跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/18 10:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王俊雄
研究生(外文):Jun-Xiong Wang
論文名稱:糖蜜作為生物營養鹽去除替代碳源之可行性評估
論文名稱(外文):Assessment of sugar molasses as the alternative carbon sources of biological nutrient removal system
指導教授:張維欽張維欽引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:100
中文關鍵詞:生物脫硝磷蓄積菌物除磷活性污泥糖蜜醱酵液
外文關鍵詞:activated sludgebiological denitrificationphosphorus accumulating bacteriabiological phosphorus removalMolasses broth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1906
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
批次實驗結果顯示,糖蜜醱酵液皆有明顯利用之情形,且也有明顯之釋攝磷行為,因此糖蜜醱酵液可以做為生物除磷系統之替代碳源,且最佳之進流COD/P比為200/30至300/30 mg/mg之間。長期馴養實驗結果顯示,當以原始未醱酵之糖蜜為補充碳源時(進流COD/P = 400/20 mg/mg),由於系統缺乏足夠之揮發性脂肪酸(volatile fatty acids, VFAs),磷蓄積菌之生長明顯受到限制,而肝醣蓄積菌(glycogen-accumulating organism, GAOs)則成為系統中之優勢菌群,因此未醱酵糖蜜並不適合作為生物除磷系統之補充碳源。當以糖蜜醱酵液作為補充碳源而添加之醱酵液較多時(COD/P = 400/20),實驗顯示雖系統展現明顯之PAOs磷代謝行為,惟因醱酵液中仍具有約52.5%之非揮發酸COD,而此非揮發酸多屬較難分解之溶解性微生物產物(soluble microbial products, SMPs),是故因厭氧段殘留之SMPs對PAOs產生抑制,此系統並無法獲得完全之攝磷。反之當糖蜜醱酵液添加較少時(COD/P = 300/20),因進流提供之VFAs不足,並無法充分之除磷。因此,單純以糖蜜醱酵液作為補充碳源,將面臨添加過高產生SMPs抑制現象與添加過低VFAs不足之困難抉擇。倘以糖蜜醱酵液(300 mg/L)搭配乙酸作為補充碳源時,不論乙酸添加量50或100 mg COD/L,皆能使生物除磷系統展現富磷污泥之代謝行為與穩定之除磷效能,惟由代謝計量關係可知,乙酸添加量較高者,可獲得更富含PAOs之族群系統。綜合上述,建議進流廢水缺乏碳源之除磷系統可先將糖蜜進行醱酵,再以其醱酵液搭配少量乙酸,作為生物除磷系統之補充碳源。
由乙酸污泥所進行之批次實驗結果顯示,因系統中仍含有大量之PAOs菌群,所以還會有明顯之磷代謝行為,但系統還是有少量之脫硝菌群,所以仍然還有些微之脫硝反應,所以糖蜜醱酵液還是有可能做為脫硝系統之替代碳源。長期馴養結果顯示,以糖蜜醱酵液作為脫硝模廠替代碳源時,當操作於COD/NO3-N為400/60、400/75下,系統能利用糖蜜醱酵液並完全去除NO3-N;而當操作於COD/NO3-N為400/90下,則無法將其提供之NO3-N完全去除。由脫硝動力參數證明,不論以何種之COD/NO3-N進行長期馴養(前提是系統之優勢菌群為脫硝菌),脫硝速率皆是類似的,而影響脫硝速率快慢的真正原因是在於批次實驗之COD/NO3-N之比例,而以糖蜜醱酵液作為碳源時,批次實驗之比例應是介於COD/NO3-N為400/60 ~ 400/90 mg/mg 之間。
Batch experiments showed that molasses broth Individually significant use of case, and there is an obvious act of release phosphorus intake, so molasses broth can be used as an alternative to carbon biological phosphorus removal systems, and the best inflow COD/P ratio of 200/30 to 300/30 mg/mg between. Long-term domestication experiment results show that when the original is not fermented molasses as supplemental carbon source (inflow COD/P = 400/20 mg/mg), because the system lacks sufficient VFA (volatile fatty acids, VFAs), phosphorus accumulating bacteria''s growth was constrained, and glycogen accumulation of bacteria (glycogen-accumulating organism, GAOs) has become the dominant bacteria in the system, and therefore not fermented molasses biological phosphorus removal systems are not suitable as a supplemental carbon source. When molasses broth is added as a supplementary carbon source in the fermentation liquid is large (COD/P = 400/20), experiments show that although the system shows obvious PAOs phosphorus metabolism behavior, but due to fermentation liquid remains about 52.5% of the non-volatile acid COD, but this is more difficult and more non-volatile acid decomposition of soluble microbial products (soluble microbial products, SMPs), the actual occurrence of residues due to anaerobic produce inhibition of SMPs for PAOs, this system does not get the phosphorus intake completely. Conversely when adding molasses broth when there are fewer (COD/P = 300/20), due to the inflow of VFAs provide insufficient and not sufficient phosphorus. Thus, simply to molasses broth supplemented carbon source, will be faced with high added inhibition produced SMPs deficiencies with added low VFAs difficult choices. Where molasses broth (300 mg/L) supplemented with acetic acid as a carbon source, regardless of the amount of acetic acid added either 50 or 100 mg COD/L, both biological phosphorus removal system can show the metabolic behavior of phosphorus-rich sludge and stable phosphorus removal, but measured by the metabolic relationship shows that the higher the amount of acetic acid added, get more rich PAOs of ethnic system. In summary, the proposal lacks a carbon source into the flow of wastewater phosphorus removal system can be fermented molasses first, and then with its broth with a small amount of acetic acid, used as a supplemental carbon source biological phosphorus removal systems.
The acid sludge from the batch experiments carried out show that, because the system still contains a lot of PAOs flora, so there will be a significant act of phosphate metabolism, but the system is still a small amount of the denitrification bacteria, so there is still a slight the denitration reaction, molasses broth is still possible as an alternative to carbon denitrification system. The results showed that long-term domestication to molasses broth as a model plant denitration alternative carbon source, when operating in COD/NO3-N 400/60, 400/75, the system can use molasses broth and completely remove the NO3-N; while when operating in COD/NO3-N 400/90 Next, it can not be provided by the complete removal of NO3-N. Proved by the dynamic parameters of denitrification, the COD/NO3-N whatever long-term domestication (provided that the systems are dominant denitrifying bacteria), denitrification rates are all similar, which will affect the speed of the real rate of denitrification the reason is that the proportion of batch experiments COD/NO3-N and molasses broth as a carbon source, the batch experiments the ratio should be between COD/NO3-N to 400/60 ~ 400/90 mg / mg between.
中文摘要 I
ABSTRACT II
目錄 V
圖目錄 VIII
表目錄 XI
第一章、 前言 1
1.1 研究緣起 1
1.2 研究目的與內容 2
1.3 研究架構 4
第二章、 文獻回顧 5
2.1 加強生物除磷系統 5
2.1.1 加強生物除磷系統之原理 5
2.1.2 肝糖蓄積菌(GAOs)之發現與代謝機制 8
2.1.3 PAOs與GAOs競爭之因素 10
2.1.3.1 碳源種類 11
2.1.3.2 進流P / COD比 11
2.2 生物脫硝系統 12
2.2.1 生物脫硝作用之原理 12
2.2.2 影響脫硝速率之因素 13
2.2.2.1 有機物的種類及濃度 13
2.2.2.2 碳氮比 14
2.2.2.3 溶氧 14
2.3 廢棄物與廢水作為替代碳源之能源化 14
2.3.1 替代碳源之介紹 14
2.3.2 糖蜜介紹 19
2.3.3 厭氧生物醱酵反應機制 20
第三章、 實驗材料與方法 21
3.1 連續操作之活性污泥模廠 21
3.1.1 糖蜜醱酵槽 21
3.1.2 富磷污泥模廠 22
3.2 添加替代碳源之除磷系統 23
3.2.1 不同濃度糖蜜醱酵液之批次實驗 23
3.2.2 連續操作之厭好氧SBR污泥模廠 25
3.3 添加替代碳源之脫硝系統 27
3.3.1 不同濃度之COD/NO3-N脫硝批次實驗 28
3.3.2 添加替代碳源之連續操作活性污泥脫硝模廠 30
3.3.3 不同COD/NO3-N馴養污泥之脫硝批次實驗 31
3.4 動力、劑量指標計算 32
3.5 水質監測、分析方法與設備儀器 33
3.5.1 水質監測與分析項目 33
3.5.2 分析方法 35
3.5.3 分析設備 36
第四章、 結果與討論 37
4.1 連續操作之活性污泥模場水質數據 37
4.1.1 糖蜜醱酵槽 37
4.1.2 富磷污泥模場 38
4.2 糖蜜作為除磷系統替代碳源可行性評估 38
4.2.1 不同濃度糖蜜醱酵液之批次實驗 38
4.2.2 未醱酵糖蜜為碳源之SBR模廠操作結果 42
4.2.3 糖蜜醱酵液為碳源之SBR模廠操作結果 45
4.2.3.1 糖蜜醱酵液為碳源(COD/P = 400/30mg/L)之SBR模場操作結果 45
4.2.3.2 糖蜜醱酵液為碳源(COD/P = 400/20mg/L)之SBR模場操作結果 47
4.2.3.3 糖蜜醱酵液為碳源(COD/P = 300/20mg/L)之SBR模場操作結果 49
4.2.4 糖蜜醱酵液搭配乙酸為碳源之SBR模場操作結果 52
4.2.4.1 乙酸添加50 mg/L之SBR模場操作結果 52
4.2.4.2 乙酸添加50 mg/L之SBR模場操作結果 54
4.2.5 以動力與劑量探討菌群之競爭 56
4.2.6 綜合討論 59
4.3 糖蜜作為生物脫硝系統替代碳源之可行性評估 61
4.3.1 不同COD/NO3-N濃度之批次實驗 61
4.3.2 以不同COD/NO3-N濃度馴養之脫硝模廠 63
4.3.3 以不同COD/NO3-N馴養之污泥進行批次實驗 68
4.3.3.1 COD/NO3-N = 6.67之批次實驗結果 68
4.3.3.2 COD/NO3-N = 4.44之批次實驗結果 70
4.3.3.3 COD/NO3-N = 5.33之批次實驗結果 73
4.3.4 藉由動力參數探討不同比率間之脫硝速率差異 75
4.3.5 綜合討論 78
第五章、 結論與建議 79
5.1 結論 79
5.1.1 糖蜜作為生物除磷系統替代碳源之可行性評估 79
5.1.2 糖蜜作為生物脫硝系統替代碳源之可行性評估 79
5.2 建議 80
參考文獻 81
1.Abu-ghararah, Z.H. and Randall, C.W., 1991, “The effect of organic compounds on biological phosphorus removal.” Water science and technology, 23 (4-6), 585-594.
2.Albuquerque, M.G.E., Eiroa, M., Torres, C., Nunes, B.R., Reis, M.A.M., 2007. Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. Journal of Biotechnol 130, 411 – 421.
3.Albuquerque, M.G.E., Torres, C.A.V., Reis, M.A.M., 2010. Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: Effect of the influent substrate concentration on culture selection. Water Research 44, 3419 – 3433.
4.Arvin, E., Kristensen, H.G., 1985. Exchange of organics, Phosphate and cations between sludge and water in biological phosphate and nitrogen removal processes. Water Science and Technology 17, 147 – 162.
5.Arun, V., Mino, T., and Matsuo, T., 1988, “Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems.” Water Research, 22 (5), 565-570.
6.Bengtsson, S., Werker, A., Christensson, M., Welander, T., 2008. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresour Technol 99, 509 – 516.
7.Bengtsson, S., Piscob, A.R., Johansson, P., Lemos, P.C., Reis, M.A.M., 2010. Molecular weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar molasses by open mixed cultures. Journal of Biotechnology 147, 172 – 179.
8.Bilyk, K., Stone, A., Latimer, R., Pitt, P., Lynch, T.J., Mencome, T., 2009. Full-Scale Denitrification Evaluations using Sugar Water, Glycerin, and Methanol in Denitrification Filters and Activated Sludge. Nutrient Removal 19, 830 – 848.
9.Biradar, P.M., Roy, S.B., D`Souza, S.F. Pandit, A.B., 2010. Excess cell mass as an internal carbon source for biological denitrification. Bioresource Technology 101, 1787 – 1791.
10.Brdjanovic, D., Hooijmans, C.M., van Loosdrecht, M.C.M., Alaerts, G.J., and Heijnen, J.J., 1996, “The dynamic effects of potassium limitation on biological phosphorus removal.” Water Research, 30 (10), 303-313.
11.Cappai, G., Carucci, A., Onnis, A., 2004. Use of industrial wastewaters for the optimization and control of nitrogen removal processes. Water Science and Technology. 50(6), 17-24
12.Cech, J.S., and Hartman, P., 1990, “Glucose Induced Breakdown of Enhanced Biological Phosphate Removal.” Environmental Technology, 11 (7), 651-656.
13.Chen, J.C.P., and Chou, C.C. 1993. Cane Sugar Handbook, pp. 408-409. New York: Wiley.
14.Christensson, M., Lie, E., Jonsson, K., Johansson, P. and Welander, T., 1998, “Increasing substrate for polyphosphate-accumulating bacteria in municipal wastewater through hydrolysis and fermentation of sludge in primary clarifiers.” Water Environment Research, 70 (2), 138-145.
15.Comeau, Y., Hall, K.J., Hancock, R.E.W., and Oldham, W.K., 1986, “Biochemical model for enhanced biological phosphorus removal.” Water Research, 20 (12), 1511-1521.
16.Comeau, Y., Rabionwitz, B., Hall, K.J., Oldham, W.K., 1987, “Phosphate release and uptake in enhanced biological phosphorus removal from wastewater.” Journal (Water Pollution Control Federation), 59 (7), 707-715.
17.Crocetti, G.R., Banfield, J.F., Keller, J., Bond, P.L., and Blackall, L.L., 2002, “Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes.” Microbiology, 148 (11), 3353-3364.
18.Elefsiniotis, P., Wareham, D.G., Smith, M.O., 2004. Use of volatile fatty acids from an acid-phase digester for denitrification. Journal of Biotechnology 114, 289 – 297.
19.Eroglu, E., Eroglu, I., Gunduz, U., Turker, L., Yucel, M., 2006. Biological hydrogen production from olive mill wastewater with two-stage processes. International Journal of Hydrogen Energy 31, 1527 – 1535.
20.Fernandez, N.Y., Maranon, E., Soons, J., Castrillon, L., 2010. Denitrification of high nitrate concentration wastewater using alternative carbon sources. Journal of Hazardous Materials 173, 682 – 688.
21.Fernandez, F.J., Castro, M.C., Villasenor, J., Rodriguez, L., 2011. Agro-food wastewaters as external carbon source to enhance biological phosphorus removal. Chemical Engineering Journal 166, 559 – 567.
22.Foglar, L., Brisˆki, F., Sipos, L., Vukovic, M., 2005. High nitrateremoval from synthetic wastewater with the mixed bacterial culture. Bioresour Technol 96, 879 – 888.
23.Fukase T., Shibata M. and Miyaji Y., 1985, “The role of an anaerobic stage on biological phosphorus removal.” Water science and technology, 17 (2-3), 69-80.
24.Gebremariam, S.Y., Beutel, M.W., Christian, D., and Hess, T.F., 2011, “Research Advances and Challenges in the Microbiology of Enhanced Biological Phosphorus Removal-A Critical Review.” Water Environment Research, 83 (3), 195-219.
25.Glass, C., Silverstein, J., 1998. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Res. 32, 831–839.
26.Godbole, J. 2002. Ethanol from cane molasses, Fuel Ethanol Workshop Honululu Hawaii [online]. Available from: http://www.hawaii.gov/dbedt/ert/newfuel/files/ethanol-workshop/10-Godbole-DOE-HI.pdf [2007, August 20]
27.Guerrero, J., Taya, C., Guisasola, A., Baeza, J. A., 2012. Glycerol as a sole carbon source for enhanced biological phosphorus removal. Water Research. 46, 2983-2991
28.Harper, W.F., and Jenkins, D., 2003, “The Effect of an Initial Anaerobic Zone on the Nutrient Requirements of Activated Sludge.” Water Environment Research, 75 (3), 216-224.
29.Her, J.J., Huang, J.S., 1995. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough.Bioresource Technology 54, 45–51.
30.Hsu, C.H., Chang, W.C., Chen, J.J., Wu, J.S., 2012, High phosphorus shock loading induced glycogen accumulating organisms in anaerobic/oxic sequencing batch reactor, Desalination and water treatment, 47, 42-49.
31.Janczukowicz, W., Rodziewicz, J., Thornton, A., Czaplicka, K., 2012. Effect of fermented wastewaters from butter production on phosphates removal in a sequencing batch reactor. Bioresource Technology. 120, 34-39
32.Johnson, D.T., Taconi, K.A., 2007. The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environment Progress 26, 338 - 348.
33.Kim, D.H., Lee, D.Y., Kim, S.M., 2011. Enhanced biohydrogen production from tofu residue by acid/base pretreatment and sewage sludge addition. International Journal of Hydrogen Energy 36, 13922 – 13927.

34.Lee, N.M., Welander, T., 1996. The Effect of Different Carbon Sources on Respiratory Denitrification in Biological Wastewater Treatment. Journal of Fermentation and Bioenglneering 82, 277 – 285.
35.Liu, W.T., Mino, T., Nakamura, K., and Matsuo, T., (1996, “Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal.” Water Research, 30 (1), 75-82.
36.Lim, S.-J., Choi, D. W., Lee, W. G., Kwon, S., Chang, H. N., 2000. Volatile fatty acids production from food wastes and its application to biological nutrient removal. Bioprocess Engineering. 22, 543-545
37.Louie, T.M., Mah, T.J., Oldham, W.K., Ramey, W.D., 2000, “Use of metabolic inhibitors and gas chromatography/mass spectrometry to study poly-??hydroxyalkanoates metabolism involving cryptic nutrients in enhanced biological phosphorus removal systems.” Water Research, 34 (5), 1507-1514.
38.Louzeiro, N.R., Mavinic, D.S., Oldham, W.K., Meisen, A., Gardner, I.S., 2002. Methanol-induced biological nutrient removal kinetics in a full-scale sequencing batch reactor.Water Research 36, 2721–2732. Louzeiro,
39.Maurer, M. and Gujer, W., 1995, “Monitoring of microbial phosphorus release in batch experiments using electric conductivity.” Water Research, 29 (11), 2613-2617.
40.Maurer, M., Gujer, W., Hany, R., Bachmann, S., 1997, “Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems.” Water Research, 31 (4), 907-917.
41.Mino, T., Satoh, H. and Matsuo T., 1994, “Metabolism of different bacterial populations in enhanced biological phosphate removal processes” Water science and technology, 29 (7), 67-70.
42.Mino, T., Vanloosdrecht, M.C.M., and Heijnen, J.J., 1998, “Microbiology and biochemistry of the enhanced biological phosphate removal process.” Water Research, 32 (11), 3193-3207.
43.Mohseni-Bandpi, A., Elliott, D.J., Momeny-Mazdeh, A., 1999. Denitrification of groundwater using acetate acid as a carbon source. Water Science and Technology 40 (2), 53–59.
44.Mulkerrins, D., O''Connor, E., Lawlee, B., Barton, P., Dobson, A., 2004. Assessing the feasibility of achieving biological nutrient removal from wastewater at an Irish food processing factory. Bioresource Technology 91, 207-214
45.Nielsen, A.T., Liu, W.T., Filipe, C., Grady, L., Molin, S., and Stahl, D.A., 1999, “Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor.” Applied and Environment Microbiology, 65 (3), 1251-1258.
46.Ntaikou, I., Kourmentza, C., Koutrouli, E.C., Stamatelatou, K., Zampraka, A., Kornaros, M., Lyberatos, G. 2009. Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Biores Technol 100, 3724 – 3730.
47.Obaja, D., Mace, S., Mata, A. J., 2005. Biological nutrient removal by a sequencing batch reactor(SBR) using an internal organic carbon source in digested piggery wastewater. Bioresource Technology 96, 7 – 14.
48.Oehmen, A., Zeng, R., Yuan, Z., Keller, J., 2004. Anaerobicmetabolism of propionate by polyphosphate-accumulatingorganisms in enhanced biological phosphorus removal systems. Water Sci. Technol. 50 (10), 139–144.
49.Oehmen, A., Lemos, PC., Carvalho, G., Yuan, Z., Keller, J., Blackall, L.L., Reis, M.A., 2007. Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Research. 41(11), 2271-3000
50.Pattarkine, V.M., and Randall, C.W., 1999, “The requirement of metal cations for enhanced biological phosphorus removal by activated sludge. Water Science and Technology, 40 (2), 159 -165.
51.Pereira, H., Lemos, P.C., Reis, M.A.M., Crespo, J., Carrondo, M.J.T., and Santos, H., 1996, “Model for carbon metabolism in biological phosphorus removal processes based on in vivo C-13-NMR labelling experiments.” Water Research, 30 (9), 2128-2138.
52.Pijuan, M., Saunders, A.M., Guisasola, A., Baeza, J.A., Casas, C.,Blackall, L.L., 2004. Enhanced biological phosphorus removalin a sequencing batch reactor using propionate as the solecarbon source. Biotechnol. Bioeng. 85 (1), 56–67.
53.Puig, S., Coma, M., Monclus, H., van Loosdrecht, M.C., Colprim, J., Balaguer, M.D., 2008. Selection between alcohols and volatile fatty acids as external carbon sources for EBPR. Water Research. 42(3), 557-66
54.Quan, Z.X., Jin, Y.S., Yin, C.R., Lee, J.J., Lee, S.T., 2005. Hydrolyzed molasses as an external carbon source in biological nitrogen removal. Bioresource Technology 96, 1690 - 1695.
55.Randall, A.A., Benefield, L.D., Hill, W.E., Nicol, J.P., Boman, G.K., and Jing, S.R., 1997, “The effect of volatile fatty acids on enhanced biological phosphorus removal and population structure in anaerobic/aerobic sequencing batch reactors.” Water Sci Technol, 35 (1), 153-160.
56.Rickard, L.F., and McClintock, S.A., 1992, “Potassium and magnesium requirements for enhanced biological phosphorus removal from wastewater.” Water Science and Technology, 25 (9-11), 2203-2206.
57.Skinde, J.R., Bhagat, S.K., 1982. Industrial wastes as carbon sources in biological denitrificatio. Journal of Water Pollution Control Federation 54, 370 – 377.
58.Smolders, G.J.F., Vandermeij, J., Vanloosdrecht, M.C.M., and Heijnen, J.J., 1995, “A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process.” Biotechnology and Bioengineering, 47 (3), 277-287.
59.Swinarski, M., Makinia, J., Czerwionka, K., Chrzanowska, M., Drewnowski, J., 2009. Comparison of the effects of conventional and alternative external carbon sources on enhancing the denitrification process. Water Environment Research 81, 896 – 906.
60.Tam, N.F.T., Wong, Y.S., Leung, G. 1992. Effect of exogenous carbon sources on removal of inorganic nutrient by the nitrification-denitrification process. Water Research 26, 1229 – 1236.
61.Tanisho, S., Ishiwata, Y., 1994. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes. International Journal of Hydrogen Energy 20, 541 – 545.
62.Tchobanoglous, G., Burton, F.L., and Stensel, H.D. Wastewater Engineering (Treatment Disposal Reuse) / Metcalf &; Eddy, Inc. 4th Edition. McGraw-Hill Book Company. 2004. ISBN 0-07-124140-X.
63.Thomas, M., Wright, P., Blackall, L., Urbain, V., and Keller, J., 2003, “Optimisation of Noosa BNR plant to improve performance and reduce operating costs.” Water science and technology, 47 (12), 141-148.
64.Thong, S.O., Hniman, A., Prasertsan, P., Imai, T., 2011. Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures. International Journal of Hydrogen Energy 36, 3409 – 3416.
65.Ueda, T., Shinogi, Y., Yamaoka, M., 2006. Biological nitrate removal using sugar industry wastes. Paddy and Water Environment 4, 139 – 144.
66.Van Rijn, J., Tal, Y., Schreier, H.J., 2006. Denitrification in recirculating system: theory and applications. Aquacultural Engineering 34, 364 – 376.
67.Wentzel, M.C., Lotter, L.H., Ekama, G.A., Loewenthal, R.E., and Marais, G.v.R., 1991). Evaluation of biochemical-Models for biological excess phosphorus removal.” Water Science and Technology, 23 (4-6), 567-576.
68.Wong, M.T., Mino, T., Seviour, R.J., Onuki, M., and Liu, W.T., 2004, “In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan.” Water Research, 39 (13), 2901-2914.
69.Wong, M.T., Tan, F.M., Ng, W.J. and Liu, W.T., (2004, “Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes.” Microbiology 150 (11), 3741-3748.
70.Xu, Y., 1996. Volatile fatty acids carbon source for biological denitrification. Journal of Environment Science 8, 257 – 268.
71.Yagci, N., Artan, N., Cokgor, E.U., Randall, C.W., and Orhon, D., 2003, “Metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms under anaerobic conditions.” Biotechnology and Bioengineering, 84 (3), 359-373.
72.Yoo, H., Ahn, K.-H., Lee, H.-J., Lee, K.-H., Kwak, Y.-J., Song, K.- G., 1999. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor. Water Res. 33, 145–154.
73.Yuan, Q., Oleszkiewicz, J.A., 2010. Biomass fermentation to augment biological phosphorus removal. Chemosphere78, 29 – 34.
74.Zhang, L., Zhang, S., Wang, S., Wu, C., Chen, Y., Wang, Y., Peng, Y., 2013. Enhanced biological nutrient removal in a simultaneous fermentation denitrification and phosphate removal reactor using primary sludge as internal carbon source. Chemosphere 91, 635 – 640.
75.許智勛,(2013),高P/COD進流暨營養源缺乏對生物除磷系統操作效能之影響,國立雲林科技大學,博士論文。
76.林崇毅,(2005),糖蜜廢水之能源化研究,逢甲大學,碩士論文。
77.吳政鴻,(2009),不同環境壓力條件下生物除磷系統溶解性微生物產物之生成及其對除磷效能之影響,國立雲林科技大學,碩士論文。
78.謝博麒,(2010),固定化與懸浮生物反應系統於濃縮糖蜜醱酵廢液生物產氫效益之探討,逢甲大學,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top