跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 17:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂承忠
研究生(外文):Lu, Chen-Chung
論文名稱:具高轉換效率與高均流控制之交錯式升壓型轉換器
論文名稱(外文):High Efficiency and Precise Current Balance Skills in the Interleaved Boost Converter
指導教授:陳科宏陳科宏引用關係
指導教授(外文):Chen, Ke-Horng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院電機與控制學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:62
中文關鍵詞:交錯式升壓式轉換器均流控制雙相連續導通模式不連續導通模式
外文關鍵詞:InterleaveBoost converterCurrent balanceTwo PhaseCCMDCM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:454
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:0
近年來,IT產業技術快速發展,輕量化、薄形化和高效能已然成為智慧型手機、平板電腦等可攜式電子產品必備的規格。然而輕量化、薄形化和高效能產生了許多產品設計上的困擾。為了比傳統的電壓或電流控制的轉換器在負載電流變化時能有更短的暫態反應時間,可以增加切換頻率來達到快速反應的目的。但是增加切換頻率會產生更大的功率消耗、低轉換效能以及縮短電池的壽命。此外切換時損失的能量會產生熱能,降低功率電晶體的可靠度使用。大電流輸出往往暗示必須使用更大體積的電感,這可能造成使用規格上的困擾。
本論文提出一個具高轉換效率與高均流控制之交錯式升壓型轉換器,可以加速暫態響應速度並且在全載範圍維持高的轉換效率。除此之外,並且提出主僕式平均電流法,改良了傳統主動均流法(Active Current Sharing Method)要額外的接腳去接收個別相位的電流資訊,更不須使用傳統斜率控制法(Droop Method)使用額外的電阻來做為電流偵測的媒介,造成多餘功率的損耗,不僅簡單更精確的達到均流控制的目的。
本電路是以VIS 所提供之0.25μm 1P3M 製程參數來設計。當模擬輸入電壓為3.3V及輸出電流為300mA時,整體電路的轉換功率效率最高可以達到94.3%,因此非常適用於智慧型手機與平板電腦等可攜式電子產品。

With the rapid evolving IT technologies, today, lightweight, thin shape and high performance has become the essential specifications of smartphones, tablet PCs and other portable electronic products. However lightweight, thin and high-performance produced many products designed troubled. Than a conventional voltage or current controlled converter when the load current changes can have a shorter transient response time, can increase the switching frequency to achieve the purpose of the rapid reaction. However, increasing the switching frequency will produce greater power consumption, low conversion efficiency and reduce the battery life. In addition, the energy loss when the switch will generate heat, reduce the reliability of the power transistors use. The high-current output often implies the need to use a larger volume of the inductor, which may cause the troubles on the use of specifications.
This paper presents a high efficiency and precise current balance skills in the interleaved boost converter can accelerate the boost converter's transient response speed and maintain a high conversion efficiency in the entire load range. In addition, this paper also proposed a method of Master and Average Current . This method Improved the traditional active current (Active Current Sharing Method) additional pins to receive individual phase current information, but also do not need to use additional resistors to detect the current medium using traditional slope control (Droop Method), causing excess loss of power, not only simpler and more precise control purposes.
This circuit is implemented with VIS 0.25μm 1P3M CMOS technology. Simulation result show that the efficiency of the interleaved boost converter with CSC is 94.3% when input voltage is 3.3V and output load current is 300mA. So, this proposed circuit is very suitable for smart phone and Tablet.

第1章 概論 1
1.1研究背景 1
1.1.1 需求導向 1
1.1.2 交錯式切換式轉換器應用 2
1.2研究動機及目的 4
1.3論文架構 6
第2章 應用在交錯式直流-直流升壓型轉換器的相關技術回顧 7
2.1 升壓型轉換器的基本架構原理 7
2.1.1 連續導通模式原理分析 8
2.1.2 不連續導通模式原理分析 10
2.2 交錯式技術的基本架構原理 11
2.2.1基本架構介紹 11
2.2.2 功率開關與驅動電路的考量 14
2.2.3 輸出濾波器的考量 17
2.2.4 輸出漣波抵銷效應 20
2.2.5 輸入RMS漣波電流抵銷效應 20
2.2.6 負載暫態效率考量 22
2.3 電流共享效應(Current Sharing) 22
2.4 電流控制模式(Current Mode Control) 24
2.4.1 平均電流控制模式(Average Current Control) 25
2.4.2 峰值電流控制模式(Peak Current Control) 26
2.4.3 磁滯電流控制模式(Hysteresis Current Control) 27
第3章 改良式的交錯式電流合成控制技術和均流的方式 30
3.1 傳統電流控制模式的缺點 30
3.2 改良式的電流合成控制技術分析與建構 30
3.2.1比較與應用 30
3.2.2 原理分析 31
3.3 改良式的電流合成控制技術運用在交錯式升壓轉換器的分析與建構 32
3.3.1 想法與目的 32
3.3.2 原理分析 33
3.4 改良式的均流方法的分析及建構 34
3.4.1 傳統均流方法的分析、應用和缺點 34
3.4.1.1電壓下降法 34
3.4.1.2主動均流法 35
3.4.2 改良式的均流方法的建製 37
第4章 整體系統電路架構介紹 41
4.1 Current Sensor 41
4.2 Fixed Hysteretic Current Window Circuit 42
4.3 The synthetic Master clock generator(SMCG) 43
4.4 Phase Sequencer 47
4.5 The zero current detector(ZCD) 48
4.6 Current Balance Circuit 49
第5章 電路設計、分析、實現及模擬結果 52
第6章 結論與未來方向 57
6.1 結論 57
6.2 未來研究方向 57
參考文獻 58

[1] R. W. Erickson and D. Maksimoic, Fundamentals of Power Electronics, 2nd ed. New York: Springer-Verlag, 2001.
[2] D. M. Sable, B. H. Cho, and R. B. Ridley, “Elimination of the positive zero in fixed frequency boost and flyback converter,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar., 1990, pp. 205–211.
[3] K.Viswanathan, R.Oruganti, andD. Srinivasan, “Tri-state boost converter with no right half plane zero,” in Proc. IEEE Int. Conf. Power Electron. Drive Syst., Oct. 2001, vol. 2, pp. 687–693.
[4] M.-H. Huang and K.-H. Chen,, “Single-inductor multi-output (SIMO) DC-DC converters with high light-load efficiency and minimized crossregulation for portable devices,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1099–1111, Apr. 2009.
[5] J.-Y. Liao, H.-H. Huang, and K.-H. Chen, “Minimized right-half plane zero effect on fast boost DC-DC converter achieved by adaptive voltage positioning technique,” in Proc. IEEE Int. Conf. Circuits Syst.,May 2010, pp. 2916–2919.
[6] J.-C. Tsai, C.-L. Chen, Y.-H. Lee, H.-Y. Yang, M.-S. Hsu, and K.-H. Chen, “Modified hysteretic current control for improving transient response of boost converter,” IEEE Trans. Circuit Syst. I, vol. 58, no. 10, pp. 1967–1979, Oct. 2011.
[7] W. C. Wu, R. M. Bass, and J. R. Yeargan, “Eliminating the effects of the right-half plane zero in fixed frequency boost converters,” in Proc. IEEE Power Electron. Spec. Conf., May 1998, vol. 1, pp. 362–366.
[8] D. Diaz, O. Garcia, J. A. Oliver, P. Alout, and J. A. Cobos, “Analysis and design considerations for the right half-plane zero cancellation on a boost derived dc/dc converter,” in Proc. IEEE Power Electron. Spec. Conf., Jun. 2008, pp. 3825–3828.
[9] P. Thounthong, P. Sethakul, S. Rael, and B. Davat, “Design an implementation of 2-phase interleaved boost converter for fuel cell power source,” in Proc. IEEE Int. Conf. Power Electron., Mach. Drives, Apr. 2008, pp. 91–95.
[10] H. Xu, X. Wen, and L. Kong, “Dual-phase DC-DC converter in fuel cell electric vehicle,” IEEE Power Electron. Congr., vol. IE-30, no. 6, pp. 19–29, Oct. 2004.
[11] S. Cuk and R. D. Middlebrook, “Advances in switched-mode power conversion part I,” IEEE Trans. Ind. Electron., vol. IE-30, no. 6, pp. 10–19, Feb. 1983.
[12] S. Cuk and R. D. Middlebrook, “Advances in switched-mode power conversion part II,” IEEE Trans. Ind. Electron., vol. IE-30, no. 1, pp. 19–29, Feb. 1983.
[13] R. D. Middlebrook, “Topics in multiple-loop regulators and current-mode programming,” IEEE Trans. Power Electron., vol. PE-2, no. 2, pp. 109–124, Apr. 1987.
[14] R. D. Middlebrook, “Modeling current-programmed buck and boost regulators,” IEEE Trans. Power Electron., vol. 1, no. 1, pp. 36–52, Jan. 1989.
[15] V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch part I: Continuous conduction mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 490–496, May 1990.
[16] F. Dong Tan and R. D. Middlebrook, “Unified modeling and measurement of current-programmed converters,” in Proc. IEEE Power Electron. Spec. Conf., Jun. 1993, pp. 380–387.
[17] J. Sun and R. M. Bass, “A new approach to averaged modeling of PWM converters with current-mode control,” IEEE Trans. Ind. Electron., Control Instrum., vol. 2, no. 6, pp. 599–604, Nov. 1997.
[18] R. B. Ridley, “A new small-signal model for current mode control,” Ph.D. dissertation, Dept. Electr. Eng., VPEC, Virginia Polytechnic Inst. State Univ., Blacksburg, 1999.
[19] Y. Qiu, M. Xu, J. Sun, and F. C. Lee, “High-frequency modeling for the nonlinearities in buck converters,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 2006, p. 7.
[20] B. Bryant and M. K. Kazimierczuk, “Modeling the closed-current loop of PWM boost DC-DC converters operating in CCM with peak current-mode control,” IEEE Trans. Circuit Syst. I, vol. 52, no. 11, pp. 2404–2412, Nov. 2005.
[21] J. Li and F. C. Lee, “New modeling approach for current mode control,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Feb. 2009, pp. 305–311.
[22] J. Rajagopalan, K. Xing, Y. Guo, F. C. Lee, andBManners, “Modeling and dynamic analysis of paralleled dc/dc converters with master-slave current sharing control,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 1996, vol. 2, pp. 678–684.
[23] Y. Panov and M. M. Jovanovic, “Loop gain measurement of paralleled DC-DC converters with average current-sharing control,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Feb., 2008, pp. 1048–1053.
[24] D. M. Sable and R. B. Ridley, “A high frequency, multi-module, spacecraft boost regulator,” in Proc. IEEE Telecommun. Energy Conf., Nov. 1988, pp. 227–235.
[25] K. Siri andC.Q. Lee, “Current distribution control of converters connected in parallel,” IEEE Ind. Appl. Soc. Annu. Meet., vol. 2, no. 3, pp. 1274–1280, Aug. 1990.
[26] B. Choi, “Dynamics and control of switch-mode power conversion in distributed power systems,” Ph.D. dissertation, Dept. Electr. Eng., VPEC, Virginia Polytechnic Inst. State Univ., Blacksburg, 1992.
[27] S. Hiti, D. Borojevic, R. Ambatipudi, R. Zhang, and Y. Jiang, “Average current control of three-phase PWM boost rectifier,” in Proc. IEEE Power Electron. Spec. Conf., Jun. 1995, vol. 1, pp. 131–137.
[28] Z. Ye, D. Boroyevich, J.-Y. Choi, and F. C. Lee, “Control of circulating current in two parallel three-phase boost rectifiers,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 609–615, Sep. 2002.
[29] R. Tymerski, “Sampled-data modelling of switched circuits, revisited,” in Proc. IEEE Power Electron. Spec. Conf., Jun. 1993, p. 395-401.
[30] M. Veerachary, T. Senjyu, K. Uezato, “Modeling and analysis of interleaved dual boost converter”,in Proc. IEEE ISIE, vol. 2, pp. 718-722, Jun. 2001
[31] M. S. Elmore, “Input Current Ripple Cancellation in Synchronized, Parallel Connected Critically Continuous Boost Converters”, in Proc. Applied Power Electronics Conf. (APEC), vol. 1, pp. 152-158, Mar. 1996.
[32] B. A. Miwa, D. M. Otten, and M. F. Schlecht, “High Efficiency Power Factor Correction using Interleaving Techniques”, in Proc. Applied Power Electronics Conf. (APEC), pp. 557-568, Feb. 1992.
[33] J. R. Tsai, T. F. Wu, Y. M. Chen, M. C. Lee, “Interleaving Control Schemes for Critical-Mode Boost PFC”, Power Electronics Spec. Conf. (PESC), pp. 2905-2911, Jun. 2007.
[34] A. Newton, T. C. Green, D. Andrew, “AC/DC Power Factor Correction using Interleaved Boost &; Cuk Converters”, Power Electronics and Variable Speed Drives, pp. 293-298, 2000.
[35] P. Wolfs, P. Thomas, “Boost Rectifier Power Factor Correction Circuits with Improved Harmonic and Load Voltage Regulation Responses”, in Proc. IEEE Power Electronics Spec. Conf. (PESC), pp. 1314-1318, Jun. 2007.
[36] I. Cadirci, A. Tafavi, M. Ermis, “Unity power factor boost converter with phase shifted parallel IGBT operation for medium power application”, IEE Proc. Electric Power Applications, vol. 149, no. 3, pp. 237-244, May 2002.
[37] S. Mariethoz, A.G. Beccuti, M. Morari, “Model Predictive Control of Multiphase Interleaved DC-DC Converter with Sensorless Current Limitation and Power Balance”, Power Electronics Spec. Conf. (PSEC), pp. 1069-1047, Jun. 2008.
[38] C. S. Babu, M. Veerachary, “Predictive Controller for Interleaved Boost Converter”, in Proc. IEEE ISIE, vol. 2, pp. 577-581, Jun. 2005.
[39] P. W. Lee, T. S. Lee, D. K. W. Cheng, X. C. Liu, “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors”, IEEE Trans. on Industrial Electronics, vol.47, No. 4, pp. 787-795, Aug. 2000.
[40] H. B. Shin, J. G. Park, S. K. Chung, H. W. Lee, T. A. Lipo, “Generalised Steady-State Analysis of Multiphase Interleaved Boost Converter with Coupled Inductors”, IEEE Proc. Electric Power Applications, vol. 152, No. 3, pp. 584-594, May 2005.
[41] J. A. A. Qahoug, L. Huang, D. Huard, “Sensorless Current Sharing Analysis and Scheme for Multiphase Converters”, IEEE Trans. on Power Electronics, vol. 23, No. 5, pp. 2237-2247, Sep. 2008.
[42] A. Prodic. D. Maksimovic, and R. W. Erickson "Design and Implementation of a Digital PWM Controller for a High-Frequency Switch DC-DC Power Converters," in Proc. IEEE Conference 2001.
[43] A.Prodic, D.Maksimovic, “Design of a digital PID regulator based on look-up tables for control of high-frequency DC-DC converters,” IEEE COMPEL, 2002, pp.18-22.
[44] B. J. Patella, A. Prodic, A. Zirger, and D. Maksimovic, "High-fre¬quency digital PWM controller IC for DC–DC converters, " IEEE Trans. Power Electron., vol. 18, no. 1, pp. 438–446, Jan. 2003.
[45] A. V. Peterchev, S. R. Sanders, "Quantization resolution and limit cycling in digitally controlled PWM converters, " IEEE Trans. on Power Electronics, Vol.18, No.1, January 2003, pp.301-308.
[46] L. Peng, X. Kong, Y. Kang, and J. Chen, “A novel PWM technique in digital control and its application to an improved DC/DC converter,” in Proc. IEEE Power Electron. Spec. Conf., 2001.
[47] V. Yousefzadeh, S. Member, D. Maksimovic "Sensorless Optimization of Dead Times in DC–DC Converters With Synchronous Rectifiers" IEEE Trans. Power Electron., vol. 32, no. 5, pp. 134-139, Apr. 2003.
[48] B. C. Kuo "Automatic Control System" seventh edition,1997.
[49] Y. Qiu, M. Xu, K. Yao, J. Sun, and F. C. Lee. The multi-frequency small-signal model for buck and multiphase interleaving buck converters. In Proc. IEEE Applied Power Electron. Conf., pages 392–398, 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top