跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/16 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林郁玫
研究生(外文):Lin, Yu-Mei
論文名稱:原兒茶酸補充對停經合併高血壓大鼠心血管功能之影響
論文名稱(外文):Effects of Protocatechuic Acid Supplementation on Cardiovascular Function in Ovariectomized Hypertensive Rats
指導教授:楊艾倫楊艾倫引用關係
指導教授(外文):Yang, Ai-Lun
口試委員:王儷穎簡位先
口試日期:2013-07-11
學位類別:碩士
校院名稱:臺北巿立體育學院
系所名稱:運動科學研究所
學門:民生學門
學類:運動科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:84
中文關鍵詞:停經高血壓原兒茶酸心血管功能抗氧化能力
外文關鍵詞:postmenopausehypertensionprotocatechuic acidcardiovascular functionantioxidant capacity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:1
背景與目的:根據美國心臟協會指出,停經後的女性因卵巢功能衰退,雌激素分泌減少,導致高血壓的罹病率較同年齡之男性高。造成女性停經後高血壓的原因可能與血管內皮功能異常、氧化壓力增加及動脈硬化等因素相關。有研究發現體內氧化壓力的改變會促使高血壓的發生,此外,經研究證實多酚類可藉由降低氧化壓力,改善心血管功能和預防心血管疾病的發生。原兒茶酸 (protocatechuic acid, PCA) 為一結構簡單的多酚類化合物,且為天然抗氧化劑,能夠清除自由基,但尚無研究探討原兒茶酸的補充對於停經合併高血壓之心血管功能的影響,因此本研究之目的主要探討原兒茶酸的補充對於停經合併高血壓之心血管功能的影響和其生理機制。方法:本研究之動物模式為自發性高血壓大鼠 (spontaneously hypertensive rat, SHR),於十五週大時進行卵巢切除,並於十七週大時介入,分成卵巢切除組 (SHR-O)、卵巢切除合併原兒茶酸補充組 (SHR-OP) 及假手術組 (SHR-sham),且以週齡相符之正常血壓鼠 (Wistar-Kyoto rat, WKY) 作為對照組。原兒茶酸補充組是給予每天每公斤體重200毫克之原兒茶酸添加至飲用水中,餵食八週。於原兒茶酸介入前後分別測量四組血壓、心跳、血管功能和血清抗氧化酵素等參數,最後進行四組分析比較。結果:本研究發現於八週原兒茶酸介入後,與假手術及卵巢切除組相比之結果顯示:一、收縮壓顯著下降;二、由乙醯膽鹼、胰島素及類胰島素生長因子-1所調節之血管舒張功能增加;三、胰島素阻抗下降;四、一氧化氮生成量增加;五、抗氧化能力增加;六、血管一氧化氮合成酶、胰島素受器及類胰島素生長因子 -1受器蛋白質表現量增加。結論:本研究發現經長期原兒茶酸補充能顯著改善停經合併高血壓族群之心血管功能和抗氧化能力。
Background and purpose: The American Heart Association has reported that the prevalence of hypertension-related cardiovascular complications is higher in postmenopausal women than in age-matched men. The possible causes of hypertension in postmenopausal women could be due to endothelial dysfunction, and increased oxidative stress, and arterial stiffness. There is growing evidence that polyphenols exert antioxidant effects to ameliorate the cardiovascular function. A simple phenolic acid, protocatechuic acid (PCA; 3,4-dihydroxybenzoic acid), shows a potent antioxidant capacity. However, whether PCA has positive effects on cardiovascular function in postmenopausal hypertension remains unknown. In this study, we explored the effects of PCA supplementation on cardiovascular function in postmenopausal hypertension. Methods: Female spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were used in this study. At fifteen weeks old, the SHR were sham-operated or bilaterally ovariectomized. After one week, these rats were divided into SHR with sham-operation (SHR-sham), SHR with ovariectomy (SHR-O) and SHR with ovariectomy and PCA supplementation (SHR-OP) groups. The SHR-OP group was supplemented with PCA solution (200 mg/kg/day) in their daily water consumption for 8 weeks. After the PCA supplementation, we measured and compared the blood pressure, vasorelaxant responses, and antioxidant capacity among four groups. Results: After 8-week PCA supplementation, we found that compared with the SHR-sham and SHR-O groups, (1) systolic blood pressure was significantly decreased (p<0.05); (2) acetylcholine-, insulin-, and IGF-1-induced vasorelaxant responses were significantly improved (p<0.05); (3) insulin resistance was significantly reduced (p<0.05); (4) nitric oxide production was significantly increased (p<0.05); (5) antioxidant capacity was enhanced (p<0.05); (6) the protein expression of NOS, IR, and IGF-1R was improved (p<0.05). Conclusion: Long-term PCA supplementation can significantly improve cardiovascular function and antioxidant capacity in the population of postmenopausal hypertension.
原創聲明書
學位考試審定書
摘要
Abstract
謝誌
目錄
表目錄
圖目錄
第壹章 緒論
第一節 研究背景
第二節 研究目的
第三節 研究問題
第四節 研究假設
第貳章 文獻探討
第一節 停經與高血壓
第二節 氧化壓力與心血管疾病
第三節 多酚與抗氧化之關係
第四節 原兒茶酸與心血管疾病
第五節 胰島素、類胰島素生長因子-1與心血管疾病
第參章 材料與方法
第一節 實驗動物
第二節 卵巢切除手術
第三節 休息時心搏率與血壓之測量
第四節 胰島素阻抗試驗
第五節 血管舒張反應之測量
第六節 一氧化氮之含量分析
第七節 脂質過氧化物及抗氧化酵素之活性分析
第八節 西方墨點法
第九節 統計分析
第肆章 結果
第一節 基本生理參數
第二節 胰島素阻抗試驗
第三節 血管舒張反應之測量
第四節 一氧化氮之含量分析
第五節 脂質過氧化物及抗氧化酵素之活性分析
第六節 血管功能相關蛋白質表現量
第伍章 討論
參考文獻

Adegunloye, B., Omoniyi, J., Owolabi, O., Ajagbonna, O., Sofola, O., & Coker, H. (1996). Mechanisms of the blood pressure lowering effect of the calyx extract of hibiscus sabdariffa in rats. African Journal of Medicine and Medical Sciences, 25(3), 235-238.
Ajay, M., Chai, H., Mustafa, A., Gilani, A., & Mustafa, M. (2006). Mechanisms of the anti-hypertensive effect of hibiscus sabdariffa l. Calyces. Journal of Ethnopharmacology, 109(3), 388-393.
Al-Awwadi, N. A., Bornet, A., Azay, J., Araiz, C., Delbosc, S., Cristol, J.-P., et al. (2004). Red wine polyphenols alone or in association with ethanol prevent hypertension, cardiac hypertrophy, and production of reactive oxygen species in the insulin-resistant fructose-fed rat. Journal of Agricultural and Food Chemistry, 52(18), 5593-5597.
Alderton, W., Cooper, C., & Knowles, R. (2001). Nitric oxide synthases: Structure, function and inhibition. Biochemical Journal, 357, 593-615.
Barros, L., Dueñas, M., Ferreira, I. C., Baptista, P., & Santos-Buelga, C. (2009). Phenolic acids determination by hplc–dad–esi/ms in sixteen different portuguese wild mushrooms species. Food and Chemical Toxicology, 47(6), 1076-1079.
Bayr, H. (2005). Reactive oxygen species. Critical Care Medicine, 33(12), S498-S501.
Behr, G. A., Schnorr, C. E., & Moreira, J. C. F. (2012). Increased blood oxidative stress in experimental menopause rat model: The effects of vitamin a low‐dose supplementation upon antioxidant status in bilateral ovariectomized rats. Fundamental and Clinical Pharmacology, 26(2), 235-249.
Bengtsson, S. H. M., Gulluyan, L. M., Dusting, G. J., & Drummond, G. R. (2003). Novel isoforms of nadph oxidase in vascular physiology and pathophysiology. Clinical and Experimental Pharmacology and Physiology, 30(11), 849-854.
Berry, C., Hamilton, C. A., Brosnan, M. J., Magill, F. G., Berg, G. A., McMurray, J. J. V., et al. (2000). Investigation into the sources of superoxide in human blood vessels: Angiotensin ii increases superoxide production in human internal mammary arteries. Circulation, 101(18), 2206-2212.
Boskou, G., Salta, F. N., Chrysostomou, S., Mylona, A., Chiou, A., & Andrikopoulos, N. K. (2006). Antioxidant capacity and phenolic profile of table olives from the greek market. Food Chemistry, 94(4), 558-564.
Cabrera, C., Artacho, R., & Giménez, R. (2006). Beneficial effects of green tea—a review. Journal of the American College of Nutrition, 25(2), 79-99.
Cai, H., & Harrison, D. G. (2000). Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circulation Research, 87(10), 840-844.
Cao, Y., Zhang, L., Ma, C., Chang, B., Chen, Y. C., Tang, Y., et al. (2009). Metabolism of protocatechuic acid influences fatty acid oxidation in rat heart: New anti-angina mechanism implication. Biochemical Pharmacology, 77(6), 1096-1104.
Chen, Z., Chan, P., Ho, K., Fung, K., & Wang, J. (1996). Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chemistry and Physics of Lipids, 79(2), 157-163.
Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo Jr, J. L., et al. (2003). Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension, 42(6), 1206-1252.
Cleland, S. J., Petrie, J. R., Small, M., Elliott, H. L., & Connell, J. M. (2000). Insulin action is associated with endothelial function in hypertension and type 2 diabetes. Hypertension, 35(1), 507-511.
Conti, E., Carrozza, C., Capoluongo, E., Volpe, M., Crea, F., Zuppi, C., et al. (2004). Insulin-like growth factor-1 as a vascular protective factor. Circulation, 110(15), 2260-2265.
Coskun, O., Kanter, M., Korkmaz, A., & Oter, S. (2005). Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacological Research: The Official Journal of The Italian Pharmacological Society, 51(2), 117-125.
Cui, J., Juhasz, B., Tosaki, A., Maulik, N., & Das, D. K. (2002). Cardioprotection with grapes. Journal of Cardiovascular Pharmacology, 40(5), 762-769.
Dantas, A. P. V., Scivoletto, R., Fortes, Z. B., Nigro, D., & Carvalho, M. H. C. (1999). Influence of female sex hormones on endothelium-derived vasoconstrictor prostanoid generation in microvessels of spontaneously hypertensive rats. Hypertension, 34(4), 914-919.
Davignon, J., & Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation, 109(23), III-27-III-32.
Drexler, H., & Hornig, B. (1999). Endothelial dysfunction in human disease. Journal of Molecular and Cellular Cardiology, 31(1), 51-60.
Edirisinghe, I., Burton-Freeman, B., & Kappagoda, T. (2008). Mechanism of the endothelium-dependent relaxation evoked by a grape seed extract. Clinical Science, 114, 331-337.
Epstein, F. H., Mendelsohn, M. E., & Karas, R. H. (1999). The protective effects of estrogen on the cardiovascular system. New England Journal of Medicine, 340(23), 1801-1811.
Ferrannini, E., Buzzigoli, G., Bonadonna, R., Giorico, M. A., Oleggini, M., Graziadei, L., et al. (1987). Insulin resistance in essential hypertension. New England Journal of Medicine, 317(6), 350-357.
Fisher, N. D., Hughes, M., Gerhard-Herman, M., & Hollenberg, N. K. (2003). Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. Journal of Hypertension, 21(12), 2281-2286.
Flier, J. S., Underhill, L. H., & Le Roith, D. (1997). Insulin-like growth factors. New England Journal of Medicine, 336(9), 633-640.
Fukumoto, L., & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of Agricultural and Food Chemistry, 48(8), 3597-3604.
Göke, B., & Fehmann, H. C. (1996). Insulin and insulin-like growth factor-i: Their role as risk factors in the development of diabetic cardiovascular disease. Diabetes Research and Clinical Practice, 30, S93-S106.
Gimbrone Jr, M. A. (1995). Vascular endothelium: An integrator of pathophysiologic stimuli in atherosclerosis. The American Journal of Cardiology, 75(6), 67B-70B.
Giovannini, C., Scazzocchio, B., Matarrese, P., Varì, R., D'Archivio, M., Di Benedetto, R., et al. (2008). Apoptosis induced by oxidized lipids is associated with up-regulation of p66shc in intestinal caco-2 cells: Protective effects of phenolic compounds. The Journal of Nutritional Biochemistry, 19(2), 118-128.
Halliwell, B. (2005). Free radicals and other reactive species in disease. Encyclopedia of Life Scienses, 1-7.
Halliwell, B., & Gutteridge, J. M. C. (1999). Free Radicals in Biology and Medicine (Vol. 3).
Han, K. K., Soares Jr, J. M., Haidar, M. A., de Lima, G. R., & Baracat, E. C. (2002). Benefits of soy isoflavone therapeutic regimen on menopausal symptoms. Obstetrics and Gynecology, 99(3), 389-394.
Higdon, J. V., & Frei, B. (2003). Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science and Nutrition, 43(1), 89-143.
Ihm, S.-H., Jang, S.-W., Kim, O.-R., Chang, K., Oak, M.-H., Lee, J.-O., et al. (2012). Decaffeinated green tea extract improves hypertension and insulin resistance in a rat model of metabolic syndrome. Atherosclerosis, 224(2), 377-383.
Karadeniz, F., Durst, R. W., & Wrolstad, R. E. (2000). Polyphenolic composition of raisins. Journal of Agricultural and Food Chemistry, 48(11), 5343-5350.
Kaufert, P. A., & Gilbert, P. (1986). Women, menopause, and medicalization. Culture, Medicine and Psychiatry, 10(1), 7-21.
López-Sepúlveda, R., Jiménez, R., Romero, M., Zarzuelo, M. J., Sánchez, M., Gómez-Guzmán, M., et al. (2008). Wine polyphenols improve endothelial function in large vessels of female spontaneously hypertensive rats. Hypertension, 51(4), 1088-1095.
Lacy, F., Kailasam, M. T., O’Connor, D. T., Schmid-Schönbein, G. W., & Parmer, R. J. (2000). Plasma hydrogen peroxide production in human essential hypertension: Role of heredity, gender, and ethnicity. Hypertension, 36(5), 878-884.
Landmesser, U., & Harrison, D. G. (2001). Oxidative stress and vascular damage in hypertension. Coronary Artery Disease, 12(6), 455-461.
Leikert, J. F., Räthel, T. R., Wohlfart, P., Cheynier, V., Vollmar, A. M., & Dirsch, V. M. (2002). Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation, 106(13), 1614-1617.
Lembo, G., Iaccarino, G., Vecchione, C., Rendina, V., & Trimarco, B. (1995). Insulin modulation of vascular reactivity is already impaired in prehypertensive spontaneously hypertensive rats. Hypertension, 26(2), 290-293.
Lin, C. Y., Huang, C. S., Huang, C. Y., & Yin, M. C. (2009). Anticoagulatory, antiinflammatory, and antioxidative effects of protocatechuic acid in diabetic mice. Journal of Agricultural and Food Chemistry, 57(15), 6661-6667.
Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., et al. (2010). Heart disease and stroke statistics—2010 update. Circulation, 121(7), e46-e215.
Manrique, C., Lastra, G., Gardner, M., & Sowers, J. R. (2009). The renin angiotensin aldosterone system in hypertension: Roles of insulin resistance and oxidative stress. Medical Clinics of North America, 93(3), 569-582.
Masella, R., Varì, R., D’Archivio, M., Di Benedetto, R., Matarrese, P., Malorni, W., et al. (2004). Extra virgin olive oil biophenols inhibit cell-mediated oxidation of ldl by increasing the mrna transcription of glutathione-related enzymes. The Journal of Nutrition, 134(4), 785-791.
McKay, D. L., & Blumberg, J. B. (2002). The role of tea in human health: An update. Journal of the American College of Nutrition, 21(1), 1-13.
McKay, D. L., Chen, C. O., Saltzman, E., & Blumberg, J. B. (2010). Hibiscus sabdariffa l. Tea (tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. The Journal of Nutrition, 140(2), 298-303.
Minuz, P., Patrignani, P., Gaino, S., Degan, M., Menapace, L., Tommasoli, R., et al. (2002). Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease. Circulation, 106(22), 2800-2805.
Moncada, S., & Higgs, E. (2006). The discovery of nitric oxide and its role in vascular biology. British Journal of Pharmacology, 147(S1), S193-S201.
Murphy, E., & Steenbergen, C. (2007). Gender-based differences in mechanisms of protection in myocardial ischemia–reperfusion injury. Cardiovascular Research, 75(3), 478-486.
Nakamura, Y., Torikai, K., & Ohigashi, H. (2001). Toxic dose of a simple phenolic antioxidant, protocatechuic acid, attenuates the glutathione level in icr mouse liver and kidney. Journal of Agricultural and Food Chemistry, 49(11), 5674-5678.
Nakamura, Y., Torikai, K., Ohto, Y., Murakami, A., Tanaka, T., & Ohigashi, H. (2000). A simple phenolic antioxidant protocatechuic acid enhances tumor promotion and oxidative stress in female icr mouse skin: Dose-and timing-dependent enhancement and involvement of bioactivation by tyrosinase. Carcinogenesis, 21(10), 1899-1907.
Negishi, H., Xu, J.-W., Ikeda, K., Njelekela, M., Nara, Y., & Yamori, Y. (2004). Black and green tea polyphenols attenuate blood pressure increases in stroke-prone spontaneously hypertensive rats. The Journal of Nutrition, 134(1), 38-42.
Neto, C. C. (2007). Cranberry and blueberry: Evidence for protective effects against cancer and vascular diseases. Molecular Nutrition and Food Research, 51(6), 652-664.
Nilsson, S., Mäkelä, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., et al. (2001). Mechanisms of estrogen action. Physiological Reviews, 81(4), 1535-1565.
Oh, H. Y., Kim, S. S., Chung, H. Y., & Yoon, S. (2005). Isoflavone supplements exert hormonal and antioxidant effects in postmenopausal korean women with diabetic retinopathy. Journal of Medicinal Food, 8(1), 1-7.
Oparil, S., Zaman, M. A., & Calhoun, D. A. (2003). Pathogenesis of hypertension. Annals of Internal Medicine, 139(9), 761-776.
Paravicini, T. M., & Touyz, R. M. (2006). Redox signaling in hypertension. Cardiovascular Research, 71(2), 247-258.
Pasquali, R., Casimirri, F., Labate, A., Tortelli, O., Pascal, G., Anconetani, B., et al. (1994). Body weight, fat distribution and the menopausal status in women. The vmh collaborative group. International Journal of Obesity and Related Metabolic Disorders: Journal of The International Association for The Study of Obesity, 18(9), 614-621.
Peng, N., Prasain, J. K., Dai, Y., Moore, R., Arabshahi, A., Barnes, S., et al. (2009). Chronic dietary kudzu isoflavones improve components of metabolic syndrome in stroke-prone spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry, 57(16), 7268-7273.
Potenza, M. A., Marasciulo, F. L., Tarquinio, M., Tiravanti, E., Colantuono, G., Federici, A., et al. (2007). Egcg, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial i/r injury in shr. American Journal of Physiology-Endocrinology and Metabolism, 292(5), E1378-E1387.
Qin, B., Polansky, M. M., Harry, D., & Anderson, R. A. (2010). Green tea polyphenols improve cardiac muscle mrna and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin‐resistant rats. Molecular Nutrition and Food Research, 54(S1), S14-S23.
Rasmussen, M., Hvidberg, A., Juul, A., Main, K., Gotfredsen, A., Skakkebaek, N., et al. (1995). Massive weight loss restores 24-hour growth hormone release profiles and serum insulin-like growth factor-i levels in obese subjects. Journal of Clinical Endocrinology and Metabolism, 80(4), 1407-1415.
Reagan-Shaw, S., Nihal, M., & Ahmad, N. (2008). Dose translation from animal to human studies revisited. The FASEB Journal, 22(3), 659-661.
Reaven, G. M., & Chang, H. (1991). Relationship between blood pressure, plasma insulin ana triglyceride concentration, and insulin action in spontaneous hypertensive and wistar-kyoto rats. American Journal of Hypertension, 4(1 Pt 1), 34-38.
Rietveld, A., & Wiseman, S. (2003). Antioxidant effects of tea: Evidence from human clinical trials. The Journal of Nutrition, 133(10), 3285S-3292S.
Rizzoni, D., Porteri, E., Castellano, M., Bettoni, G., Muiesan, M. L., Tiberio, G., et al. (1998). Endothelial dysfunction in hypertension is independent from the etiology and from vascular structure. Hypertension, 31(1), 335-341.
Rosamond, W., Flegal, K., Friday, G., Furie, K., Go, A., Greenlund, K., et al. (2007). Heart disease and stroke statistics--2007 update: A report from the american heart association statistics committee and stroke statistics subcommittee. Circulation, 115(5), e69-171.
Rossetto, M., Lante, A., Vanzani, P., Spettoli, P., Scarpa, M., & Rigo, A. (2005). Red chicories as potent scavengers of highly reactive radicals: A study on their phenolic composition and peroxyl radical trapping capacity and efficiency. Journal of Agricultural and Food Chemistry, 53(21), 8169-8175.
Sagar, S., Kallo, I., Kaul, N., Ganguly, N., & Sharma, B. (1992). Oxygen free radicals in essential hypertension. Molecular and Cellular Biochemistry, 111(1), 103-108.
Sandhu, M. S., Heald, A. H., Gibson, J. M., Cruickshank, J. K., Dunger, D. B., & Wareham, N. J. (2002). Circulating concentrations of insulin-like growth factor-i and development of glucose intolerance: A prospective observational study. The Lancet, 359(9319), 1740-1745.
Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: Antioxidants and beyond. The American Journal of Clinical Nutrition, 81(1), 215S-217S.
Scalbert, A., Manach, C., Morand, C., Remesy, C., & Jimenez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287-306.
Shen, D.-C., Shieh, S.-M., Fuh, M.-T., Wu, D.-A., & Reaven, G. (1988). Resistance to insulin-stimulated-glucose uptake in patients with hypertension. Journal of Clinical Endocrinology and Metabolism, 66(3), 580-583.
Shi, G., An, L., Jiang, B., Guan, S., & Bao, Y. (2006). Alpinia protocatechuic acid protects against oxidative damage in vitro and reduces oxidative stress in vivo. Neuroscience Letters, 403(3), 206-210.
Slater, T. F. (1984). Free-radical mechanisms in tissue injury. Biochemical Journal, 222(1), 1-15.
Sowers, J. R. (1997). Insulin and insulin-like growth factor in normal and pathological cardiovascular physiology. Hypertension, 29(3), 691-699.
Sroka, Z., & Cisowski, W. (2003). Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food and Chemical Toxicology, 41(6), 753-758.
Tanaka, T., & Tanaka, M. (2011). Potential cancer chemopreventive activity of protocatechuic acid. Journal of Experimental and Clinical Medicine, 3(1), 27-33.
Teramukai, S., Rohan, T., Eguchi, H., Oda, T., Shinchi, K., & Kono, S. (2002). Anthropometric and behavioral correlates of insulin-like growth factor i and insulin-like growth factor binding protein 3 in middle-aged japanese men. American Journal of Epidemiology, 156(4), 344-348.
Touyz, R., & Schiffrin, E. (2004). Reactive oxygen species in vascular biology: Implications in hypertension. Histochemistry and Cell biology, 122(4), 339-352.
Trejo, J. L., Carro, E., Nunez, A., & Torres-Aleman, I. (2002). Sedentary life impairs self-reparative processes in the brain: The role of serum insulin-like growth factor-i. Reviews in the Neurosciences, 13, 365-374.
Tseng, T., Wang, C., Kao, E., & Chu, H. (1996). Hibiscus protocatechuic acid protects against oxidative damage induced by tert-butylhydroperoxide in rat primary hepatocytes. Chemico-biological Interactions, 101(2), 137-148.
Twickler, M. T. B., Cramer, M. J. M., & Koppeschaar, H. P. F. (2003). Unraveling reaven’s syndrome x: Serum insulin-like growth factor-i and cardiovascular disease. Circulation, 107(20), e190-e192.
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology, 39(1), 44-84.
Vecchione, C., Colella, S., Fratta, L., Gentile, M. T., Selvetella, G., Frati, G., et al. (2001). Impaired insulin-like growth factor i vasorelaxant effects in hypertension. Hypertension, 37(6), 1480-1485.
Virdis, A., Ghiadoni, L., Pinto, S., Lombardo, M., Petraglia, F., Gennazzani, A., et al. (2000). Mechanisms responsible for endothelial dysfunction associated with acute estrogen deprivation in normotensive women. Circulation, 101(19), 2258-2263.
Vitaglione, P., Donnarumma, G., Napolitano, A., Galvano, F., Gallo, A., Scalfi, L., et al. (2007). Protocatechuic acid is the major human metabolite of cyanidin-glucosides. The Journal of Nutrition, 137(9), 2043-2048.
Wang, D., Wei, X., Yan, X., Jin, T., & Ling, W. (2010). Protocatechuic acid, a metabolite of anthocyanins, inhibits monocyte adhesion and reduces atherosclerosis in apolipoprotein e-deficient mice. Journal of Agricultural and Food Chemistry, 58(24), 12722-12728.
Weiner, C. P., Lizasoain, I., Baylis, S. A., Knowles, R. G., Charles, I. G., & Moncada, S. (1994). Induction of calcium-dependent nitric oxide synthases by sex hormones. Proceedings of the National Academy of Sciences, 91(11), 5212-5216.
Wu, X., Pittman III, H. E., Hager, T., Hager, A., Howard, L., & Prior, R. L. (2009). Phenolic acids in black raspberry and in the gastrointestinal tract of pigs following ingestion of black raspberry. Molecular Nutrition and Food Research, 53(S1), S76-S84.
Xia, E. Q., Deng, G. F., Guo, Y. J., & Li, H. B. (2010). Biological activities of polyphenols from grapes. International Journal of Molecular Sciences, 11(2), 622-646.
Xing, D., Nozell, S., Chen, Y.-F., Hage, F., & Oparil, S. (2009). Estrogen and mechanisms of vascular protection. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(3), 289-295.
Yu, Q., Gao, F., & Ma, X. L. (2011). Insulin says no to cardiovascular disease. Cardiovascular Research, 89(3), 516-524.
Zadernowski, R., Naczk, M., & Nesterowicz, J. (2005). Phenolic acid profiles in some small berries. Journal of Agricultural and Food Chemistry, 53(6), 2118-2124.
Zalba, G., San José, G., Moreno, M. U., Fortuño, M. A., Fortuño, A., Beaumont, F. J., et al. (2001). Oxidative stress in arterial hypertension role of nad (p) h oxidase. Hypertension, 38(6), 1395-1399.
Zeng, G., Nystrom, F. H., Ravichandran, L. V., Cong, L. N., Kirby, M., Mostowski, H., et al. (2000). Roles for insulin receptor, pi3-kinase, and akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation, 101(13), 1539-1545.
Zern, T. L., & Fernandez, M. L. (2005). Cardioprotective effects of dietary polyphenols. The Journal of Nutrition, 135(10), 2291-2294.
Zern, T. L., West, K. L., & Fernandez, M. L. (2003). Grape polyphenols decrease plasma triglycerides and cholesterol accumulation in the aorta of ovariectomized guinea pigs. The Journal of Nutrition, 133(7), 2268-2272.
Zern, T. L., Wood, R. J., Greene, C., West, K. L., Liu, Y., Aggarwal, D., et al. (2005). Grape polyphenols exert a cardioprotective effect in pre-and postmenopausal women by lowering plasma lipids and reducing oxidative stress. The Journal of Nutrition, 135(8), 1911-1917.
Zhang, X., Shi, G. F., Liu, X. z., An, L. j., & Guan, S. (2011). Anti‐ageing effects of protocatechuic acid from alpinia on spleen and liver antioxidative system of senescent mice. Cell Biochemistry and Function, 29(4), 342-347.
Zhou, M.-S., Schulman, I. H., & Raij, L. (2009). Role of angiotensin ii and oxidative stress in vascular insulin resistance linked to hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 296(3), H833-H839.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊