跳到主要內容

臺灣博碩士論文加值系統

(3.215.79.68) 您好!臺灣時間:2022/07/04 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳孟揚
研究生(外文):Meng-Yang Chen
論文名稱:樟芝發酵脫脂黑芝麻粕之抗氧化活性與對α-澱粉酶與α-葡萄糖苷酶抑制活性探討
論文名稱(外文):Antioxidative Activity and Inhibitory Activities of α-Amylase and α-Glucosidase of Extracts from Defatted Black Sesame Meals fermented by Antrodia camphorata
指導教授:張耀南張耀南引用關係
指導教授(外文):Yaw-Nan Chang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:73
中文關鍵詞:樟芝深層發酵脫脂黑芝麻粕木酚素抗氧化
外文關鍵詞:Antrodia camphoratasubmerged fermentationdefatted black sesame mealslignansantioxidant
相關次數:
  • 被引用被引用:2
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以脫脂黑芝麻粕為主要基質進行樟芝深層發酵培養探討,並探討芝麻粕添加量(0、1、2、10、20g/100ml)對其發酵萃取物中木酚素(lignans)成分含量及抗氧化活性與對α-澱粉酶(α-amylase, AA)與α-葡萄糖苷酶(α-glucosidase, AG)抑制活性影響。實驗結果顯示,若芝麻粕添加量小於10g/100ml時,其發酵後水萃取物(WEts)與70%酒精萃取物(EEts)之抗氧化活性皆優於未發酵芝麻粕之萃取物,但20g/100ml芝麻粕添加量對未發酵與發酵萃取物之抗氧化活性並無顯著差異性影響。未發酵芝麻粕萃取物之抗氧化活性會隨著芝麻粕添加量增加而提高,但芝麻粕添加量對發酵後萃取物之抗氧化活性則無顯著影響,由此可知,發酵後萃取物之抗氧化能力幾乎由樟芝發酵所主導。芝麻粕EEts之木酚素含量方面,其中sesamin與sesamolin含量會隨著芝麻粕添加量增加而增加,且發酵後EEts之兩者含量皆高於未發酵EEts,但僅有20g/100ml芝麻粕添加量之發酵後EEts中sesamin含量低於未發酵EEts,可能由於過多芝麻粕所造成少量sesamin被分解。然而,10g/100ml芝麻粕添加量之EEts與WEts中sesaminol triglycoside 於發酵過程轉換生成為sesaminol之轉換率分別為84%與89% 高於其他組別。芝麻粕萃取物對AA與AG活性抑制率會隨著芝麻粕添加量增加而提高,且發酵後萃取物的抑制效果皆優於發酵前者,其中10g/100ml與20g/100ml芝麻粕添加量之發酵後EEts對AA活性抑制率分別超過無芝麻粕添加量(0g/100ml)組高達61%與75%,而且發酵後WEts對AA活性抑制率亦分別超過0g/100ml芝麻粕添加量組高達66%與68%。發酵後WEts對AG活性抑制率分別超過0g/100ml芝麻粕添加量組高達82%與90%,但發酵後EEts樣品無法進行對AG活性抑制率分析,主要由於EEts樣品中酒精含量過高而造成AG酵素失活。

The lignans (sesamin, sesamolin, sesaminol, and sesaminol triglycoside) contents, antioxidative activities, and α-amylase (AA) and α-glucosidase (AG) inhibitory activities of water and 70% ethanol extracts (defined as WEts and EEts, respectively) from defatted black sesame meals (DBSMs) fermented by Antrodia camphorata in submerged cultivation were investigated in this study. The addition of DBSMs (0、1、2、10、20g/100ml) on lignan contents and the activities of all the extracts was also studied. The results indicated the antioxidative activities of the extracts from the fermented DBSMs (defined as fmedDBSMs) were generally better than those from the unfermented ones (defined as unfmDBSMs) when the addition concentration of DBSMs was not more than 10g/100ml, while there was no significant difference between those of fmedDBSMs and unfmDBSMs as 20g/100ml of DBSMs was added. After fermentation, A. camphorata almost contributed to the antioxidative activities of the extracts of DBSMs. The sesamin and sesamolin contents of EEts increased as the increase of DBSMs addition. These contents of EEts from fmedDBSMs were higher than those from unfmDBSMs, but only the sesamin content of EEts from fmedDBSMs for 20g/100ml of DBSMs addition was lower than that of those from unfmDBSMs. This may be due to a little of amount of sesamin degradation caused by a lot of DBSMs. In addition, the bioconversion percents of sesaminol triglycoside of EEts and WEts to sesaminol for 10g/100ml DBSMs addition were 84% and 89%, respectively. These were higher than those for the other addition concentrations of DBSMs. The inhibitory activities of AA and AG (defined as AAi and AGi, respectively) increased as the increase of DBSMs addition. The AAi and AGi of the extracts from fmedDBSMs were higher than those from unfmDBSMs. Particularly for 10g/100ml and 20g/100ml of DBSMs addition, the AAi percents of not only EEts from fmedDBSMs were higher up 61% and 75%, respectively, than those for 0g/100ml of DBSMs addition, but also those of Wets from fmedDBSMs were higher up 66% and 68%, respectively, than those without DBSMs addition. Moreover, the AGi percents of WEts from fmedDBSMs were higher up 82% and 90%, respectively, than those for 0g/100ml of DBSMs addition. However, the AGi analysis of EEts from fmedDBSMs and unfmDBSMs could not be carried out due to AG degradation caused by high alcohol content of EEts.

目錄
中文摘要 ....................................i
英文摘要 ....................................ii
誌謝 ....................................iii
目錄 ....................................iv
表目錄 ....................................vi
圖目錄 ....................................vii
符號說明 ....................................viii
第一章 前言.................................1
1.1 諸論.................................1
1.2 研究目的..............................3
第二章 文獻回顧..............................4
2.1 芝麻簡介..............................4
2.2 芝麻的功效............................5
2.3 芝麻的成分............................6
2.4 芝麻粕...............................7
2.5 芝麻木酚素............................9
2.6 牛樟芝的型態..........................12
2.7 牛樟芝的生物活性成分....................12
2.8 牛樟芝的苯環成分.......................13
2.9 糖尿病...............................15
2.10 自由基與抗氧化作用.....................16
2.11 專利檢索.............................17
第三章 材料與方法...........................18
3.1 實驗材料.............................18
3.1.1 實驗藥品.............................18
3.1.2 實驗儀器.............................19
3.2 實驗方法.............................20
3.2.1 固態培養.............................21
3.2.2 液態培養.............................21
3.2.3 萃取................................21
3.2.4 清除DPPH自由基能力之測定...............22
3.2.5 總抗氧化能力TEAC......................24
3.2.6 總多酚類化合物含量測定TP................27
3.2.7 芝麻木酚素含量測定SL...................28
3.2.8 α-amylase抑制活性分析AAI(α-amylase inhibit)........................................29
3.2.9 α-glucosidase抑制活性分析AGI(α-glucosidase inhibit)........................................32
3.3 統計分析.............................35
第四章 結果與討論...........................36
4.1 深層發酵.............................36
4.2 最佳化萃取條件........................38
4.3 清除DPPH自由基能力結果.................40
4.4 總抗氧化能力(TEAC)結果.................42
4.5 總多酚類(TP)化合物含量測定結果...........44
4.6 芝麻木酚素(SL)含量測定結果..............46
4.7 α-amylase(AA)抑制活性分析結果..........50
4.8 α-glucosidase(AG)抑制活性分析結果......52
第五章 結論.................................54
參考文獻 ....................................56
附錄一 樟芝固態培養生長圖(a)0天(b)14天.........61
附錄二 總酚類化合物標準曲線圖..................62
附錄三 木酚素標準曲線........................63
附錄四 木酚素HPLC層析圖(a)標準品(b)樣品........65
英文論文大綱 ....................................66
簡歷 ....................................73


參考文獻
[1]Wu, D. P., Chiang, C. H. 1995. Constituents of Antrodia cinnamomea. J. Chin. Chem. Soc. 42: 797–800.
[2]Tung-Ying Wu , Ying-Chi Du , Yu-Ming Hsu , Chi-Yu Lu, Abdel Nasser B. Singab , Mohamed El-Shazly , Tsong-Long Hwang , Wan-Yu Lin , Kuei-Hung Lai , Mei-Chin Lu , Yi-Hong Tsai , Ming-Feng Hou , Tsai-Hui Duh , Fang-Rong Chang .2012. New approach to the characterization and quantification of Antrodia cinnamomea benzenoid components utilizing HPLC-PDA, qNMR and HPLC-tandem MS: Comparing the wild fruiting bodies and its artificial cultivated commercial products. Food Research International 51 (2013) 23–31.TW
[3]Namiki, M. 1995. The chemistry and physiological functions of sesame. Food Rev. Int. 11: 281-329.
[4]Namiki, M. 2011. Sesame for functional foods. In: Shi, J., Ho, C. T., Shahidi, F. (ed.) Functional Foods of the East. CRC Press (Taylor & Francis Group, LLC), New York, USA. Chapter 10: 215-262.
[5]張壽昌。2003。藥用食物之醫食情報-芝麻。台灣保健食品學會。學會通訊5(5)。
[6]Liu, Z., Saarinen, N. M., Thompson, L. U. 2006. Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats. J. Nutr. 136(4): 906-912.
[7]Pianjing, P., Thiantanawat, A., Rangkadilok, N., Watcharasit, P., Mahidol, C., Satayavivad, J. 2011. Estrogenic activities of sesame lignans and their metabolites on human breast cancer cells. J. Agric. Food Chem. 59: 212–221.
[8]Park, S. H., Ryu, S. N., Bu, Y., Kim, H., Simon, J. E., Kim, K. S. 2010. Antioxidant components as potential neuroprotective agents in sesame (Sesamum indicum L.). Food Rev. Int. 26: 103-121.
[9]Fukuda, Y., Namiki, M. 1988. Recent studies on sesame seed and oil. Nippon Shokuhin Kogyo Gakkaishi 35: 552-562.
[10]Yoshida, H., Shigezaki, J., Takagi, S., Kajimoto, G. 1995. Variations in the composition of various acyl lipids, tocopherols and lignans in sesame seed oils roasted in a microwave oven. J. Sci. Food Agric. 68: 407-415.
[11]Yoshida, H., Takagi, S. 1998. Antioxidative effects of sesamol and tocopherols at various concentrations in oils during microwave heating. J. Sci. Food Agric. 79: 220-226.
[12]Fukuda, Y. 1990. Food chemical studies on the antioxidants in sesame seed. Nippon Shokuhin Kogyo Gakkaishi 37: 484-492.
[13]Kang, M. H., Kawai, Y., Naito, M., Osawa, T. 1999. Dietary defatted sesame flour decreases susceptibility to oxidative stress in hypercholesterolemic rabbits. J. Nutr. 29:1885-1890.
[14]Kamal-Eldin, A., Pettersson, D., Appelqvist, L. A. 1995. Sesamin (a compound from sesame oil) increases tocopherol levels in rats fed ad libitum. Lipids 30: 499-505.
[15]Saiko, I., Tomoko, T., Kanae, Y. 2002. Dietary sesame seed and its lignans inhibit 2,7,8-trimethyl-2 (2-carboxyethyl)-6-hydroxy chroman excretion into urine of rats fed γ-tocophenol. J. Nutr. 132: 961-966.
[16]Tokusoglu, O., Kocak, S., Aycan, S. 2009. The contents of sesamol and related lignans in sesame, tahina and halva as determined by a newly developed polarographic and stripping voltametric analysis. Grasas Y Aceites 60 (2): 119-124.
[17]Shyu, Y. S., Hwang, S. L. 2002. Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Res. Int. 35: 357-365.
[18]Suja, K. P., Jayalekshmy, A., Arumughan, C. 2005. In vitro studies on antioxidant activity of lignans isolated from sesame cake extract. J. Sci. Food Agric. 85:1779–1783.
[19]Shyu, Y. S., Hwang, J. Y., Hwang, S. L. 2009. Effect of roasting condition on the antioxidative activity of the methanolic extract from defatted sesame meal. J. Food & Drug Anal. 17(4): 300-306.
[20]Wichitsranoi, J., Weerapreeyakul, N., Boonsiri, P., Settasatian, C., Settasatian, N., Komanasin, N., Sirijaichingkul, S., Teerajetgul, Y., Rangkadilok, N., Leelayuwat, N. 2011. Antihypertensive and antioxidant effects of dietary black sesame meal in pre-hypertensive humans. Nutr. J. 10: 82-88.
[21]Ohtsuki, T., Akiyama, J., Shimoyama, T., Yazaki, S.I., Ui, S., Hirose, Y., Mimura, A. 2003. Increased production of antioxidative sesaminol glucosides from sesame oil cake through fermentation by Bacillus circulans strain YUS-2. Biosci. Biotechnol. Biochem. 67: 2304–2306.
[22]Miyake, Y., Fukumoto, S., Okada, M., Sakaida, K., Nakamura, Y., Osawa, T. 2005. Antioxidative catechol lignans converted from sesamin and sesaminol triglucoside by culturing with Aspergillus. J. Agric. Food Chem. 53: 22-27.
[23]Jan, K. C., Fan, S. Y., Chu, Y. H. 2010. Anti-inflammatory and antioxidative activities of defatted sesame meals fermented by lactic acid bacteria. Taiwanese J. Agric. Chem. Food Sci. 48(5): 216-223. (in Chinese).
[24]高曉薇,1992,臺灣靈芝屬新種樟芝之三萜類成分研究。臺北醫學院天然物醫物研究所碩士論文。
[25]Chang, T. T., and Chou, W. N. ,1995,. ‘‘Anrodia cinnamomea sp. Nov. on Cinnamomum Kanehirai in Taiwan.’’ Mycol. Res., 99(6), 756-758.
[26]Geethangili, M., Tzeng, Y. M. 2011. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evidence-Based Complementary and Alternative Medicine (Hindawi Publishing Corporation), Volume 2011, Article ID 212641, 17 pages. (doi:10.1093/ecam/nep108)
[27]Song TY, Yen GC. 2002. Antioxidant properties of Antrodia camphorata in submerged culture. Journal of Agricultural and Food Chemistry 50: 3322-3327.
[28]Ye, X. P., Song, C. Q., Yuan, P., Mao, R. G. 2010. α-Glucosidase and α-amylase inhibitory activity of common constituents from traditional Chinese medicine used for diabetes mellitus. Chin. J. Nat. Med. 8(5): 0349-0352.
[29]Li, Y. Q., Zhou, F. C., Gao, F., Bian, J. S., Shan, F. 2009. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. J. Agric. Food Chem. 57: 11463–11468.
[30]Li, Y., Gao, F., Gao, F., Shan, F., Bian, J., Zhou, F. 2009. Study on the interaction between 3 flavonoid compounds and α-amylase by fluorescence spectroscopy and enzymatic kinetics. J. Food Sci. 74(3): C199-C203.
[31]Halliwell B., 1994, Free radicals and antioxidants: A personal view, Nutrition Reviews, pp. 253-265.
[32]陳惠英,1996,茶葉萃取物抗致突變性及抗氧化特性之研究,國立中興大學食品科學研究所博士論文,臺灣。
[33]劉伯康,1997,數種傳統食用植物抗氧化性之研究, 國立中興大學食品科學研究所碩士論文,臺灣。
[34]Larson RA.,1988, The antioxidants of higher plants, Phytochemistry, pp. 969-978.
[35]陳宏文。2001。以回應曲面法探討樟芝高密度發酵並分析相關的成份與機能性。國立交通大學生物技術研究所碩士論文。
[36]Kuda, T., Tsunekawa, M., Hishi, T. and Araki, Y., 2005, Antioxidant properties of dried ‘kayamo-nori'', a brown alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae), Food Chemistry, pp. 617-622.
[37]Yunho Lee, Jeyong Yoon, Urs von Gunten,2005,spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS,Water Research,Volume 39, Issue 10, May 2005, Pages 1946–1953
[38]Tesoriere, L., Butera, D., Gentile, C., Livrea, M. A.2007. Bioactive components of caper (Capparis spinosa L.) from Sicily and antioxidant effects in a red meat simulated gastric digestion. J. Agric. Food Chem. 55(21): 8465-8471.
[39]Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299: 152-178.
[40]Jan,K. C. Hwang L. S. and Ho C. T.: Biotransformation of sesaminol triglucoside to mammalian lignans by intestinal microbiota. J. Agric. Food Chem., 57(14): 6101-6 (2009).
[41]Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299: 152-178.
[42]Sariburun, E., Sahin, S., Demir, C., Turkben, C., Uylaşer, V. 2010. Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J. Food Sci. 75(4): C328-C335.
[43]Tesoriere, L., Butera, D., Gentile, C., Livrea, M. A.2007. Bioactive components of caper (Capparis spinosa L.) from Sicily and antioxidant effects in a red meat simulated gastric digestion. J. Agric. Food Chem. 55(21): 8465-8471.
[44]Yung-Shin Shyu, Lucy Sun Hwang. Antioxidative activity of the crude extract of lignan glycosides fromunroasted Burma black sesame meal. Food Research International 35 (2002) 357–365
[45]Chi-Luan Wen, Chia-Chuan Chang, Shyh-Shyun Huang, Chao-Lin Kuo,Shih-Lan Hsu, Jeng-Shyan Deng, Guan-Jhong Huang. Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo. Journal of Ethnopharmacology 137 (2011) 575– 584.
[46]Christophe Hanoa, Sullivan Renouardb, Roland Molinieb, Cyrielle Corbina, Esmatullah ,Barakzoya, Joel Doussotac, Frederic Lamblina, Eric Lainea. Flaxseed (Linum usitatissimum L.) extract as well as (+)-secoisolariciresinol diglucoside and its mammalian derivatives are potent inhibitors of α-amylase activity. Bioorganic & Medicinal Chemistry Letters(2013).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊