跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/13 23:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳進結
研究生(外文):Wu, Chin-Chieh
論文名稱:利用製程能力指標選擇群體供應商之貝氏方法
論文名稱(外文):Bayesian approach for group supplier selection based on the process capability indices
指導教授:洪志真洪志真引用關係洪慧念洪慧念引用關係
指導教授(外文):Shiau Horng, Jyh-JenHung, Hui-Nien
學位類別:博士
校院名稱:國立交通大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:127
中文關鍵詞:供應鏈管理群體供應商選擇貝氏方法事先資訊正確選擇的後驗概率
外文關鍵詞:Supply chain managementGroup supplier selectionBayesian approachPrior informationPosterior probability of correct selection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
選擇供應商在供應鏈管理中是一個重要問題。在生產設置的初始階段,決策者通常面臨著從幾個可用的製造供應商中選擇最佳製造供應商(具有最大製程能力指標值)的問題。在選擇最佳的供應商中有許多因素需要被考慮的,如品質、成本、服務等等,其中,品質應當是最主要的考慮因素。關於選擇最佳製造供應商的問題,在很多文獻中已受到相當大的注意,但主要都是從頻率學派(frequentist)的觀點。在此論文中,我們考慮用貝氏(Bayesian)的方法來做群體供應商的選擇問題,意思就是選擇一組供應商,且這個群組有很高的信心水準包含具有最高的製程能力指標值的供應商。基於觀測的資料和事先的可用資訊,我們發展了一個符合實際的過程來做群體供應商的選擇,對於工程師在實際的應用上有相當的助益。為了探討所提出方法的有效性,我們做了一些模擬來研究我們所提出的貝氏方法用在群體供應商選擇上的績效,並且透過我們所定義的損失函數與Huang and Lee (1995)所提出的方法做比較。
目前大多數現有的方法用來評估製程能力都是透過傳統頻率學派的觀點來做推導。在此論文中,我們將對 Vännman 1995年所定義的製程能力指標Cp(u,v)從貝氏學派的觀點來考慮製程能力估計與檢定的問題。首先,我們推導製程是否有能力的後驗概率,p。為了使此貝氏過程在實例的應用中更實際化,我們用表格列出製程已達到預先指定的能力水準所需之最低 Cp(u,v)_hat 值,當後驗概率 已達到理想程度如0.95。為了說明如何應用我們所提出的方法到由工廠所收集的實際資料上,我們介紹了關於LCM 製造過程的應用示例。最後,我們應用此處所推導的後驗概率至之前所提出的群體供應商選擇的貝氏選擇規則中,對有關正確選擇率和所選子集的平均大小我們也做了一系列的模擬研究。

Supplier selection is an important part of supply chain management. In the initial stage of production setting, the decision-maker usually faces the problem of selecting the “best” one(s) from available manufacturing material suppliers. There are many factors, such as quality, cost, service and so on, that need to be considered in selecting the best supplier. Among them, quality should be given the major consideration. This problem of selecting the best supplier(s) has received considerable attention in the literature but mainly from the frequentist point of view. In this dissertation, we consider dealing with the group supplier selection problem by the Bayesian approach, meaning selecting a group of suppliers that would include the supplier with the largest value of process capability index with a high level of confidence. Based on the observed data and available prior information, we develop a practical procedure for the group supplier selection, which is useful to engineers for their in-plant applications. To investigate the effectiveness of the proposed method, a simulation study was carried out evaluate the performance of the proposed group supplier selection rule via Bayesian approach and to compare with the method proposed by Huang and Lee (1995) under the defined loss function.
Most existing methods to assess the process capability were derived from the traditional frequentist point of view. In this dissertation, we consider the problem of estimating and testing the process capability based on the capability index Cp(u,v) defined by Vännman (1995) from the Bayesian point of view. We first derive the posterior probability, p, that the process under investigation is capable. To make this Bayesian procedure practical for in-plant applications, we tabulate the minimum values of Cp(u,v)_hat for some values of u and v, for which the posterior probability p reaches desirable levels with the pre-specified capability level, say, 0.95. To illustrate how we apply the proposed procedure to actual data collected from the factory, an application example of LCM manufacturing process was also presented. Finally, we use Cp(u,v) as the process capability index in our proposed Bayesian group supplier selection rule, and a series of simulation studies about the posterior probability of correct selection and the average size of selected subset were undertaken.

中文摘要…………………………………………………………………………………………………………………………………………i
英文摘要………………………………………………………………………………………………………………………………………ii
誌謝……………………………………………………………………………………………………………………………………………iii
Table of Contents …………………………………………………………………………………………………………iv
List of Tables …………………………………………………………………………………………………………………vi
List of Figures …………………………………………………………………………………………………………viii

Chapter 1 Introduction…………………………………………………………………………………………………1
1.1 Background
1.2 Motivation
1.3 Previous Works
1.4 Research Objectives
1.5 Organization of the Dissertation

Chapter 2 Bayesian Approach for Group Supplier Selection………8
2.1 Notation, Definitions, and Formulation of the Group Supplier Selection Problem
2.2 The case of the process capability index Cp
2.2.1 The estimation and statistical properties of the estimated Cp
2.2.2 Group supplier selection procedure for Cp via Bayesian approach
2.3 The case of the process capability index Cpk
2.3.1 The estimation and statistical properties of the estimated Cpk
2.3.2 Group supplier selection procedure for Cpk via Bayesian approach
2.4 The case of the process capability index Cpm
2.4.1 The estimation and statistical properties of the estimated Cpm
2.4.2 Group supplier selection procedure for Cpm via Bayesian approach
2.5 The case of the process capability index Cpmk
2.5.1 The estimation and statistical properties of the estimated Cpmk
2.5.2 Group supplier selection procedure for Cpmk via Bayesian approach

Chapter 3 Selection Performance Analysis………………………………………………35
3.1 Selection performance analysis for the process capability indices Cp, Cpk, Cpm, and Cpmk
3.2 A comparison with Huang and Lee method based on the process capability index Cpm
3.3 Examples for non-randomized and randomized Bayesian group supplier selection

Chapter 4 A Bayesian procedure for assessing process performance based on the capability index ………………………………………59
4.1 A review on the Cp(u,v) capability index
4.2 The estimation and the statistical properties of the estimated Cp(u,v)
4.3 A Bayesian procedure for process capability assessment based on Cp(u,v) capability index
4.3.1 Bayesian approach for Cp(u,v) capability index
4.3.2 Posterior probability p with Cp(u,v)
4.4 Bayesian procedure for assessing process performance
4.5 An application example

Chapter 5 Group Supplier Selection Based on Cp(u,v) ……………101
5.1 Group supplier selection procedure for Cp(u,v) via Bayesian approach
5.2 Selection performance analysis for indices Cp(0,2), Cp(2,0), Cp(0,3), and Cp(3,1)

Chapter 6 Conclusions and Future Work …………………………………………………109
6.1 Conclusions
6.2 Future Work

Reference………………………………………………………………………………………………………………………………113
Appendix…………………………………………………………………………………………………………………………………117

1.Berger, J. O. (1980). Statistical decision theory: foundations, concepts, and methods. Springer-Verlag, New York.

2.Bissell, A. F. (1990). How reliable is your capability index? Journal of the Royal Statistical Society, C 39(3), 331-340.

3.Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23(1), 17-26.

4.Chan, L. K., Cheng, S. W., and Spring, F. A. (1988a). A new measure of process capability : Cpm. Journal of Quality Technology, 20(3), 162-175.

5.Chan, L. K., Cheng, S. W., and Spiring, F. A. (1988b). A graphical technique for process capability. ASQC Quality Congress Transactions, 42, 268-275.

6.Chen, J. P. and Chen, K. S. (2004). Comparing the capability of two processes using Cpm. Journal of Quality Technology, 36(3), 329-335.

7.Chen, J. -P. and Pearn, W. L. (2002). Testing process performance based on the yield: an application to the liquid-crystal display module. Microelectronics Reliability, 42, 1235-1241.

8.Chen, K. S. and Pearn, W. L. (2001). Capability indices for processes with asymmetric tolerances. Journal of the Chinese Institute of Engineers, 24(5), 559-568.

9.Cheng, S. W. and Spiring, F. A. (1989). Assessing process capability: a Bayesian approach, IIE Transactions, 21(1), 97-98.

10.Chen, J. P. and Tong, L. I. (2003). Bootstrap Confidence Interval of the Difference Between Two Process Capability Indices. International Journal of Advanced Manufacturing Technology, 21, 249-256.

11.Chou, Y. M. (1994). Selecting a better supplier by testing process capability indices. Quality Engineering, 6(3), 427-438.

12.Chou, Y. M. and Owen, D. B. (1989). On the distributions of the estimated process capability indices. Communication in Statistics-Theory and Methods, 18, 4549-4560.

13.Daniels, L., Edgar, B., Burdick, R. K., and Hubele, N. F. (2005). Using confidence intervals to compare process capability indices. Quality Engineering, 17, 23-32.

14.Gupta, S. S. and Yang, H. M. (1985). Bayes-p* subset selection procedure for the best population. Journal of statistical planning and inference, 12, 213-233.

15.Huang, D. Y. and Lee, R. F. (1995). Selecting the largest capability index from several quality control processes. Journal of statistical planning and inference, 46, 335-346.

16.Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41-52.

17.Kotz, S. and Johnson, N. L. (1993). Process Capability Indices, Chapman &; Hall, London.

18.Kotz, S. and Lovelace C. R. (1998). Process Capability Indices in Theory and Practice, Arnold, London, U. K.

19.Kotz, S., Pearn, W. L., and Johnson, N. L. (1993). Some process capability indices are more reliable than one might think. Journal of the Royal Statistical Society, Series C: Appied Statistics, 42(1), 55-62.

20.Leone, F. C., Nelson, L. S., and Nottingham, R. B. (1961). The folded normal distribution, Technometrics, 3, 543-550.

21.Pearn, W. L., Kotz, S., Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology, 24(4), 216-231.

22.Pearn, W. L., Lin, G. H., and Chen, K. S. (1998). Distributional and inferential properties of the process accuracy and process precision indices. Communications in Statistics - Theory and Methods, 27, 985-1000.

23.Pearn, W. L. and Lin, P. C. (2003). Testing process performance based on the capability index Cpk with critical values. Computers and Industrial Engineering, 47,351-369.

24.Pearn, W. L. and Lin, P. C. (2002). Computer program for calculating the p-value in testing process capability Cpmk. Quality and Reliability Engineering International, 18(4), 333-342.

25.Pearn, W. L. and Shu, M. H. (2003a). Lower confidence bounds with sample size information for Cpm with application to production yield assurance. International Journal of Production Research, 41, 3581-3599.

26.Pearn, W. L. and Wu, C. W. (2005). Process capability assessment for index Cpk based on Bayesian approach. Metrika, 61(2), 221-234.

27.Pearn, W. L., Wu, C. W., and Lin, H. C. (2004). Procedure for supplier selection based on Cpm applied to super twisted nematic liquid crystal display processes. International Journal of Production Research, 42(13), 2719–2734.

28.Shiau, J.-J. H., Chiang, C. T., and Hung, H. N. (1999a). A Bayesian procedure for process capability assessment, Quality and Reliability Engineering International, 15, 369-378.

29.Shiau, J.-J. H., Hung, H. N., and Chiang, C. T. (1999b). A note on Bayesian estimation of process capability indices, Statistics and Probability Letters, 45, 215-224.

30.Tseng, S. T. and Wu, T. Y. (1991). Selecting the best manufacturing process. Journal of Quality Technology, 23, 53-62.

31.Vännman K. (1995). A unified approach to capability indices. Statistica Sinica, 5, 805-820.

32.Vännman K. (1997). Distribution and moments in simplified form for a general class of capability indices. Communications in Statistics: Theory and Methods, 26, 159-179.

33.Wu, C. W. and Lin, T. Y. (2009). A Bayesian procedure for assessing process performance based on the third-generation capability index. Journal of Applied Statistics, 36(11), 1205-1223.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top