測量與戶地測量之設計與實驗,地籍測量,第16卷,第4期,1-32頁。
Benahmed-Daho SA, Kahlouche S, Fairhead JD (2006) A procedure for modelling the differences between the gravimetric geoid model and GPS/levelling data with an example in the north part of Algeria. Computers & Geosciences, 32(10):1733-1745.
Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the Globle Positioning System. Journal of Geophysical Research, 97(D14):15787-15801.
Brunner FK, Tregoning P (1994) Investigation of height repeatability from GPS measurements. Australian Journal of Geodesy, Photogrammetry and Surveying, 1(60):33-48.
Cannon ME, Lachapelle G, Fortes LP, Alves P, Townsend B (2001) The use of multiple reference station VRS for precise kinematic positioning. In: Proc. Japan Institute of Navigation, Tokyo, Japan, Nov. 14-16. pp 29-37.
Deng X (2004) Improvement of geodetic parameter estimation in coastal regions from satellite radar altimetry. Ph.D. thesis. Curtin University of Technology, Perth, Australia.
Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy, 83(3-4):191-198.
Duquenne H, Jiang Z, Lemarié C (1995) Geoid determination and levelling by GPS: some experiments on a test network. In: IAG Symposia Gravity and Geoid, Graz, Austria, Sept. 11-17. pp 559-568.
Eckl MC, Snay RA, Soler T, Cline MW, Mader GL (2001) Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. Journal of Geodesy, 75(12):633-640.
Edwards SJ, Cross PA, Barnes JB, Betaille D (1999) A methodology for benchmarking real-time kinematic GPS. Survey Review, 35(273):163-174.
Featherstone WE (1998) Do we need a gravimetric geoid or a model of the Australian height datum to transform GPS geights in Australia? Australian Surveyor, 43(4):273-280.
Featherstone WE, Dentith MC, Kirby JF (1998) Strategies for the accurate determination of orthometric heights from GPS. Survey Review, 34(267):278-296.
Featherstone WE, Kirby JF, Kearsley AHW, Gilliland JR, Johnston GM, Steed J, Forsberg R, Sideris MG (2001) The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data. Journal of Geodesy, 75(5-6):313-330.
Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling, Report No.355. Department of Geodetic Science and Surveying, The Ohio State University, Columbus, U.S.A.
Forsberg R, Tscherning CC (1981) The-use of height data in gravity field approximation by collocation. Journal of Geophysical Research, 86(B9):7843-7854.
Fotopoulos G, Featherstone WE, Sideris MG (2003) Fitting a gravimetric geoid model to the Australian height datum via GPS data. In: Proc. Gravity and Geoid 2002, Perth, Australia, Aug. 26-30. pp 173-178.
Fotopoulos G, Kotsakis C, Sideris MG (2003) How accurately can we determine orthometric height differences from GPS and geoid data. Journal of Surveying Engineering, 192(1):1-10.
Guth PL (1995) Slope and aspect calculations on gridded digital elevation models: Examples from a geomorphometric toolbox for personal computers. Zeitschrift fur Geomorphologie NF Supplementband, 101:31-52.
Hein GW (1985) Orthometric height determination using GPS observations and the integrated geodesy adjustment model, Report NOAA Technical No.110 NGS 32. Rockville, U.S.A.
Heiskanen WA, Moritz H (1967) Physical Geodesy. W.H.Freeman, San Francisco, U.S.A.
Henning WE, Carlson EE, Zilkoski DB (1998) Baltimore County, Maryland, NAVD 88 GPS-derived orthometric height project. Surveying and Land Information Systems, 58(2):97-113.
Hodgson ME (1995) What cell size does the computed slope/aspect angle represent? Photogrammetric engineering and remote sensing, 61(5):513-517.
Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global Positioning System: theory and practice. Springer-Verlag, New York, U.S.A.
Hofmann-Wellenhof B, Moritz H (2006) Physical Geodesy. Springer-Verlag Wien, Germany.
Hsiao YS, Hwang C (2011) Topography-assisted downward continuation of airborne gravity: An application for geoid determination in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 21(4):627-637.
Hsu SK, Liu CS, Shyu CT, Liu SY, Sibuet JC, Lallemand S, Wang CS, Reed D (1998) New gravity and magnetic anomaly maps in the Taiwan-Luzon region and their preliminary interpretation. Terrestrial, Atmospheric and Oceanic Sciences, 9(3):509-532.
Hu GR, Khoo HS, Goh PC, Law CL (2003) Development and assessment of GPS virtual reference stations for RTK positioning. Journal of Geodesy, 77(5-6):292-302.
Hwang C (1998) Inverse Vening Meinesz formula and deflection-geoid formula: applications to the predictions of gravity and geoid over the South. Journal of Geodesy, 72(5):304-312.
Hwang C, Guo J, Deng X, Hsu H, Liu Y (2006) Coastal gravity anomaly from retracked Geosat/GM altimetry: improvement, limitation and the role of airborne gravity data. Journal of Geodesy, 80(4):204-216.
Hwang C, Hsiao YS, Shih HC, Yang M, Chen KH, Forsberg R, Olesen AV (2007) Geodetic and geophysical results from a Taiwan airborne gravity survey: Data reduction and accuracy assessment. Journal of Geophysical Research, 112(B4):407-420.
Hwang C, Hsu HY (2008) Shallow-water gravity anomalies from satellite altimetry: Case studies in the east china sea and Taiwan strait. Journal of the Chinese Institute of Engineers, 31(5):841-851.
Hwang C, Wang CG, Hsiao YS (2003) Terrain correction computation using Gaussian quadrature: effect of innermost zone. Computer & Geosciences, 29(10):1259-1268.
Janes HW, Langley RB, Newby SP (1991) Analysis of tropospheric delay prediction models: comparison with ray-tracing and implications for GPS relative positioning. Bulletin Géodésique, 65(3):151-161.
Jekeli C (2000) Height, the Geopotential, and Vertical Datums, Report No.459. Department of Geodetic Science, The Ohio State University, Columbus, U.S.A.
Jiang Z, Duquenne H (1996) On the combined adjustment of a gravimetrically determined geoid and GPS levelling stations. Journal of Geodesy, 70(8):505-514.
Jones KH (1998) A comparison of algorithms used to compute hill slope as a property of the DEM. Computers and Geosciences, 24(4):315-323.
Kearsley AHW (1988) Test on the recovery of precise geoid height differences from gravimetry. Journal of Geophysical Research, 93(B6):6559-6570.
Kearsley AHW, Ahmad Z, CHan A (1993) National height datums, levelling, GPS heights and geoids. Journal of Geodesy, Photogrammetry and Surveying, 59(1):53-88.
Kotsakis S, and Sideris, M. G. (1999) On the adjustment of combined GPS/levelling/geoid networks. Journal of Geodesy, 73(8):412-421.
Lachapelle G, Alves P, Fortes LP, Cannon ME (2000) DGPS RTK positioning using a reference network. In: Proc. ION GPS-2000, Salt Lake City, Utah, Sept. 19-22. pp 1165-1171.
Landau H, Vollath U, Chen X (2002) Virtual reference station systems. Journal of Global Positioning Systems, 1(2):137-143.
Leick A (1995) GPS satellite surveying. John Willey & Sons, New York, U.S.A.
Milbert DG (1991) Computing GPS-derived orthometric heights with the GEOID90 geoid height model. In: Proc. ACSM-ASPRS Fall Convention-91, Atlanta, U.S.A., Oct. 28 - Nov. 1. pp A46-A55.
Mitchell HL (1990) GPS heighting and the A.H.D. GPS heighting study group report. Australian GPS Users Group, Australia.
Moritz H (1980) Geodetic reference system 1980. Bulletin Géodésique, 54(3):395-405.
Nahavandchi H, Soltanpour A (2006) Improved determination of heights using a conversion surface by combining gravimetric quasi-geoid/geoid and GPS-levelling height differences. Studia Geophysica et Geodaetica, 50(2):165-180
Raaflaub LD, Collins MJ (2006) The effect of error in gridded digital elevation models on the estimation of topographic parameters. Environmental Modelling & Software, 21(5):710-732.
Rapp RH, Balasubramania N (1992) Aconceptual formulation of a world height system, Report NO 421. Department of Geodetic Science and Surveying. Department of Geodetic Science and Surveying, The Ohio State University, Columbus, U.S.A.
Ritter P (1987) A vector-based slope and aspect generation algorithm. Photogrammetric Engineering and Remote Sensing, 53(8):1109-1111.
Rummel R, Teunissen PJG (1989) Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bulletin Géodésique, 62(4):477-498.
Saleh J, Li X, Wang YM, Roman DR, Smith DA (2013) Error analysis of the NGS' surface gravity database. Journal of Geodesy, 87(3):203-221.
Seeber G (2003) Satellite geodesy: Foundations, methods, and applications. Walter de Gruyter, Berlin, Germany.
Sharpnack DA, Akin G (1969) An algorithm for computing slope and aspect from elevations. Photogrammetric Engineering, 35(3):247-248.
Torge W (1991) Geodesy. Walter de Gruyter, Berlin, Germany.
Tranes M, Meyer T, Massalski D (2007) Comparisons of GPS-derived orthometric heights using local geometric geoid models. Journal of Surveying Engineering, 133(1):6-13.
Tscherning CC, Radwan A, Tealeb AA, Mahmoud SM, EI-Monum MA, Hassan R, EI-Syaed I, Saker K (2001) Local geoid determination combining gravity disturbances and GPS/levelling: a case study in the Lake Nasser area, Aswan, Egypt. Journal of Geodesy, 75(7-8):343-348.
van Nee RDJ (1992) Multipath effects on GPS code phase measurements. Navigation, 39(2):177-190.
Vaníček P, Featherstone WE (1998) Performance of three types of Stokes's kernel in the combined solution for the geoid. Journal of Geodesy, 72(12):684-697.
Vaníček P, Krakiwsky EJ (1986) Geodesy: the concepts. North-Holland, Amsterdam, Netherlands.
Vollath U, Landau H, Chen X (2002) Network RTK versus Single Base RTK–Understanding the Error Characteristics. In: Proc. ION GPS-2002, Portland, U.S.A., Sept. 24-27. pp 2274-2281.
Yang M, Chen KH, Shiao SW (2003) A new height reference network in Taiwan. Survey Review, 37(290):260-268.
Yang M, Tseng C, Yu J (2001) Establishment and maintenance of Taiwan geodetic datum 1997. Journal of Surveying Engineering, 127(4):119-132.
Yang YC, Hwang C, Hsu HJ (2011) A subwaveform threshold retracker for ERS-1 altimetry: a case study in the Antarctic Ocean. Computer & Geosciences, 41:88-98.
Yen HY, Yeh YH, Lin CH, Chen KJ, Tsai YB (1995) Gravity survey of Taiwan. Journal of Physics of the Earth, 43(6):685-696.
Yen HY, Yeh YH, Lin CH, Yu GK, Tsai YB (1990) Free-air gravity map of Taiwan and its applications. Terrestrial, Atmospheric and Oceanic Sciences, 1(2):143-156.
You RJ (2006) Local geoid improvement using GPS and levelling data: case study. Journal of Surveying Engineering, 132(3):101-107.
Yu SB, Chen HY, Kuo LC (1997) Velocity field of GPS stations in the Taiwan area. Tectonophysics, 247(1-3):41-59.
Zilkoski DB, Carlson EE, Smith CL (2008) Guidelines for establishing GPS-derived orthometric heights, Report NOAA Technical Memorandum NOS NGS 59. National Geodetic Survey, Silver Spring, U.S.A.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top